Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T00:01:53.807Z Has data issue: false hasContentIssue false

The potential for genetic adaptations to language

Published online by Cambridge University Press:  01 October 2008

Mark Pagel
Affiliation:
School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, United Kingdomm.pagel@reading.ac.ukwww.evolution.rdg.ac.uk
Quentin D. Atkinson
Affiliation:
Institute of Cognitive and Evolutionary Anthropology, University of Oxford, Oxford OX2 6PN, United Kingdom. quentin.atkinson@anthro.ox.ac.ukhttp://users.ox.ac.uk/~soca0108/Quentins_website/Home.html

Abstract

We suggest there is somewhat more potential than Christiansen & Chater (C&C) allow for genetic adaptations specific to language. Our uniquely cooperative social system requires sophisticated language skills. Learning and performance of some culturally transmitted elements in animals is genetically based, and we give examples of features of human language that evolve slowly enough that genetic adaptations to them may arise.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, Q., Meade, A., Venditti, C., Greenhill, S. & Pagel, M. (2008) Languages evolve in punctuational bursts. Science 319:588.CrossRefGoogle ScholarPubMed
Bleasdale, F. A. (1987) Concreteness-dependent associative priming: Separate lexical organization for concrete and abstract words. Journal of Experimental Psychology 13:582–94.Google Scholar
Burger, J., Kirchner, M., Bramanti, B., Haak, W. & Thomas, M. G. (2007) Absence of the lactase-persistence-associated allele in early Neolithic Europeans. Proceedings of the National Academy of Sciences USA 104:3736–41.CrossRefGoogle ScholarPubMed
Dunn, M., Terrill, A., Reesink, G., Foley, R. & Levinson, S. C. (2005) Structural phylogenetics and the reconstruction of ancient language history. Science 309:2072–75.CrossRefGoogle ScholarPubMed
Glasser, M. F. & Rilling, J. K. (in press) DTI tractography of the human brain's language pathways. Cerebral Cortex. DOI:10.1093/cercor/bhn011.Google Scholar
Jessen, F., Heun, R., Erb, M., Granath, D. O., Klose, U., Papassotiropoulos, A. & Grodd, W. (2000) The concreteness effect: Evidence for dual coding and context availability. Brain and Language 7:103–12.CrossRefGoogle Scholar
Nottebohm, F. (2005) The neural basis of birdsong. PLoS Biology 3:e164.CrossRefGoogle ScholarPubMed
Pagel, M. (2008) Rise of the digital machine. Nature 452:699.CrossRefGoogle ScholarPubMed
Pagel, M., Atkinson, Q. D. & Meade, A. (2007) Frequency of word-use predicts rates of lexical evolution throughout Indo-European history. Nature 449:717–21.CrossRefGoogle ScholarPubMed
Thompson, P. M., Cannon, T. D., Narr, K. L., van Erp, T., Poutanen, V. P., Huttunen, M., Lönnqvist, J., Standertskjöld-Nordenstam, C. G., Kaprio, J., Khaledy, M., Dail, R., Zoumalan, C. I. & Toga, A. W. (2001) Genetic influences on brain structure. Nature Neuroscience 4:1253–58.CrossRefGoogle ScholarPubMed