Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T02:38:16.988Z Has data issue: false hasContentIssue false

Language is shaped for social interactions, as well as by the brain

Published online by Cambridge University Press:  01 October 2008

Mikkel Wallentin
Affiliation:
Center for Functionally Integrative Neuroscience, Aarhus University Hospital, Nørrebrogade, Denmarkmikkel@pet.auh.dkhttp://www.mikkelwallentin.dk/
Chris D. Frith
Affiliation:
Center for Functionally Integrative Neuroscience, Aarhus University Hospital, Nørrebrogade, Denmarkmikkel@pet.auh.dkhttp://www.mikkelwallentin.dk/ Wellcome Trust Centre for Neuroimaging, University College London, London, WCIN 3BG, United Kingdom. cfrith@fil.ion.ucl.ac.ukhttp://www.fil.ion.ucl.ac.uk/Frith/

Abstract

Language learning is not primarily driven by a motivation to describe invariant features of the world, but rather by a strong force to be a part of the social group, which by definition is not invariant. It is not sufficient for language to be fit for the speaker's perceptual motor system. It must also be fit for social interactions.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bear, M. F., Connors, B. W. & Paradiso, M. A. (2001) Neuroscience – Exploring the brain, 2nd edition. Lippincott, Williams & Wilkins.Google Scholar
Chomsky, N. (1980) Rules and representations. Columbia University Press/Blackwell.CrossRefGoogle Scholar
Fisher, R. A. (1999) The genetical theory of natural selection: A complete Variorum edition. Oxford University Press.CrossRefGoogle Scholar
Gilbert, A. L., Regier, T., Kay, P. & Ivry, R. B. (2006) Whorf hypothesis is supported in the right visual field but not the left. Proceedings of the National Academy of Sciences USA 103(2):489–94.CrossRefGoogle Scholar
Hauk, O., Johnsrude, I. & Pulvermuller, F. (2004) Somatotopic representation of action words in human motor and premotor cortex. Somatotopic Representation of Action Words in Human Motor and Premotor Cortex 41(2):301307.Google ScholarPubMed
Hauser, M. D., Chomsky, N. & Fitch, W. T. (2002) The faculty of language: What is it, who has it, and how did it evolve? Science 298(5598):1569–79.CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949) The organization of behavior. A neuropsychological theory. John Wiley.Google Scholar
Levinson, S. C. (2003) Space in language and cognition. Cambridge University Press.CrossRefGoogle Scholar
Mellet, E., Bricogne, S., Crivello, F., Mazoyer, B., Denis, M. & Tzourio-Mazoyer, N. (2002) Neural basis of mental scanning of a topographic representation built from a text. Cerebral Cortex 12(12):1322–30.CrossRefGoogle ScholarPubMed
Mellet, E., Tzourio, N., Crivello, F., Joliot, M., Denis, M. & Mazoyer, B. (1996) Functional anatomy of spatial mental imagery generated from verbal instructions. Journal of Neuroscience 16(20):6504–12.CrossRefGoogle ScholarPubMed
Noppeney, U. (2004) The feature-based model of semantic memory. In: Human brain function, 2nd edition, ed. Frackowiak, R. S. J., Friston, K. J., Frith, C. D., Dolan, R. J., Price, C. J., Zeki, S., Ashburner, J. & Penny, W., pp. 533–45. Academic Press.Google Scholar
Regier, T., Kay, P. & Khetarpal, N. (2007) Color naming reflects optimal partitions of color space. Proceedings of the National Academy of Sciences USA 104(4):1436–41.CrossRefGoogle ScholarPubMed
Shallice, T. (1988) From neuropsychology to mental structure. University Press.CrossRefGoogle Scholar
Talmy, L. (2000) Toward a cognitive semantics. MIT Press.Google Scholar
Wallentin, M., Lund, T. E., Østergaard, S., Østergaard, L. & Roepstorff, A. (2005) Motion verb sentences activate left posterior middle temporal cortex despite static context. NeuroReport 16(6):649–52.CrossRefGoogle ScholarPubMed
Wallentin, M., Roepstorff, A. & Burgess, N. (2008) Frontal eye fields involved in construction of new spatial viewpoint in imagery. Neuropsychologia 46(2):399408.CrossRefGoogle Scholar
Wallentin, M., Roepstorff, A., Glover, R. & Burgess, N. (2006) Parallel memory systems for talking about location and age in precuneus, caudate and Broca's region. NeuroImage 32(4):1850–64.CrossRefGoogle ScholarPubMed
Wallentin, M., Weed, E., Østergaard, L., Mouridsen, K. & Roepstorff, A. (in press) Accessing the mental space – Linguistic and visual spatial memory processes overlap in precuneus. Human Brain Mapping.Google Scholar
Winawer, J., Witthoft, N., Frank, M. C., Wu, L., Wade, A. R. & Boroditsky, L. (2007) Russian blues reveal effects of language on color discrimination. Proceedings of the National Academy of Sciences USA 104(19):7780–85.CrossRefGoogle ScholarPubMed