Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T12:09:47.040Z Has data issue: false hasContentIssue false

Let us redeploy attention to sensorimotor experience

Published online by Cambridge University Press:  22 October 2010

Nicolas Michaux
Affiliation:
Institut de Recherche en Sciences Psychologiques, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgiumnicolas.michaux@uclouvain.bemauro.pesenti@uclouvain.besamuel.diluca@uclouvain.bemichael.andres@uclouvain.behttp://www.uclouvain.be/315041.html
Mauro Pesenti
Affiliation:
Institut de Recherche en Sciences Psychologiques, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgiumnicolas.michaux@uclouvain.bemauro.pesenti@uclouvain.besamuel.diluca@uclouvain.bemichael.andres@uclouvain.behttp://www.uclouvain.be/315041.html
Arnaud Badets
Affiliation:
Centre de Recherches sur la Cognition et l'Apprentissage, CNRS UMR 6234, France. arnaud.badets@univ-poitiers.frhttp://cerca.labo.univ-poitiers.fr
Samuel Di Luca
Affiliation:
Institut de Recherche en Sciences Psychologiques, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgiumnicolas.michaux@uclouvain.bemauro.pesenti@uclouvain.besamuel.diluca@uclouvain.bemichael.andres@uclouvain.behttp://www.uclouvain.be/315041.html
Michael Andres
Affiliation:
Institut de Recherche en Sciences Psychologiques, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgiumnicolas.michaux@uclouvain.bemauro.pesenti@uclouvain.besamuel.diluca@uclouvain.bemichael.andres@uclouvain.behttp://www.uclouvain.be/315041.html

Abstract

With his massive redeployment hypothesis (MRH), Anderson claims that novel cognitive functions are likely to rely on pre-existing circuits already possessing suitable resources. Here, we put forward recent findings from studies in numerical cognition in order to show that the role of sensorimotor experience in the ontogenetical development of a new function has been largely underestimated in Anderson's proposal.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andres, M., Di Luca, S. & Pesenti, M. (2008) Finger counting: The missing tool? Behavioral and Brain Sciences 31:642–43.CrossRefGoogle Scholar
Andres, M., Seron, X. & Oliver, E. (2007) Contribution of hand motor circuits to counting. Journal of Cognitive Neuroscience 19:563–76.CrossRefGoogle ScholarPubMed
Badets, A. & Pesenti, M. (2010) Creating number semantics through finger movement perception. Cognition 115:4653.CrossRefGoogle ScholarPubMed
Butterworth, B. (1999a) A head for figures. Science 284:928–29.CrossRefGoogle ScholarPubMed
Butterworth, B. (1999b) The mathematical brain. Macmillan.Google Scholar
Cantlon, J. F. & Brannon, E. M. (2007) Adding up the effects of cultural experience on the brain. Trends in Cognitive Sciences 11(1):14.CrossRefGoogle ScholarPubMed
Di Luca, S. & Pesenti, M. (2008) Masked priming effect with canonical finger numeral configurations. Experimental Brain Research 185(1):2739.CrossRefGoogle ScholarPubMed
Di Luca, S, Graná, A, Semenza, C, Seron, X. & Pesenti, M. (2006) Finger-digit compatibility in Arabic numerical processing. The Quarterly Journal of Experimental Psychology 59(9):1648–63.CrossRefGoogle Scholar
Fayol, M, Barrouillet, P. & Marinthe, C. (1998) Predicting arithmetical achievement from neuropsychological performance: A longitudinal study. Cognition 68:6370.CrossRefGoogle ScholarPubMed
Garcia-Bafalluy, M. & Noël, M.-P. (2008) Does finger training increase young children's numerical performance? Cortex 44:368–75.CrossRefGoogle Scholar
Noël, M.-P. (2005) Finger gnosia: A predictor of numerical abilities in children? Child Neuropsychology 11(5):413–30.CrossRefGoogle ScholarPubMed
Penner-Wilger, M. & Anderson, M. L. (2008) An alternative view of the relation between finger gnosis and math ability: Redeployment of finger representations for the representation of number. In: Proceedings of the 30th Annual Meeting of the Cognitive Science Society, Austin, TX, July 23–26, 2008, ed. Love, B. C., McRae, K. & Sloutsky, V. M., pp. 1647–52. Cognitive Science Society.Google Scholar
Pesenti, M., Thioux, M., Seron, X. & De Volder, A. (2000) Neuroanatomical substrate of Arabic number processing, numerical comparison and simple addition: A PET study. Journal of Cognitive Neuroscience 121(3):461–79.CrossRefGoogle Scholar
Rips, L. J., Bloomfield, A. & Asmuth, J. (2008) From numerical concepts to concepts of number. Behavioral and Brain Sciences 31:623–87.CrossRefGoogle ScholarPubMed
Tang, Y., Zhang, W., Chen, K., Feng, S., Ji, Y., Shen, J., Reiman, E. M. & Liu, Y. (2006) Arithmetic processing in the brain shaped by cultures. Proceedings of the National Academy of Sciences USA 103:10775–80.CrossRefGoogle ScholarPubMed
Wiese, H. (2003) Numbers, language, and the human mind. Cambridge University Press.CrossRefGoogle Scholar
Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B. & Tzourio-Mazoyer, N. (2001) Neural correlates of simple and complex mental calculation. NeuroImage 13:314–27.CrossRefGoogle ScholarPubMed