Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T00:05:22.139Z Has data issue: false hasContentIssue false

Is behavioral genetics ‘too-big-to-know’ science?

Published online by Cambridge University Press:  24 October 2012

Marco Battaglia*
Affiliation:
Academic Centre for the Study of Behavioural Plasticity, Vita-Salute San Raffaele University, 20127 Milan, Italy; Institut Universitaire en Santé Mentale de Québec, Universitè Laval, Québec, QC G1J 2G3, Canada. marco.battaglia@unisr.it

Abstract

Several new molecular findings and concepts furnish evidence in support of gene–environment interdependence, challenging some of the current tenets and basic statistics of behavioral genetics. I, however, argue that (1) some of the expectations evoked by “neogenomics” are contradicted by findings; and (2) while epigenetic and gene expression effects are complex, they can to some extent be incorporated into “classical” behavioral genetics modeling.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Battaglia, M. (2012) Challenges in the appraisal and application of gene-environment interdepedence. European Journal of Developmental Psychology 4(9):419–25.Google Scholar
Bell, J. T. & Spector, T. D. (2011) A twin approach to unraveling epigenetics. Trends in Genetics 27(3):116–25. doi:10.1016/j.tig.2010.12.005.CrossRefGoogle ScholarPubMed
Cheung, V. G & Spielman, R. S. (2009) Genetics of human gene expression: Mapping DNA variants that influence gene expression. Nature Reviews Genetics 10(9):595604.Google Scholar
De Moor, M. H., Boomsma, D. I., Stubbe, J. H., Willemsen, G. & de Geus, E. J. (2008) Testing causality in the association between regular exercise and symptoms of anxiety and depression. Archives of General Psychiatry 65(8):897905.Google Scholar
Gottesman, I. I. & Shields, J. (1982) Schizophrenia: The epigenetic puzzle. Cambridge University Press.Google Scholar
Kaminsky, Z. A., Tang, T., Wang, S. C., Ptak, C., Oh, G. H., Wong, A. H., Feldcamp, L. A., Virtanen, C., Halfvarson, J., Tysk, C., McRae, A. F., Visscher, P. M., Montgomery, G. W., Gottesman, I. I., Martin, N. G. & Petronis, A. (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nature Genetics 41(2):240–45.CrossRefGoogle ScholarPubMed
McClearn, G. E., Johansson, B., Berg, S., Pedersen, N. L., Ahern, F., Petrill, S. A. & Plomin, R. (1997) Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science 276(5318):1560–63.CrossRefGoogle ScholarPubMed
Petronis, A. (2010) Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature 465(7299):721–27.CrossRefGoogle ScholarPubMed
Plomin, R. (1986) Development, genetics, and psychology. Erlbaum.Google Scholar
Plomin, R. & Bergeman, C. S. (1991) The nature of nurture: Genetic influence on “environmental” measures. Behavioral and Brain Sciences 14:373427.CrossRefGoogle Scholar
Rutter, M. (2012) Gene-environment interdependence. European Journal of Developmental Psychology 9(4):391412.Google Scholar
Slatkin, M. (2009) Epigenetic inheritance and the missing heritability problem. Genetics 182(3):845–50.CrossRefGoogle ScholarPubMed
Tabery, J. (2007) Biometric and developmental gene-environment interactions: Looking back, moving forward. Development and Psychopathology 19(4):961–76.CrossRefGoogle ScholarPubMed
Visscher, P. M., Hill, W. G. & Wray, N. R. (2008) Heritability in the genomics era – concepts and misconceptions. Nature Reviews Genetics 9(4):255–66.Google Scholar
Zhou, Z, Yuan, Q., Mash, D. C. & Goldman, D. (2011) Substance-specific and shared transcription and epigenetic changes in the human hippocampus chronically exposed to cocaine and alcohol. Proceedings of the National Academy of Sciences USA. 108(16):6626–31.Google Scholar