Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T12:55:52.022Z Has data issue: false hasContentIssue false

Stability through variability: Homeostatic plasticity and psychological resilience

Published online by Cambridge University Press:  02 September 2015

Dennis J. L. G. Schutter
Affiliation:
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 HR Nijmegen, The Netherlands.d.schutter@donders.ru.nlm.wischnewski@donders.ru.nlh.bekkering@donders.ru.nlhttp://www.ru.nl/donders/
Miles Wischnewski
Affiliation:
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 HR Nijmegen, The Netherlands.d.schutter@donders.ru.nlm.wischnewski@donders.ru.nlh.bekkering@donders.ru.nlhttp://www.ru.nl/donders/
Harold Bekkering
Affiliation:
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 HR Nijmegen, The Netherlands.d.schutter@donders.ru.nlm.wischnewski@donders.ru.nlh.bekkering@donders.ru.nlhttp://www.ru.nl/donders/

Abstract

According to Kalisch et al., adopting a cognitive positive appraisal style promotes internal bodily homeostasis and acts as a safeguard against the detrimental effects of stress. Here we will discuss results from recent noninvasive brain stimulation studies in humans to illustrate that homeostatic plasticity provides a neural mechanistic account for the positive appraisal style theory of resilience.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bajbouj, M., Lisanby, S. H., Lang, U. E., Danker-Hopfe, H., Heuser, I. & Neu, P. (2006) Evidence for impaired cortical inhibition in patients with unipolar major depression. Biological Psychiatry 59:395400.Google Scholar
Barrionuevo, G., Schottler, F. & Lynch, G. (1980) The effects of repetitive low frequency stimulation on control and “potentiated” synaptic responses in the hippocampus. Life Sciences 27:2385.CrossRefGoogle ScholarPubMed
Bienenstock, E. L., Cooper, L. N. & Munro, P. W. (1982) Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex. Journal of Neuroscience 2:3248.CrossRefGoogle ScholarPubMed
Campbell-Sills, L., Cohan, S. L. & Stein, M. B. (2006) Relationship of resilience to personality, coping, and psychiatric symptoms in young adults. Behaviour Research and Therapy 44:585–99.CrossRefGoogle ScholarPubMed
Johnston, M. V. (2009) Plasticity in the developing brain: Implications for rehabilitation. Developmental Disabilities Research Reviews 15:94101.Google Scholar
Lømo, T. (1966) Frequency potentiation of excitatory synaptic activity in the dentate area of the hippocampal formation. Acta Physiologica Scandinavica 68:128.Google Scholar
Lourenco, F. & Casey, B. J. (2013) Adjusting behavior to changing environmental demands with development. Neuroscience Biobehavioral Reviews 37(9 Pt B):2233–42. doi: 10.1016/ j.neubiorev.2013.03.003.CrossRefGoogle ScholarPubMed
Lui, S. J. & Lachamp, P. (2006) The activation of excitatory glutamate receptors evokes a long-lasting increase in the release of GABA from cerebellar stellate cells. Journal of Neuroscience 25:9332–39.Google Scholar
McEwen, B. S. (1998) Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences 840:3344.Google Scholar
Milani, P., Piu, P., Popa, T., Della Volpe, R., Bonifazi, M., Rossi, A. & Mazzocchio, R. (2010) Cortisol-induced effects on human cortical excitability. Brain Stimulation 3:131–39.Google Scholar
Parkes, K. R. (1986) Coping in stressful episodes: The role of individual differences, environmental factors and situational characteristics. Journal of Personality and Social Psychology 51:1277–92.Google Scholar
Player, M. J., Taylor, J. L., Weickert, C. S., Alonzo, A., Sachdev, P., Martin, D., Mitchell, P. B. & Loo, C. K. (2013) Neuroplasticity in depressed individuals compared with healthy controls. Neuropsychopharmacology 38:2101–108.Google Scholar
Quartarone, A., Siebner, H. R. & Rothwell, J. C. (2006) Task-specific hand dystonia: Can too much plasticity be bad for you? Trends in Neurosciences 29:192–99.Google Scholar
Sale, M. V., Ridding, M. C. & Nordstrom, M. A. (2008) Cortisol inhibits neuroplasticity induction in human motor cortex Journal of Neuroscience 28:8285–93.Google Scholar
Siebner, H. R., Lang, N., Rizzo, V., Nitsche, M. A., Paulus, W., Lemon, R. N. & Rothwell, J. C. (2004) Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: Evidence for homeostatic plasticity in the human motor cortex. Journal of Neuroscience 24:3379–85.Google Scholar
Wassermann, E. M., Greenberg, B. D., Nguyen, M. B. & Murphy, D. L. (2001) Motor cortex excitability correlates with an anxiety-related personality trait. Biological Psychiatry 50:377–82.Google Scholar
Whitt, J. L., Petrus, E. & Lee, H. K. (2013) Experience-dependent homeostatic synaptic plasticity in neocortex. Neuropharmacology 78:4554.Google Scholar