Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T18:32:47.800Z Has data issue: false hasContentIssue false

Neuroleptics and operant behavior: The anhedonia hypothesis

Published online by Cambridge University Press:  04 February 2010

Roy A. Wise
Affiliation:
Center for Research on Drug Dependence, Department of Psychology, Concordia University, Montreal, P.O., CanadaH3G 1M8

Abstract

Neuroleptic drugs disrupt the learning and performance of operant habits motivated by a variety of positive reinforcers, including food, water, brain stimulation, intravenous opiates, stimulants, and barbiturates. This disruption has been demonstrated in several kinds of experiments with doses that do not significantly limit normal response capacity. With continuous reinforcement neuroleptics gradually cause responding to cease, as in extinction or satiation. This pattern is not due to satiation, however, because it also occurs with nonsatiating reinforcement (such as saccharin or brain stimulation). Repeated tests with neuroleptics result in earlier and earlier response cessation reminiscent of the kind of decreased resistance to extinction caused by repeated tests without the expected reward. Indeed, withholding reward can have the same effect on responding under later neuroleptic treatment as prior experience with neuroleptics themselves; this suggests that there is a transfer of learning (really unlearning) from nonreward to neuroleptic conditions. These tests under continuous reinforcement schedules suggest that neuroleptics blunt the ability of reinforcers to sustain responding at doses which largely spare the ability of the animal to initiate responding. Animals trained under partial reinforcement, however, do not respond as well during neuroleptic testing as animals trained under continuous reinforcement. Thus, neuroleptics can also impair responding (though not response capacity) that is normally sustained by environmental stimuli (and associated expectancies) in the absence of the primary reinforcer. Neuroleptics also blunt the euphoric impact of amphetamine in humans. These data suggest that the most subtle and interesting effect of neuroleptics is a selective attenuation of motivational arousal which is (a) critical for goal-directed behavior, (b) normally induced by reinforcers and associated environmental stimuli, and (c) normally accompanied by the subjective experience of pleasure. Because these drugs are used to treat schizophrenia and because they cause parkinsonian-like side effects, this action has implications for a better understanding of human pathology as well as normal motivational processes.

Type
Target Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aghajanian, G. K. & Bunney, B. S. (1977) Dopamine “autoreceptors”: Pharmacological characterization by microiontophoretic single cell recording studies. Naunyn-Schmiedeberg's Archives of Pharmacology 297:17. [DCG]CrossRefGoogle ScholarPubMed
Ahlenius, S. (1979) An analysis of behavioral effects produced by drug-induced changes of dopaminergic neurotransmission in the brain. Scandinavian Journal of Psychology 20:5964. [taRAW]CrossRefGoogle ScholarPubMed
Ahlenius, S., Engel, J. & Zoller, M. (1977) Effects of apomorphine and haloperidol on exploratory behavior and latent learning in mice. Physiological Psychology 5:290–94. [RJB, taRAW]CrossRefGoogle Scholar
Allison, J., Miller, M. & Wozny, M. (1979) Conservation in behavior. Journal of Experimental Psychology: General 108:434. [HMS]CrossRefGoogle Scholar
Amaral, D. G. & Routtenberg, A. (1975) Locus coeruleus and intracranial self-stimulation: A cautionary note. Behavioral Biology 13:331–38. [rRAW]Google Scholar
Amsel, A. (1958) The role of frustrative nonreward in noncontinuous reward situations. Psychopharmacology Bulletin 55:102–19. [WJF]Google ScholarPubMed
Amsel, A. (1967) Partial reinforcement effects on vigor and persistence. In: The psychology of learning and motivation, vol. 1, ed. Spence, K. W. & Spence, J. T., New York: Academic Press. [RLM]Google Scholar
Amsel, A., Rashotte, M. E. & MacKinnon, J. R. (1966) Partial reinforcement effects within a subject and between subjects. Psychological Monographs: General and Applied 80:139. [WJF]CrossRefGoogle ScholarPubMed
Amsel, A. & Roussel, J. (1952) Motivational properties of frustration: 1. Effect on a running response of the addition of frustration to the motivational complex, Journal of Experimental Psychology 43:363–68. [GFK, taRAW]CrossRefGoogle Scholar
Andén, N.-E., Fuxe, K., Hamberger, B. & Hökfelt, T. (1966) A quantitative study of the nigro-neostriatal dopamine neuron system in the rat. Acta Physiologica Scandinavica 67:306–12. [DCG]CrossRefGoogle ScholarPubMed
Angrist, B., Sathananthan, G., Wilk, S. & Gershon, S. (1974) Amphetamine psychosis: Behavioral and biochemical aspects. Journal of Psychiatric Research 11:1323. [PRS]CrossRefGoogle ScholarPubMed
Anisman, H., Irwin, J. & Sklar, L. S. (1979) Deficits of escape performance following catecholamine depletion: Implications for behavioral deficits induced by uncontrollable stress. Psychopharmacology 64:163–70. [HA]CrossRefGoogle ScholarPubMed
Anisman, H., Remington, G. & Sklar, L. S. (1979) Effect of inescapable shock on subsequent escape performance: Catecholaminergic and cholinergic mediation of response initiation and maintenance. Psychopharmacology 61:107–24. [HA]CrossRefGoogle ScholarPubMed
Baldessarini, R. J. (1980) Drugs and the treatment of psychiatric disorders. In: The pharmacological basis of therapeutics, 6th ed., ed. Gilman, A. G., Goodman, L. S. & Gilman, A., pp. 395418. New York: MacMillan. [RHR]Google Scholar
Baxter, B. L., Gluckman, M. I., Stein, L. & Scerni, R. A. (1974) Self-injection of apomorphine in the rat: Positive reinforcement by a dopamine receptor stimulant. Pharmacology, Biochemistry and Behavior 2:387–93. [taRAW]CrossRefGoogle ScholarPubMed
Belluzzi, J. D. & Stein, L. (1977) Enkephalin may mediate euphoria and drive-reduction reward. Nature 266:556–58. [taRAW]CrossRefGoogle ScholarPubMed
Belmaker, R. H. & Wald, D. (1977) Haloperidol in normals. British Journal of Psychiatry 131:222–23. [JL]CrossRefGoogle ScholarPubMed
Beninger, R. J., MacLennan, A. J. & Pinel, J. P. J. (1980) The use of conditioned defensive burying to test the effects of pimozide on associative learning. Pharmacology, Biochemistry and Behavior 12:445–48. [RJB, taRAW]CrossRefGoogle ScholarPubMed
Beninger, R. J., Mason, S. T., Phillips, A. G. & Fibiger, H. C. (1980) The use of conditioned suppression to evaluate the nature of neuroleptic-induced avoidance deficits. Journal of Pharmacology and Experimental Therapeutics 213:623–27. [RJB, taRAW]Google ScholarPubMed
Beninger, R. J. & Phillips, A. G. (1980) The effect of pimozide on the establishment of conditioned reinforcement. Psychopharmacology 68:147–53. [RJB]CrossRefGoogle ScholarPubMed
Beninger, R. J. & Phillips, A. G. (1981) The effects of pimozide during pairing on the transfer of classical conditioning to an operant discrimination. Pharmacology, Biochemistry and Behavior 14:101–05. [RJB, PS]CrossRefGoogle Scholar
Bignami, G. (1978) Effects of neuroleptics, ethanol, hypnotic-sedatives, tranquilizers, narcotics and minor stimulants in aversive paradigms. In: Psychopharmacology of aversively motivated behavior, ed. Anisman, H. & Bignami, G., pp. 385402. New York: Plenum Press. [RHR]CrossRefGoogle Scholar
Bindra, D. A. (1974) A motivational view of learning, performance, and behavior modification. Psychological Review 81:199213. [RLM, RHR, taRAW]CrossRefGoogle ScholarPubMed
Bolles, R. C. (1972) Reinforcement, expectancy, and learning. Psychological Review 79:394409. [taRAW]CrossRefGoogle Scholar
Bowman, W. C. & Rand, M. J. (1980) Textbook of pharmacology, 2nd ed., pp. 15, 12 ff. Oxford: Blackwell. [WL]Google Scholar
Bozarth, M. A. (1982) Opiate reward mechanisms mapped by intracranial self-administration. In: Neurobiology of Opiate Reward Mechanisms, ed. Smith, J. E. and Lane, J. D., New York: Raven Press. [rRAW]Google Scholar
Bozarth, M. A. & Wise, R. A. (1981a) Intracranial self-administration of morphine into the ventral tegmental area in rats. Life Sciences 28:551–55. [rRAW]CrossRefGoogle ScholarPubMed
Bozarth, M. A. & Wise, R. A. (1981b) Localization of the reward-relevant opiate receptors. In: Problems of Drug Dependence, ed. Harris, L. S.. Washington, D.C.: National Institute on Drug Abuse. [rRAW]Google Scholar
Bozarth, M. A. & Wise, R. A. (1981c) Heroin reward is dependent on a dopaminergic substrate. Life Sciences 29:1881–86. [rRAW]CrossRefGoogle ScholarPubMed
Broekkamp, C. L. E. & Van Rossum, I. M. (1975) The effect of microinjections of morphine and haloperidol into the neostriatum and the nucleus accumbens on self-stimulation behavior. Archives Internationales de Pharmacodynamie et de Therapie 217:110–17. [WRK]Google Scholar
Bunney, B. S. & Grace, A. A. (1978) Acute and chronic haloperidol treatment: Comparison of effects on nigral dopaminergic cell activity. Life Sciences 23:1715–28. [DCG]CrossRefGoogle ScholarPubMed
Bunney, B. S., Walters, J. R., Roth, R. H. & Aghajanian, G. K. (1973) Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity. Journal of Pharmacology and Experimental Therapeutics 185:560–71. [DGG]Google ScholarPubMed
Cabanac, M. (1971) Physiological role of pleasure. Science 173:1103–07. [WJF, rRAW]CrossRefGoogle ScholarPubMed
Capaldi, E. J. (1967) A sequential hypothesis of instrumental learning. In: The psychology of learning and motication, vol. I., ed. Spence, K. W. & Spence, J. T., pp. 67156. New York: Academic Press. [RLM]Google Scholar
Capaldi, E. J. & Waters, R. W. (1970) Conditioning and non-conditioning interpretations of small-trial phenomena. Journal of Experimental Psychology 84:518–22. [RLM]CrossRefGoogle Scholar
Capaldi, E. J., Ziff, D. R. & Godbout, R. C. (1970) Extinction and the necessity of nonnecessity of anticipating reward or nonrewarded trials. Psychonomic Science 18:6163. [RLM]CrossRefGoogle Scholar
Carr, A. C. (1964) Psychological defect and psychological testing. In: Schizophrenia, ed. Kolb, L. C., Kellman, F. J. & Polatin, P., pp. 773–98. Boston: Little, Brown & Co. [CBN]Google Scholar
Carroll, M. E., France, C. P. & Meisch, R. A. (1979) Food deprivation increases oral and intravenous drug intake in rats. Science 205:319–21. [WRK]CrossRefGoogle ScholarPubMed
Casey, J. F., Bennett, I. F., Lindley, C. J., Hollister, L. E., Gordon, M. H. & Springer, N. N. (1960) Drug therapy in schizophrenia. Archives of General Psychiatry 2:210–20. [WJF]Google Scholar
Cheramy, A., Leviel, V. & Glowinski, J. (1981) Dendritic release of dopamine in the substantia nigra. Nature 289:537–42. [DCG]Google Scholar
Christie, J. E., Ljungberg, T. & Ungerstedt, U. (1973) Dopamine neurones and electrical self-stimulation in the lateral hypothalamus. Journal of Physiology 234:80P. [GWA]Google ScholarPubMed
Clare, G., Simeon, J. & Fink, M. (1969) Liquid butaperazine in the treatment of chronic psychosis in a mental health clinic. Current Therapeutic Research 11:5763. [WJF]Google Scholar
Clavier, R. M., Fibiger, H. C. & Phillips, A. G. (1976) Evidence that self-stimulation of the region of the locus coeruleus in rats does not depend upon noradrenergic projections to telencephalon. Brain Research. 113:7181. [rRAW]CrossRefGoogle Scholar
Clavier, R. M. & Routtenberg, A. (1974) Ascending monoamine-containing fiber pathways related to intracranial self-stimulation histochemical fluorescence study. Brain Research 72:25–10. [rRAW]CrossRefGoogle ScholarPubMed
Clody, D. E. & Beer, B. (1975) Conditioned avoidance: A predictor of efficacy and duration of action for long-acting neuroleptic agents. In: Predictability in psychopharmacology: Preclinical and clinical correlations, ed. Sudilovsky, A., Gershon, S. & Beer, B.. pp. 213–24. New York: Raven Press. [JL]Google Scholar
Commissaris, R. L., Lyness, W. H., Moore, K. E. & Rech, R. H. (1981) Central 5-hydroxytryptamine and the effects of hallucinogens and phenobarbital on operant responding in rats. Pharmacology, Biochemistry and Behavior 14:595601. [WHL]Google Scholar
Cook, L. & Kelleher, R. T. (1963) Effects of drugs on behavior. Annual Review of Pharmacology 3:205–22. [RJB]CrossRefGoogle Scholar
Corbett, D., Skelton, R. W. & Wise, R. A. (1977) Dorsal bundle lesions fail to disrupt self-stimulation from the region of locus coeruleus. Brain Research 133:3744. [rRAW]CrossRefGoogle ScholarPubMed
Corbett, D. & Wise, R. A. (1979) Intracranial self-stimulation in relation to the ascending noradrenergic fiber systems of the pontine tegmentum and caudal midbrain: A moveable electrode mapping study. Brain Research 177:423–36. [rRAW]CrossRefGoogle Scholar
Costall, B. & Naylor, R. J. (1981) The hypotheses of different dopamine receptor mechanisms. Life Sciences 28:215–19. [PS]CrossRefGoogle ScholarPubMed
Costall, B. & Naylor, R. J. (1979) Behavioral aspects of dopamine agonists and antagonists. In: The neurobiology of dopamine, ed. Horn, A. S., Korf, J. & Westerink, B. H. C., pp. 555–76. New York: Academic Press. [RJB]Google Scholar
Cotman, C. W. & McGaugh, J. L. (1980) Behavioral neuroscience: An introduction, pp. 326–32. New York: Academic Press. [WL]Google Scholar
Crider, A. (1979) Schizophrenia: A biopsychological perspective. Hillsdale, N.J.: Lawrence Erlbaum. [PRS]Google Scholar
Crider, A., Solomon, P. R. & McMahon, M. (1981) Disruption of selective attention in the rat following chronic d-amphetamine administration: Relationship to schizophrenic attention disorder. Biological Psychiatry, submitted for publication. [PRS]Google Scholar
Crossland, J. (1970) Lewis's Pharmacology, 4th ed., pp. 744–51. Edinburgh: Livingstone. [WL]Google Scholar
Crow, T. J. (1979) What is wrong with dopaminergic transmission in schizophrenia? Trends in Neurosciences 2:5254. [CBN]CrossRefGoogle Scholar
Crow, T. J. (1972) Catecholamine-containing neurones and electrical self-stimulation: 1. A review of some data. Psychological Medicine 2:414–21. [rRAW]Google Scholar
Curry, S. H. (1974) Metabolism and kinetics of chlorpromazine in relation to effect. In: Antipsychotic drugs: Pharmacodynamics and pharmacokinetics, ed. Sedvall, G., Uvnas, B. & Zotterman, Y., pp. 343–52. Oxford: Pergamon Press. [WJF]Google Scholar
Dantzer, T. (1977) Behavioral effects of benzodiazepines: A review. Biobehavioral Review 1:7186. [PS]CrossRefGoogle Scholar
Davis, W. M. & Smith, S. G. (1975) Effect of haloperidol on (+)-amphetamine self-administration. Journal of Pharmacy and Pharmacology 27:540–42. [RJB, taRAW]CrossRefGoogle ScholarPubMed
Davis, W. M. & Smith, S. G. (1977) Catecholaminergic mechanisms of reinforcement: Direct assessment by drug self-administration. Life Sciences 20:483–92. [taRAW]CrossRefGoogle ScholarPubMed
Davis, W. M., Smith, S. G. & Khalsa, J. H. (1975) Noradrenergic role in the self-administration of morphine or amphetamine. Pharmacology, Biochemistry and Behavior 3:477–84. [WRK]Google Scholar
Devenport, L. D., Devenport, J. A. & Holloway, F. A. (1981) Reward-induced stereotypy: Modulation by the hippocampus. Science 212:1288–89. [PS]CrossRefGoogle ScholarPubMed
Dews, P. B. & Morse, W. H. (1961) Behavioral pharmacology. Annual Reviews of Pharmacology 1:145–74. [JL, PRS, taRAW]CrossRefGoogle Scholar
DiMaseio, A., Havens, L. L. & Klerman, G. L. (1963) The psychopharmacology of phenothiazine compounds: A comparative study of the effects of chlorpromazine, promethazine, trifluoperazine, and perphenazine in normal males. 2. Results and discussion. Journal of Nervous and Mental Disease 136:168–86. [WJF]Google Scholar
Edmonds, D. E. & Gallistel, C. R. (1977) Reward versus performance in self-stimulation: Electrode specific effects of methyl-p-tyrosine on reward in the rat. Journal of Comparative and Physiological Psychology 91:962–74. [NWM]CrossRefGoogle ScholarPubMed
Edwards, M., Wishik, J. & Sinnamon, H. M. (1979) Catecholaminergic and cholinergic agents and duration regulation of ICSS in the rat. Pharmacology, Biochemistry and Behavior 10:723–31. [HMS]CrossRefGoogle ScholarPubMed
Eisenberger, R., Carlson, J., Guile, M. and Shapiro, N. (1979) Transfer of effort across behaviors. Learning and Motivation 10:178–97. [HMS]CrossRefGoogle Scholar
Esposito, R. U., Faulkner, W. & Kornetsky, C. (1979) Specific modulation of brain stimulation reward by haloperidol. Pharmacology, Biochemistry and Behavior 10:937–40. [taRAW]CrossRefGoogle ScholarPubMed
Esposito, R. U. & Kornetsky, C. (1978) Opioids and rewarding brain stimulation. Neuroscience and Biobehavioural Reviews 2:115–22. [rRAW]CrossRefGoogle Scholar
Ettenberg, A., Cinsavich, S. A. & White, N. (1979) Performance effects with repeated-response measures during pimozide-produced dopamine receptor blockade. Pharmacology, Biochemistry and Behavior 11: 557–61. [RJB, AE]CrossRefGoogle ScholarPubMed
Ettenberg, A., Koob, G. G. & Bloom, F. E. (1981) Response artifact in the measurement of neuroleptic-induced anhedonia. Science 209:357–59. [JP, taRAW]CrossRefGoogle Scholar
Ettenberg, A., Koob, G. F., Pettit, H. O. & Bloom, F. E. (1981) Opiate and stimulation intravenous self-administration in rats; mediation by separate neural systems. Neuroscience Abstracts 7:263. [AE, GFK]Google Scholar
Ettenberg, A. & White, N. (1981) Pimozide attenuates conditioned taste preferences induced by rewarding brain stimulation. Pharmacology, Biochemistry and Behavior, in press. [AE]CrossRefGoogle Scholar
Fallon, J. H. & Moore, R. Y. (1978) Catecholamine innervation of the basal forebrain. 4. Topography of the dopamine projection to the basal forebrain and neostriatum. Journal of Comparative Neurology 180:545–80. [DCG]CrossRefGoogle Scholar
Fallon, J. H., Riley, J. N. & Moore, R. Y. (1978) Substantia nigra dopamine neurons: Separate populations project to neostriatum and allocortex. Neuroscience Letters 7:157–62. (DCG]Google Scholar
Farber, J., Miller, J. D., Gatz, P., Roffwarg, H. & German, D. C. (1981) Unit activity of dopaminergic and non-dopaminergic neurons in the region of the substantia nigra in relation to sleep-wake states and REM sleep phasic activity. Neuroscience Abstracts. In press. [DCG]Google Scholar
Feldman, P. E., Bay, A. P., Basey, A. N., Bhasker, K. N. & Kennedy, L. L. (1969) Parenteral haloperidol in controlling patient behavior during acute psychotic episodes. Current Therapeutic Research 11:362–66. [WJF]Google Scholar
Felten, D. L. (1977) Dendritic monoamines in the squirrel monkey brain. Brain Research 120:553–58. [DCG]CrossRefGoogle ScholarPubMed
Fibiger, H. C. (1978) Drugs and reinforcement mechanisms: A critical review of the catecholamine theory. Annual Review of Pharmacology and Toxicology 18:3756. [AE, taRAW]Google Scholar
Fibiger, H. C., Carter, D. A. & Phillips, A. G. (1976) Decreased intracranial self-stimulation after neuroleptics or 6-hydroxydopamine: Evidence for mediation by motor deficits rather than by reduced reward. Psychopharmacology 47:2127. [taRAW]Google Scholar
Fibiger, H. C., Zis, A. P. & Phillips, A. G. (1975) Haloperidol-induced disruption of conditioned avoidance responding: Attenuation by prior training or by anticholinergic drugs. European Journal of Pharmacology 30:309–14. [HA]CrossRefGoogle ScholarPubMed
Fonberg, E. (1969) The role of the hypothalamus and amygdala in food intake, alimentary motivation, and emotional reaction. Acta Biologica Experimentalis 29:339–58. [WJF]Google Scholar
Fouriezos, G., Hansson, P. & Wise, R. A. (1978) Neuroleptic-induced attenuation of brain stimulation reward. Journal of Comparative and Physiological Psychology 92:659–69. [taRAW]Google Scholar
Fouriezos, G. & Wise, R. A. (1976) Pimozide-induced extinction of intracranial self-stimulation: Response patterns rule out motor performance deficits. Brain Research 103:377–80. [WJF, taRAW]CrossRefGoogle Scholar
Franklin, K. B. J. (1978) Catecholamines and self-stimulation: Reward and performance deficits dissociated. Pharmacology, Biochemistry and Behavior 9:813–20. [taRAW]CrossRefGoogle Scholar
Franklin, K. B. J. & McCoy, S. N. (1979) Pimozide-induced extinction in rats: Stimulus control of responding rules out motor deficit. Pharmacology, Biochemistry and Behavior 11:7176. [AE, RJB, WJF, taRAW]CrossRefGoogle ScholarPubMed
Freed, W. J., Gillin, J. C. & Wyatt, R. J. (1980) Anomalous behavioral response to imidazoleacetic acid, a GABA agonist, in animals treated chronically with haloperidol. Biological Psychiatry 15:2135. [WJF]Google ScholarPubMed
Gallistel, C. R., Shizgal, P. & Yeomans, J. S. (1981) A portrait of the substrate for self-stimulation. Psychological Review 88:228–73. [NWM, rRAW]CrossRefGoogle ScholarPubMed
Gallistel, C. R., Stellar, J. R. and Bubis, E. (1974) Parametric analysis of brain stimulation reward in the rat: LI. The transient process and the memory-containing process. Journal of Comparative and Physiological Psychology 87:848–60. [HMS]CrossRefGoogle Scholar
Garcia, J. & Knoelling, R. (1966) Relation of cue to consequences in avoidance learning. Psychonomic Science 4:123–24. [NWM]Google Scholar
Gardos, G. & Cole, J. O. (1978) Maintenance antipsychotic therapy: For whom and how long? In: Psychopharmacology: A generation of progress, ed. Lipton, M. A., DiMascio, A. & Killam, K. F., pp. 1169–78 New York: Raven Press. [CBN]Google Scholar
Gerber, G. J., Bozarth, M. A. & Wise, R. A. (1981) Small-dose intravenous heroin facilitates hypothalamic self-stimulation without response suppression in rats. Life Sciences 28:557–62. [rRAW]CrossRefGoogle ScholarPubMed
Gerber, G. J., Sing, J. & Wise, R. A. (1981) Pimozide attenuates lever pressing for water in rats. Pharmacology, Biochemistry and Behavior 14:201–05. [taRAW]CrossRefGoogle ScholarPubMed
Gibbs, J., Young, R. C. & Smith, G. P. (1973) Cholecystokinin decreases food intake in rats. Journal of Comparative and Physiological Psychology 84:488–95. [DCG]CrossRefGoogle ScholarPubMed
Goodman, L. S. & Gilman, A. (1975) The Pharmacological basis of therapeutics, 5th ed., pp. 100–01. New York: Macmillan. [WL]Google Scholar
Goldberg, S. C., Klerman, G. L. & Cole, J. O. (1965) Changes in schizophrenic psychopathology and ward behavior as a function of phenothiazine treatment. British Journal of Psychiatry 111:120–33. [WJF]CrossRefGoogle ScholarPubMed
Gray, T. & Wise, R. A. (1980) Effects of pimozide on lever-pressing behavior maintained on an intermittent reinforcement schedule. Pharmacology, Biochemistry and Behavior 12:931–35. [GWA, RJB, AE, taRAW]Google Scholar
Grill, H. J. & Norgren, R. (1978a) The taste reactivity test. 2. Mimetic responses in gustatory stimuli in chronic thalamic and chronic decerebrate rats. Brain Research 143:281–97. [LDK]CrossRefGoogle ScholarPubMed
Grill, H. J. & Norgren, R. (1978b) Chronically decerebrate rats demonstrate satiation but not bait shyness. Science 201:267–69. [LDK]CrossRefGoogle Scholar
Groves, P. M., Miller, S. W., Parker, M. V. & Rebec, G. V. (1973) Organization by sensory modality in the reticular formation of the rat. Brain Research 54:207–24. [RBM]CrossRefGoogle ScholarPubMed
Groves, P. M. & Rebec, G. V. (1976) Biochemistry and behavior: Some central actions of amphetamine and antipsychotic drugs. Annual Review of Psychology 27:91. [PRS]CrossRefGoogle ScholarPubMed
Gunne, L. M., Änggard, E. & Jönsson, L. E. (1972) Clinical trials with amphetamine-blocking drugs. Psychiatria Neurologia Neurochirurgia 75:225–26. [WHL, taRAW]Google Scholar
Haddad, N. F., Walkenbach, J. & Goeddel, P. S. (1980) Sequential effects on rats' lever-pressing and pigeons' key-pecking. American Journal of Psychology 93:4151. [RLM]Google Scholar
Hamill, W. T. & Fontana, A. F. (1975) The immediate effects of chlorpromazine in newly admitted schizophrenic patients. American Journal of Psychiatry 132:1023–26. [WJF]Google ScholarPubMed
Hamilton, M. H., Garcia-Munoz, M., Muir, W. J. & Arbuthnott, G. W. (1981) Separation of motor and other effects of unilateral 6-OHDA lesions. Neuroscience Letters (suppl. 6). In press. [GWA]Google Scholar
Head, H. (1920) Studies in Neurology. London: Oxford University Press. [rRAW]Google Scholar
Hebb, D. O. (1956) Drives and the CNS (conceptual nervous system). Psychological Review 62:243–54. [taRAW]CrossRefGoogle Scholar
Hebb, D. O. (1972) Textbook of psychology, third ed.Philadelphia: W. B. Saunders. [AE]Google Scholar
Henke, P. (1973) Effects of reinforcement omission on rats with lesions in the amygdala. Journal of Comparative and Physiological Psychology 84:187–93. [GFK]CrossRefGoogle ScholarPubMed
Herberg, L. J., Stephens, D. N. & Franklin, K. B. J. (1976) Catecholamines and self-stimulation: Evidence suggesting a reinforcing role for noradrenaline and a motivating role for dopamine. Pharmacology Biochemistry & Behavior 4:575–82. [rRAW]CrossRefGoogle Scholar
Herling, S. & Woods, J. H. (1980) Chlorpromazine effects on cocaine reinforced responding in rhesus monkeys: Reciprocal modification of rate-altering effects of the drugs. Journal of Pharmacology and Experimental Therapeutics 214:354–61. [PS, taRAW]Google ScholarPubMed
Hill, R. T. & Tedeschi, D. H. (1971) Animal testing and screening procedures in evaluating psychotropic drugs. In: An introduction to psychopharmacology, ed. Rech, R. H. & Moore, K. E., pp. 261–68. New York: Raven Press. [RHR]Google Scholar
Hodge, G. K. & Butcher, L. L. (1980) Pars compacta of the substantia nigra modulates motor activity but is not involved importantly in regulating food and water intake. Naunyn-Schmiedeberg's Archives of Pharmacology 313:5167. [DCG]CrossRefGoogle Scholar
Hoffmeister, F. H. & Wuttke, W. (1975) Psychotropic drugs as negative reinforcers. Pharmacology Reviews 27:419–28. [CBN]Google ScholarPubMed
Hökfelt, T., Rehfeld, J. F., Skirboll, Z., Ivemark, B., Goldstein, M. & Markey, K. (1980) Evidence for coexistence of dopamine and CCK in meso-limbic neurones. Nature 285:476–78. [DCG]CrossRefGoogle ScholarPubMed
Hollister, L. E. (1964) Adverse reactions to phenothiazines. Journal of the American Medical Association 189:311–13. [WJF]Google ScholarPubMed
Hunt, H. F. (1956) Some effects of drugs on classical (type S) conditioning. Annals of the New York Academy of Science 65:258–67. [RJB]CrossRefGoogle ScholarPubMed
Hursh, S. R. (1980) Economic concepts for the analysis of behavior. Journal of the Experimental Analysis of Behavior 34:219–38. [HMS]CrossRefGoogle ScholarPubMed
Irwin, J., Suissa, A. & Anisman, H. (1980) Differential effects of inescapable shock on escape performance and discrimination learning in a water escape task. Journal of Experimental Psychology: Animal Behavior Processes 6:2140. [HA]Google Scholar
Iwamoto, E. T. & Way, E. L. (1977) Circling behavior and stereotypy induced by intracranial nigral opiate microinjections. Journal of Pharmacology and Experimental Therapeutics 203:347–59. [rRAW]Google Scholar
Janssen, P. A. J., Niemegeers, C. J. E., Schellekens, K. H. L., Dresse, A., Lenaerts, F. M., Pinchard, A., Schaper, W. K. A., Van Nueten, J. M. & Verbruggen, F. J. (1968) Pimozide, a chemically novel, highly potent and orally long-acting neuroleptic drug. Arzneimittel-Forschung 18:261–79. [WJF, GFK]Google ScholarPubMed
Jenkins, H. M. (1977) Sensitivity of different response systems to stimulus-reinforcer and response-reinforcer relations. In: Operant Pavlovian interactions, ed. Davis, H. & Hurwitz, H. M. B., pp. 7896. Hillsdale, N.J.: Erlbaum. [RLM]Google Scholar
Jönsson, L., Änggard, E. & Gunne, L. (1971) Blockade of intravenous amphetamine euphoria in man. Clinical Pharmacology and Therapy 12:889–96. [taRAW]Google Scholar
Kamin, L. J. (1968) “Attention-like” processes in classical conditioning. In: Miami symposium on the prediction of behavior, ed. Jones, M. R., pp. 931. Miami: University of Miami Press. [PRS]Google Scholar
Kandel, D. A. & Schuster, C. R. (1977) An investigation of nalorphine and perphenazine as negative reinforcers in an escape paradigm. Pharmacology, Biochemistry & Behavior 6:6171. [CBN]CrossRefGoogle Scholar
Katz, R. J. (1981) The temporal structure of motivation 4. A reexamination of extinction effects in intracranial reward. Behavioral and Neural Biology 32:191200. [RJK]CrossRefGoogle Scholar
Katz, R. J. & Bailey, E. D. (1980) A reexamination of apomorphine induced stereotypy in light of self-administration experiments in the rat. Progress in Neuropharmacology 3:483–90. [RJK]Google Scholar
Kelleher, R. T. & Morse, W. H. (1968) Determinants of the specificity of behavioral effects of drugs. Ergebnisse der Physiologie 60:156. [JL]Google Scholar
Kelleher, R. T. & Morse, W. H. (1968) Schedules using noxious stimuli. 3. Responding maintained with response produced electric shocks. Journal of Experimental Analysis of Behavior 11:819–38. [GFK]CrossRefGoogle ScholarPubMed
Kelly, P. H., Seviour, P. W. & Iversen, S. D. (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Research 94:507–22. [DCG]CrossRefGoogle ScholarPubMed
Kokkinidis, L. & Anisman, H. (1980) Amphetamine models of paranoid schizophrenia: An overview and elaboration of animal experimentation. Psychological Bulletin 88:551–79. [HA]Google Scholar
Koob, G. F., Balcom, G. J. & Meyerhoff, J. L. (1976) Increases in intracranial self-stimulation in the posterior hypothalamus following unilateral lesions in the locus coeruleus. Brain Research 101:554–60. [rRAW]Google Scholar
Koob, G. F., Fray, P. J. & Iversen, S. D. (1978) Self-stimulation at the lateral hypothalamus and locus coeruleus after specific unilateral lesions of the dopamine system. Brain Research 146:123–40. [GFK]Google Scholar
Koob, G. F., Riley, S. J., Smith, S. C. & Robbins, T. W. (1978) Effects of 6-hydroxydopamine lesions of the nucleus accumbens septl and olfactory tuberele on feeding, locomotor activity, and amphetamine anorexia in the rat. Journal of Comparative Physiological Psychology 92:917–27. [GFK]Google Scholar
Kornblith, C. L., Ervin, G. N. & King, R. A. (1978) Hypothalamic and locus coeruleus self-stimulation are decreased by cholecystokinin. Physiology and Behavior 21:1037–41. [DCG]Google Scholar
Kuhar, M. J., Roth, R. H. & Aghajanian, G. K. (1976) Selective reduction of tryptophan hydroxylase activity in rat forebrain after midbrain raphe lesions. Brain Research 35:167–76. [WHL]CrossRefGoogle Scholar
Kupfer, D. J., Wyatt, R. J., Synder, F. & Davis, J. M. (1971) Chlorpromazine and sleep in psychiatric patients. Archives of General Psychiatry 24:185–89. [WJF]Google Scholar
Latz, A. & Kornetsky, C. (1965) The effects of chlorpromazine and secobarbital under two conditions of reinforcement on the performance of chronic schizophrenic subjects. Psychopharmacologia 7:7788. [WJF]Google Scholar
Liebman, J. M. & Butcher, L. L. (1974) Comparative involvement of dopamine and noradrenaline in rate-free self-stimulation in substantia nigra, lateral hypothalamus, and mesencephalic central gray. Nauyn-Schmiedeberg's Archives of Pharmacology 284:167–94. [WJF, taRAW]Google Scholar
Liebman, J. M., Prowse, J. & Gerhardt, S. (1981) Effects of various catecholamine antagonists and nonspecific motor disruption on shuttlebox self-stimulation performance: A systematic comparison. Society for Neuro-science Abstracts 7:204. [JL]Google Scholar
Lorens, S. A. & Mitchell, C. L. (1973) Influence of morphine on lateral hypothalamic self-stimulation in the rat. Psychopharmacologia 32:271–77. [rRAW]Google Scholar
Lyness, W. H., Demarest, K. T. & Moore, K. E. (1980) Effects of d-amphetamine and disruption of 5-hydroxytryptaminergic neuronal systems on the synthesis of dopamine in selected regions of the rat brain. Neuropharmacology 19:883–89. [WHL]Google Scholar
Lyness, W. II, Friedle, N. M. & Moore, K. E. (1980) Increased self-administration of d-amphetamine after destruction of 5-hydroxy-tryptaminergie neurons. Pharmacology, Biochemistry and Behavior 12:937–41. [WHL]Google Scholar
Lyness, W. II, Friedle, N. M. & Moore, K. E. (1979) Destruction of dopaminergic nerve terminals in nucleus accumbens: Effect on d-amphetamine self-administration. Pharmacology, Biochemistry and Behavior 11:553–56. [DCG, WHL, taRAW]Google Scholar
Mackintosh, N. J. (1975) A theory of attention: Variations in the associability of stimuli with reinforcement. Psychological Review 82:276–98. [PRS]CrossRefGoogle Scholar
Mackintosh, N. J. (1974) The psychology of animal learning. London: Academic Press. [RLM]Google Scholar
Malmo, R. B. (1976) Osmosensitive neurons in the rat's dorsal midbrain. Brain Research 105:105–20. [RBM]CrossRefGoogle ScholarPubMed
Malmo, H. P. & Malmo, R. B. (1977) Movement-related forebrain and midbrain multiple unit activity in rats. Electroencephalography and Clinical Neurophysiology 42:501–09. [RBM]CrossRefGoogle ScholarPubMed
Marshall, J. F. (1978) Comparison of the sensorimotor dysfunctions produced by damage to lateral hypothalamus or superior colliculus in the rat. Experimental Neurology 58:203–17. [PRS taRAW]CrossRefGoogle ScholarPubMed
Marshall, J. F., Berrios, N. & Sawyer, S. (1980) Neostriatal dopamine and sensory inattention. Journal of Comparative and Physiological Psychology 94:833–46. [rRAW]CrossRefGoogle ScholarPubMed
Marshall, J. F. & Teitelbaum, P. (1974) Further analysis of sensory inattention following lateral hypothalamic damage in rats. Journal of Comparative and Physiological Psychology 86:375–95. [PRS, taRAW]CrossRefGoogle ScholarPubMed
Marshall, J. F., Turner, B. H. & Teitelbaum, P. (1971) Sensory neglect produced by lateral hypothalamic damage. Science 174:523–25. [taRAW]Google Scholar
Mason, S. T., Beninger, R. J., Fibiger, H. C. & Phillips, A. G. (1980) Pimozide-induced suppression of responding: Evidence against a block of food reward. Pharmacology, Biochemistry and Behavior 12:917–23. [RJB, WJF, DN, taRAW]Google Scholar
McGhie, A. (1969) Pathology of attention. Baltimore, Md.: Penguin Books. [PRS]Google Scholar
McKinney, W. T. & Moran, E. C. (1981) Animal models of schizophrenia. American Journal of Psychiatry 138:478–83. [PRS]Google ScholarPubMed
Meehl, P. E. (1962) Schizotaxia, schizotypy, schizophrenia. American Psychologist 17:827–38. [CBN, PRS]CrossRefGoogle Scholar
Mellgren, R. L. & Olson, M. W. (1980) Associative processes controlling the persistence of operant responding: S-S* and R-S*. Bulletin of the Psychonomic Society 16:279–82. [RLM]CrossRefGoogle Scholar
Mellgren, R. L., Seybert, J. A. & Dyck, D. G. (1978) The order of continuous partial and nonreward trials and resistance to extinction. Learning and Motivation 9:359–71. [RLM]Google Scholar
Meltzer, H. Y. & Stahl, S. M. (1976) The dopamine hypothesis of schizophrenia. Schizophrenia Bulletin 2:1976. [PRS]CrossRefGoogle ScholarPubMed
Mendelson, J. & Freed, W. J. (1973) Do rats terminate hypothalamic stimulation only in order to turn it on again? Behavioral Biology 8:619–28. [WJF]Google Scholar
Miliaressis, E., Bouchard, A. & Jacobowitz, D. M. (1975) Strong positive reward in median raphe: Specific inhibition by para-chlorophenylalanine. Brain Research 98:194201. [taRAW]CrossRefGoogle ScholarPubMed
Miller, J. D., Sanghera, M. K. & German, D. C. (1981) Mesencephalic dopaminergic unit activity in the behaviorally conditioned rat. Life Sciences. In press. [DCG]Google Scholar
Miller, N. E. (1960) Motivational effects of brain stimulation and drugs. Federation Proceedings 19:846–54. [JL]Google Scholar
Moore, K. E. (1978) Amphetamines: Biochemical and behavioral actions in animals. In: Handbook of psychopharmacology, vol. 2, eds. Iverson, L. L., Iverson, S. D. & Snyder, S. H., pp. 4298. New York: Plenum Press. [WHL]Google Scholar
Mowrer, O. H. & Jones, H. M. (1945) Habit strength as a function of the pattern of reinforcement. Journal of Experimental Psychology 35:293311. [RLM]CrossRefGoogle Scholar
Nazzaro, J. M., Seeger, T. F. & Gardner, E. L. (1981) Morphine differentially affects ventral tegmental and substantia nigra brain reward thresholds. Pharmacology, Biochemistry and Behavior 14:325–31. [CBN]Google Scholar
Neal, C. D., Collis, M. P. & Imlah, N. W. (1969) A comparative trial ofoxypertine and chlorpromazine in chronic schizophrenia. Current Therapeutic Research 11:367–78. [WJF]Google Scholar
Neale, J. M. & Oltmanns, T. (1980) Schizophrenia. New York: Wiley. [PRS]Google Scholar
Neill, D. B. & Justice, J. B. Jr. (1981) An hypothesis for a behavioral function of dopaminergic transmission in nucleus accumbens. In: The neurobiology of the nucleus accumbens, ed. Chronister, R. B. & DeFrance, J. F., pp. 343–50. Brunswick: Haer Institute. [DN]Google Scholar
Niemegeers, C. J. E. & Janssen, P. A. J. (1979) A systematic study of the pharmacological activities of dopamine antagonists. Life Sciences 24:2201–16. [taRAW]Google Scholar
Olds, J. (1956) Pleasure centers in the brain. Scientific American 195:27. [JP]Google Scholar
Panksepp, J. (1981) Hypothalamic integration of behavior: Rewards, punishments, and related psychological processes. In: Handbook of the hypothalamus, behavioral studies of the hypothalamus, vol. 3, part b, ed. Morgane, P. J. and Panksepp, J., pp. 289431. New York: Marcel Dekker. [JP]Google Scholar
Panksepp, J. (1982) Toward a general psychobiological theory of emotions. Behavioral and Brain Sciences 5. In press. [JP]CrossRefGoogle Scholar
Pfaffmann, C. (1960) The pleasures of sensation. Psychological Reviews 67:253–68. [JP]CrossRefGoogle ScholarPubMed
Phillips, A. G. & Broekkamp, C. L. (1980) Inhibition of intravenous cocaine self-administration by rats after microinjection of spiroperidol into the nucleus accumbens. Society for Neuroscience Abstracts 6:105. [taRAW]Google Scholar
Phillips, A. G. & Fibiger, H. C. (1978) The role of dopamine in maintaining self-stimulation of the nucleus accumbens in the rat. Canadian Journal of Psychology 32:5876. [NWM]Google Scholar
Phillips, A. G. & Fibiger, H. C. (1979) Decreased resistance to extinction after haloperidol: Implications for the role of dopamine in reinforcement. Pharmacology, Biochemistry and Behavior 10:751–60. [RJB, AE, taRAW]Google Scholar
Phillips, A. G. & LePiane, F. G. (1980) Reinforcing effects of morphine microinjection into the ventral tegmental area. Pharmacology Biochemistry and Behavior 12:965–68. [rRAW]CrossRefGoogle ScholarPubMed
Phillipson, O. T. (1979) A golgi study of the ventral tegmental area of Tsai and interfascicular nucleus in the rat. Journal of Comparative Neurology 187:99116. [DCG]Google Scholar
Pickens, R. & Harris, W. C. (1968) Self-administration of d-amphetamine by rats. Psychopharmacologia 12:158–63. [taRAW]Google Scholar
Pijnenburg, A. J. J., Honig, W. M. M. & Van Rossum, J. M. (1975) Effects of antagonists upon locomotor stimulation induced by injection of dopamine and noradrenaline into nucleus accumbens of nialamide-pretreated rats. Psychopharmacologia 142:175–80. [WHL]Google Scholar
Pinel, J. P. J. & Triet, D. (1978) Burying as a defensive response in rats. Journal of Comparative and Physiological Psychology 92:708–12. [RJB]Google Scholar
Posluns, D. (1962) An analysis of chlorpromazine-induced suppression of the avoidance response. Psychopharmacologia 3:361–73. [RJB]Google Scholar
Powell, E. W. & Leman, R. B. (1976) Connections of the nucleus accumbens. Brain Research 105:389403. [DCG]CrossRefGoogle ScholarPubMed
Pribram, K. H. & McGuinness, D. (1975) Arousal, activation, and effort in the control of attention. Psychological Review 82:116–49. [RBM]CrossRefGoogle ScholarPubMed
PriceM. T, C. M. T, C. & Fibiger, H. C. (1975) Discriminated escape learning and response to electric shock after 6-hydroxydopamine lesions of the nigroneostriatal dopaminergic projection. Pharmacology, Biochemistry and Behavior 3:285–90. [RJB]Google Scholar
Prowse, J., Noreika, L., Gerhardt, S. & Liebman, J. (1981) Selective attenuation of intracranial self-stimulation by the beta-2 agonist, salbutamol. Federation Proceedings 40:293. [JL]Google Scholar
Rachlin, H., Green, L., Kagel, J. H. and Battalio, R. C. (1976) Economic demand theory and psychological studies of choice. In: The psychology of learning and motivation, vol. 10, ed. Bower, G. H., pp. 129–54. New York: Academic Press. [HMS]Google Scholar
Rado, S. (1956) Dynamics and classification of disordered behavior. In: Psychoanalysis of behavior: The collected papers of Sandor Rado, vol. 1, 19221956, pp. 268–85. New York: Grune & Stratton. [CBN]Google Scholar
Rado, S. (1956) Psychoanalysis of behavior. New York: Grune & Stratton. [PRS]Google Scholar
Rado, S. (1962) Theory and therapy: The theory of schizotypal organization and its application to the treatment of decompensated schizotypal behavior. In: Psychoanalysis of behavior: The collected papers of Sandor Rado, vol. 2, 19561961, pp. 127–40. New York: Grune & Stratton. [CBN]Google Scholar
Rado, S. (1969) Adaptational psychodynamics: Motivation and control. New York: Science House. [CBN]Google Scholar
Ranje, C. & Ungerstedt, U. (1977a) Lack of acquisition in dopamine denervated animals in an underwater Y-maze. Brain Research 134:95111. [RJB, taRAW]CrossRefGoogle Scholar
Ranje, C. & Ungerstedt, U. (1977b) Discriminative and motor performance in rats after interference with dopamine neurotransmission with spiroperidol. European Journal of Pharmacology 43:3946. [HA, RJB, taRAW]Google Scholar
Rech, R. H. & Borys, H. K. (1965) Comparison of CNS depressants using a battery of behavioral tests. Pharmacologist 7:171. [RHR]Google Scholar
Rech, R. H. & Pirch, J. H. (1971) Some fundamentals of pharmacology and psychology. In: An introduction to psychopharmacology, ed. Rech, R. H. & Moore, K. E., pp. 3234. New York: Raven Press. [RHR]Google Scholar
Rech, R. H. & Stolk, J. M. (1970) Amphetamine-drug interactions that relate brain catecholamines to behavior. In: International symposium on amphetamines and related compounds, ed. Costa, E. & Garattini, S., pp. 385–94. New York: Raven Press. [RHR]Google Scholar
Reisine, T. D. (1981) Adaptative changes in catecholamine receptors in the central nervous system. Neuroscience 6:14711581. [PS]CrossRefGoogle ScholarPubMed
Risner, M. J. E. & Jones, B. E. (1976) Role of noradrenergic and dopaminergic processes in amphetamine self-administration. Pharmacology, Biochemistry and Behavior 5:477–82. [taRAW]Google Scholar
Risner, M. J. E. & Jones, B. E. (1980) Intravenous self-administration of cocaine and norcocaine by dogs. Psychopharmacology 71:8389. [WJF, taRAW]Google Scholar
Roberts, D. S. C., Corcoran, M. E. & Fibiger, H. C. (1977) On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacology, Biochemistry and Behavior 6:615–20. [WHL, taRAW]Google Scholar
Roberts, D. C. S., Koob, G. F., Klonoff, P. & Fibiger, H. C. (1980) Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacology, Biochemistry & Behavior 12:781–87. [DCG, CBN, taRAW]CrossRefGoogle ScholarPubMed
Robinson, P., Daley, M. & Wolff, P. C. (1967). Apomorphine induced reinforcement. Psychonomic Science 7:117–18. [RJK]Google Scholar
Roll, S. K. (1970) Intracranial self-stimulation and wakefulness: Effect of manipulating ambient brain catecholamines. Science 168:1370–72. [taRAW]Google Scholar
Rolls, E. T., Kelly, P. H. & Shaw, S. G. (1974) Noradrenaline, dopamine, and brain-stimulation reward. Pharmacology, Biochemistry and Behavior 2:735–40. [taRAW]Google Scholar
Rolls, E. T., Rolls, B. J., Kelly, P. H., Shaw, S. G., Wood, R. J. & Dale, R. (1974) The relative attenuation of self-stimulation, eating and drinking produced by dopamine-receptor blockade. Psychopharmacologia 38:219–30. [taRAW]Google Scholar
Rosenblatt, W. H., Hutchins, K. & Sinnamon, H. M. (1979) Pimozide's effects on ICSS depend on the interaction of reward and effort. Society for Neuroscience Abstracts 5:350. [HMS]Google Scholar
Royall, D. R. & Klemm, W. R. (1981) Dopaminergic mediation of reward: Evidence gained using a natural reinforcer in a behavioral contrast paradigm. Neuroscience Letter 21:223–29. [CBN, WRK]CrossRefGoogle Scholar
Ruffieux, A. & Schultz, W. (1980) Dopaminergic activation of reticulata neurones in the substantia nigra. Nature 285:240–42. [DCG]Google Scholar
Sahakian, B. J. & Robbins, T. W. (1977) Isolation-rearing enhances tail pinch behavior in rats. Physiology and Behavior 18:5358. [GFK]CrossRefGoogle ScholarPubMed
Sanghera, M. K., German, D. C. & Kiser, R. S. (1979) Dopamine neuronal activity during operant behavior. Federation Proceedings 38:256. [DCG]Google Scholar
Schaefer, G. P. & Michael, R. P. (1979) Acute effects of neuroleptics on brain self-stimulation thresholds in rats. Psychopharmacology 67:915. [AE, taRAW]Google Scholar
Scull, J., Davies, K. & Amsel, A. (1970) Behavioural contrast and frustration effect in multiple and mixed fixed interval schedules in the rat. Journal of Comparative and Physiological Psychology 71:478–83. [GFK]Google Scholar
Schwartzbaum, J. S. (1975) Interrelationship among multiunit activity of the midbrain reticular formation and lateral geniculate nucleus, thalamocortical arousal, and behavior in rats. Journal of Comparative and Physiological Psychology 89:131–57. [RBM]Google Scholar
Seeman, P. (1980) Dopamine receptors. Pharmacological Reviews 32:229313. [RJK, taRAW]Google ScholarPubMed
Sheffield, V. F. (1950) Resistance to extinction as a function of the distribution of extinction trials. Journal of Experimental Psychology 40:305–13. [GFK]Google Scholar
Siegel, J. M. (1979) Behavioral functions of the reticular formation. Brain Research Reviews 1:69105. [RBM]Google Scholar
Simon, H., LeMoal, M. & Cardo, B. (1975) Self-stimulation in the dorsal pontine tegmentum in the rat. Behavioral Biology 13:339–47. [rRAW]Google Scholar
Simon, H., Le Moal, M. & Koob, G. F. (1981) Effects of 6-OHDA lesions to the frontal cortex, nucleus accumbens or corpus striatum on amphetamine-induced behavior and acquisition of the conditioned avoidance response. Neuroscience Abstracts 7:155. [GFK]Google Scholar
Simon, H., Stinus, L., Tassin, J. P., Lavielle, S., Blanc, G., Thierry, A. M., Glowinski, J. & LeMoal, M. (1979) Is the dopaminergic mesocorticolimbic system necessary for intracranial self-stimulation? Behavioral and Neural Biology 27:125–15. [GFK, rRAW]Google Scholar
Snyder, S. H. (1981) Dopamine receptors, neuroleptics and schizophrenia. American Journal of Psychiatry 138:460–64. [CBN]Google ScholarPubMed
Solomon, P. R., Crider, A., Winkelman, J. W., Turi, A., Kamer, R. M. & Kaplan, L. J. (1981) Disrupted latent inhibition in the rat with chronic amphetamine or haloperidol-induced supersensitivity: Relationship to schizophrenic attention disorder. Biological Psychiatry 16:519–37. [PRS]Google Scholar
Spear, N. E., Hill, W. F. & O'Sullivan, D. J. (1965) Acquisition and extinction after initial trials without reward. Journal of Experimental Psychology 69:2529. [RLM]Google Scholar
Spohn, H. E., Lacoursiere, R. B., Thompson, K. & Coyne, L. (1977) Phenothiazine effects on psychological and psychophysiological dysfunction in chronic schizophrenics. Archives of General Psychiatry 34:633–44. [WJF, PRS]Google Scholar
Staddon, J. E. R. (1979) Operant behavior as adaptation to constraint. Journal of Experimental Psychology: General 108:4867. [HMS]Google Scholar
Stapleton, J. M., Merriman, V. J., Coogle, C. L., Gelbard, S. D. & Reid, L. D. (1979) Naloxone reduces pressing for intracranial stimulation of sites in the periacqueductal gray area, accumbens nucleus, substantia nigra, and lateral hypothalamus. Physiological Psychology 7:427–36. [taRAW]Google Scholar
Staton, D. M. & Solomon, P. R. (1980) Microinjections of d-amphetamine in the nucleus accumbens disrupt the rat's ability to learn to ignore an irrelevant stimulus. Society for Neuroscience Abstracts 6:169. [PRS]Google Scholar
Stein, L. (1980) The chemistry of reward. In Biology of reinforcement: facets of brain stimulation reward ed. Routtenberg, A., pp. 109–30. New York: Academic Press. [rRAW]Google Scholar
Steiner, J. E. (1973) The human gustofacial response. In: Fourth symposium on oral sensation and perception, ed. Bosma, J. F., pp. 254–78. Bethesda, Md.: U. S. Dept. of Health, Education, and Welfare. [LDK]Google Scholar
Stricker, E. M. & Zigmond, M. J. (1976) Recovery of function following damage to central catecholamine-containing neurons: A neurochemical model for the lateral hypothalamic syndrome. In: Progress in psychobiology and physiological psychology, vol. 6, ed. Sprague, J. M. and Epstein, A. N.. New York: Academic Press. [RJK, taRAW]Google Scholar
Szostak, C. & Tombaugh, T. N. (1981) The effects of pimozide on the performance of conditional discrimination tasks as a function of task complexity. Paper presented to the Canadian College of Psychopharmacology, Toronto. [taRAW]Google Scholar
Teitelbaum, P., Schallert, T., DeRyck, M., Whishaw, I. Q. & Colani, I. (1980) Motor subsystems in motivated behavior. In: Neural mechanisms of goal-directed behavior and learning, ed. Thompson, R. F., Hicks, L. H. & Shvyrkov, V. B., pp. 127–44. New York: Academic Press. [RJB]CrossRefGoogle Scholar
Thompson, T., Heistad, G. J. & Palmero, D. S. (1963) Effect of amount of training on rate and duration of responding during extinction. Journal of Experimental Psychology – Animal Behavior 6:155–61. [GFK]Google Scholar
Tombaugh, T. N. (1981) Effects of pimozide on nondiscriminated and discriminated performance in the pigeon. Psychopharmacology 73:137–46. [TNT]Google Scholar
Tombaugh, T. N., Anisman, H. & Tombaugh, J. (1980) Extinction and dopamine receptor blockade after intermittent reinforcement training: Failure to observe functional equivalence. Psychopharmacology 70:1928. [RJB, AE, WJF, taRAW]CrossRefGoogle ScholarPubMed
Tombaugh, T. N. & Mills, P. (1981) The effects of pimozide on the acquisition of a simultaneous discrimination. Paper presented at Canadian Psychological Association meeting, Toronto. [TNT]Google Scholar
Tombaugh, T. N., Ritch, M. A. & Shepherd, D. T. (1980) Effects of pimozide on accuracy of performance and distribution of correct responding on a simultaneous discrimination task in the rat. Pharmacology, Biochemistry and Behavior 13:859–62. [TNT]Google Scholar
Tombaugh, T. N., Tombaugh, J. & Anisman, H. (1979) Effects of dopamine receptor blockade on alimentary behaviors: Home cage food consumption, magazine training, operant acquisition, and performance. Psychopharmacology 66:219–25. [HA, RJB, taRAW]Google Scholar
Trowill, J. A., Panksepp, J. & Gandelman, R. (1969) An incentive model of rewarding brain stimulation. Psychological Review 76:264–81. [JP]Google Scholar
Uguru-Okorie, D. C. & Arbuthnott, G. W. (1981) Altered paw preference after unilateral 6-hydroxy-dopamine injections into lateral hypothalamus. Neuropsychology 19:463–67. [GWA]Google Scholar
Ungerstedt, U. (1979) Central dopamine mechanisms and unconditioned behavior. In: The neurobiology of dopamine, ed. Horn, A. S., Korf, J. & Westerink, B. H. C., pp. 577–96. New York: Academic Press. [RJB]Google Scholar
Valenstein, E. S. (1964) Problems of measurement and interpretation with reinforcing brain stimulation. Psychological Review 71:415–37. [taRAW]CrossRefGoogle ScholarPubMed
Valzelli, L. & Garattini, S. (1970) Pharmacology of phenothiazines. In: Principles of psychopharmacology ed. Clark, W. G. & delGuidice, J.. pp. 255–67. New York: Academic Press. [taRAW]Google Scholar
van der Kooy, D., LePiane, F. G. & Phillips, A. G. (1977) Apparent independence of opiate reinforcement and electrical self-stimulation systems in rat brain. Life Sciences 20:981–86. [WRK]Google Scholar
Vanderwolf, C. H. & Robinson, T. E. (1981) Reticulo-cortical activity and behavior: A critique of the arousal theory and a new synthesis. The Behavioral and Brain Sciences 4:459514. [RBM]Google Scholar
Wauquier, A. (1976) The influence of psychoactive drugs on brain self-stimulation in rats: A review. In: Brain stimulation reward, ed. Wauquier, A. & Rolls, E. T., pp. 123–70. New York: Elsevier. [taRAW]Google Scholar
Wauquier, A. (1976) (1979) Neuroleptics and brain self-stimulation behavior. International Review of Neurobiology 21:335403. JL, taRAW]Google Scholar
Wauquier, A. & Niemegeers, C. J. E. (1979) A comparison between lick or lever-pressing contingent reward and the effects of neuroleptics thereon. Archives Internationales de Pharmacodynamie et de Therapie 239:230–40. [JP, taRAW]Google Scholar
White, N. (1976) Strength-duration analysis of the organization of reinforcement pathways in the medial forebrain bundle of rats. Brain Research 110:575–91. [taRAW]Google Scholar
White, N., Brown, Z. & Yachnin, M. (1978) Effects of catecholamine manipulations on three different self-stimulation behaviors. Pharmacology, Biochemistry and Behavior 9:603–08. [JP, taRAW]Google Scholar
Wilson, M. C., Hitomi, M. & Schuster, C. R. (1969) Further studies of the self-administration of psychomotor stimulation in the rhesus monkey. Minutes of meeting of the committee on problems of drug dependence, NAS-NRC, Palo Alto, Calif. [GFK]Google Scholar
Wilson, M. C. & Schuster, C. R. (1972) The effects of chlorpromazine on psychomotor stimulant self-administration in the rhesus monkey. Psychopharmacologia 26:115–26. [GFK, taRAW]Google Scholar
Wise, R. A. (1980) Action of drugs of abuse on brain reward systems. Pharmacology, Biochemistry and Behavior 13:213–23. [CBN, taRAW]CrossRefGoogle ScholarPubMed
Wise, R. A. (1978) Catecholamine theories of reward: A critical review. Brain Research 152:215–47. [CBN, taRAW]Google Scholar
Wise, R. A. (1974) Lateral hypothalamic electrical stimulation: Does it make animals hungry? Brain Research 67:187209. [rRAW]Google Scholar
Wise, R. A. & Schwartz, H. V. (1981) Pimozide attentuates acquisition of lever-pressing for food in rats. Pharmacology, Biochemistry and Behavior. In press. [RJB, taRAW]Google Scholar
Wise, R. A., Spindler, J., deWit, H. & Gerber, G. J. (1978) Neuroleptic-induced “anhedonia” in rats: Pimozide blocks reward quality of food. Science 201:262–64. [taRAW]Google Scholar
Wise, R. A., Spindler, J. & Legault, L. (1978) Major attenuation of food reward with performance-sparing doses of pimozide in the rat. Canadian Journal of Psychology 32:7785. [NWM, taRAW]Google Scholar
Wise, R. A., Yokel, R. A. & deWit, H. (1976) Both positive reinforcement and conditioned aversion from amphetamine and from apomorphine in rats. Science 191:1273–74. [WHL, taRAW]Google Scholar
Wuerthele, S. M., Olson, L., Freed, W. J., Morihisa, J., Spoor, L., Wyatt, R. J. & Hoffer, B. J. (1980) Electrophysiological characteristic of substantia nigra brain grafts in the lateral ventricle. Neuroscience Abstracts 6:327. [DCG]Google Scholar
Yokel, R. A. & Wise, R. A. (1975) Increased lever pressing for amphetamine after pimozide: Implications for a dopamine theory of reward. Science 187:547–49. [AE, taRAW]Google Scholar
Yokel, R. A. & Wise, R. A. (1976) Attenuation of intravenous amphetamine reinforcement by central dopamine blockade in rats. Psychopharmacology 48:311–18. [WJF, WHL, taRAW]Google Scholar
Yokel, R. A. & Wise, R. A. (1978) Amphetamine-type reinforcement by dopamine agonists in the rat. Psychopharmacology 58:289–96. [taRAW]Google Scholar
Zarevics, P. & Setler, P. E. (1981) Effects of GABAergic drugs on brain stimulation reward as assessed by a “threshold” method. Brain Research 215:201–09. [PS]CrossRefGoogle ScholarPubMed
Zarevics, P., Weidley, E. & Setler, P. E. (1977) Blockade of intracranial self-stimulation by antipsychotic drugs: Failure to correlate with central alpha-noradrenergic blockade. Psychopharmacology 53:283–88. [taRAW]Google Scholar