Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T13:42:55.868Z Has data issue: false hasContentIssue false

In search of the theoretical basis of motor control

Published online by Cambridge University Press:  04 February 2010

M. B. Berkinblit
Affiliation:
Institute of Information Transmission Problems, Academy of Sciences, Moscow 101447, U.S.S.R.
A. G. Feldman
Affiliation:
Institute of Information Transmission Problems, Academy of Sciences, Moscow 101447, U.S.S.R.
O. I. Fukson
Affiliation:
Moscow State University, Moscow 117234, U.S.S.R.

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Authors' Response
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdusamatov, R. M., Feldman, A. G., Berkinblit, M. B. & Chernavsky, A. V. (1985) One-joint movement control: A mathematical model and Computer simulation exhibiting electromyographic patterns. In: Motor Control “85,” 5th International Symposium, Varna, Bulgaria, 06 10–15. [rMBB]Google Scholar
Abend, W., Bizzi, E. & Morasso, P. (1982) Human arm trajectory formation. Brain 105:331–48. [taMBB]CrossRefGoogle ScholarPubMed
Abraham, R. H. & Shaw, C. D. (1982) Dynamics – The geometry of behavior. Aerial. [KGM]Google Scholar
Abrahams, V. C., Richmond, F. & Rose, P. K. (1975) Absence of monosynaptic reflex in dorsal neck muscles of the cat. Brain Research 92:130–31. [GEL]Google Scholar
Adamovich, S. V., Boiko, M. I., Burlachkova, N. I. & Feldman, A. G. (1985) Central formation of fast movements in man. In: Motor Control “85,” 5th International Symposium, Varna, Bulgaria, 06 10–15. p. 24. [rMBB]Google Scholar
Adamovich, S. V., Burlachkova, N. I. & Feldman, A. G. (1984) Wave nature of the central process of formation of the trajectories of change in the joint angle in man. Biophysics 29:130–34 (Biofizika 29:122–25). [GCA, tarMBB, RAS]Google Scholar
Adamovich, S. V. & Feldman, A. G. (1984) Model of the central regulation of the parameters of motor trajectories. Biophysics 29:338–42. (Biofizika: 306–9). [GCA, taMBB, RAS]Google Scholar
Akazawa, K., Aldridge, J. W., Sleeves, J. D. & Stein, R. B. (1982) Modulation of stretch reflexes during locomotion in the mesencephalic cat Journal of Physiology 329:553–67. [ WDC]CrossRefGoogle ScholarPubMed
Akazawa, K., Milner, T. E. & Stein, R. B. (1983) Modulation of reflex emg and stiffness in response to stretch of human finger muscle. Journal of Neurophysiology 49:1627. [CC]CrossRefGoogle ScholarPubMed
Alexander, R. McN. (1981) Mechanics of skeleton and tendons. In: Handbook of phsiology – The nervous system, ed. Brooks, V. B.. American Physiology Society. [LDP]Google Scholar
Allan, D. G. C. & Schofield, R. E. (1980) Stephen Hales: Scientist and philanthropist. Oxford University Press. [ESR]Google Scholar
Anderson, O. & Grillner, S. (1981) Peripheral control of the cat's step cycle: I. Phase dependent effects of ramp-movements of the hip during “fictive locomotion.” Acta Physiologica Scandinavica 113:89101. [taMBB, ZH]CrossRefGoogle Scholar
Anderson, O. & Grillner, S. (1983) Peripheral control of the cat's step cycle: II. Entrainment of the central pattern generators for locomotion by sinusoidal hip movements during “fictive locomotion.” Acta Physiologica Scandinavica 118:229–39. [ZH]Google Scholar
Anokhin, P. K. (1975) Essays on the physiology of functional systems. Moscow: Medicina (in Russian). [ESR]Google Scholar
Arshavsky, Yu. I., Beloozerova, I. N., Orlovsky, G. N., Pavlova, G. A. & Panchin, Yu. V. (1984) Activity of motoneurons during generation of locomotor rhythm in Clione limaciner. Neirofiziologia 16:117–22. [taMBB]Google Scholar
Asatryan, D. G. & Feldman, A. G. (1965) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. I. Mechanographic analysis of the work of the lint on execution of a postural task. Biophysics 10:925–35 (Biofizika 10:837–46). [taMBB, RME, CLG]Google Scholar
Bakker, J. G. M. & Crowe, A. (1982) Multicyclic scratch reflex movements in the terrapin Pseudemys scripta elegans. Journal of Comparative Physiology 145:477–84. [taMBB]Google Scholar
Baldissera, F., Hultborn, H. & Illert, M. (1981) Integration in spinal neuronal systems. In: Handbook of physiology. Sect. 1: The nervous system, vol. 2, part 1. American Physiological Society. [PDN]Google Scholar
Baranov, V. V., Berlov, S. P., Matuhin, V. I., Pozin, N. V., Sverdlov, S. S., Sveshnikov, V. A. & Filimonov, P. M. (1973) The structure of instinctive building behavior in stream larvae Oligostomis reticulata. Herald of Moscow University 6:313. [taMBB]Google Scholar
Barlow, G. W. (1968) Ethiological units of behavior. In: The central nervous system and fish behavior, ed. Ingle, D.. University of Chicago Press. [WHE]Google Scholar
Barlow, G. W. (1977) Modal action patterns. In: How animals communicate, ed. Sebeok, T. A.. Indiana University Press. [WHE]Google Scholar
Bässler, U. (1976) Reversal of a reflex to a single motoneuron in the stick insect Carausius morosus. Biological Cybernetics 24:4779. [ZH]Google Scholar
Bellman, K. L. & Goldberg, L. S. (1984) Common origin of linguistic and movement abilities. American Journal of Physiology 15:R915–R921. [MLL]Google Scholar
Bentley, D. R. (1969) Intracellular activity in cricket neurons during the generation of behavior patterns. Journal of Insect Physiology 15:667–99. [taMBB]CrossRefGoogle Scholar
Berkinblit, M. B., Gelfand, I. M. & Feldman, A. G. (1986) A model for the control of multi-joint movements. Biofizika 31:728–38. [rMBB]Google Scholar
Berkinblit, M. B., Zharkova, I. S., Feldman, A. G. & Fukson, O. I. (1984) Biomechanical singularities of wiping reflex cycle. Biofizika 29:483–88. [taMBB]Google Scholar
Bernstein, N. A. (1947) On the construction of movements. Moscow. In Russian. [taMBB]Google Scholar
Bernstein, N. A. (1967) The co-ordination and regulation of movements. Pergamon. [taMBB, MTT]Google Scholar
Bernstein, N. A. (1975) Bewegungsphysiologie, ed. Pickenhain, L. & Schnabel, G.. Barth. [ESR]Google Scholar
Bernstein, N. A. (1984) Human motor actions: Bernstein re-assessed, ed. Whiting, H. T. A.. North-Holland. [ESR]Google Scholar
Berridge, K. C. & Fentress, J. C. (in press) Contextual control of trigeminal sensorimotor function. Journal of Neuroscience. [JCF]Google Scholar
Bethe, A. (1930) Studien über die Plastizität des Nervensystems. I. Arachnoideen und Crustaceen. Archiv für die gesamte Physiologie 224:793–20. [RJ]Google Scholar
Bethe, A. (1933) Die Plastizität (Anpassungsfähigkeit) des Nervensystems. Naturwissenschaften 21:214–21. [RJ]Google Scholar
Bilo, D. & Bilo, A. (1983) Neck flexion related activity of flight control muscles in the flow-stimulated pigeon. Journal of Comparative Physiology A153:111–22. [taMBB]Google Scholar
Bizzi, E. (1980) Central and peripheral mechanisms in motor control. In: Tutorials in motor behavior, ed. Stelmach, G. E. & Requin, J.. North-Holland. [taMBB, PDN]Google Scholar
Bizzi, E. & Abend, W. (1983) Posture control and trajectory formation in single- or multi-joint arm movements. In: Motor control mechanisms in health and disease, vol. 39 of Advances in neurology, ed. Desmedt, J. E.. Raven. [PDN]Google Scholar
Bizzi, E., Accornero, N., Chapple, W. & Hogan, N. (1981) Processes underlying arm trajectory formation. In: Brain mechanisms and perceptual awareness, ed. Pompeiano, O. and Marsan, C. Ajmone. Raven. [PDN]Google Scholar
Bizzi, E., Accornero, N., Chapple, W. & Hogan, N. (1982) Arm trajectory formation in monkeys. Experimental Brain Research 46:139–43. [taMBB, ZH, GEL, RAS]Google Scholar
Bizzi, E., Accornero, N., Chapple, W. & Hogan, N. (1984) Posture control and trajectory formation during arm movement. Journal of Neuroscience 4:2738–44. [ZH, GEL]Google Scholar
Bizzi, E., Chapple, W. & Hogan, N. (1982) Mechanical properties of muscles: Implication for motor control. Trends in Neurosciences 5:395–98. [taMBB]Google Scholar
Bizzi, E., Polit, A. & Morasso, P. (1976) Mechanisms underlying achievement of final head position. Journal of Neurophysiology 39:435–44. [CCA]Google Scholar
Boring, E. G. (1942) Sensation and Perception in the history of experimental psychology. Appleton-Century-Crofts. [MTT]Google Scholar
Bouisset, S., Lestienne, F. & Maton, B. (1977) The stability of synergy in agonists during the execution of a simple voluntary movement. Electroencephalography and Clinical Neurophysiology 42:543–51. [RME]CrossRefGoogle ScholarPubMed
Box, G. E. P. & Jenkins, G. M. (1976) Time series analysis: Forecasting and control. Holden-Day. [PDN]Google Scholar
Brooks, V. B., Cooke, J. D. & Thomas, J. S. (1973) The continuity of movements. In: Control of Posture and locomotion, ed. Stein, R. B., Pearson, K. G., Smith, R. S. & Bedford, J. B.. Plenum Press. [taMBB]Google Scholar
Brown, S. H. & Cooke, J. D. (1981) Responses to force perturbations preceding voluntary human arm movements. Brain Research 220:350–55. [WAM]Google Scholar
Brown, T. G. (1912) The factor in rhythmic activity of the nervous system. Proceedings of the Royal Society of London, Series B 85:278–89. [WHE]Google Scholar
Burrows, M. (1979) Graded synaptic interactions between local premotor interneurons of the locust. Journal of Neurophysiology 42:1108–23. [WHE]CrossRefGoogle ScholarPubMed
Burrows, M. (1984) The search for principles of neuronal organization. Journal of Experimental Biology 112:14. [WDC]Google Scholar
Camhi, J. M. (1974) Neuroal mechanisms of response modification in insects. In: Experimental analysts of insect behavior, ed. Barton-Browne, L.. Springer. [taMBB]Google Scholar
Camhi, J. M. & Hinkle, M. (1974) Response modification by the central flight oscillator of locusts. Journal of Experimental Biology 60:477–92. [taMBB]CrossRefGoogle ScholarPubMed
Campbell, B. (1985) Human evolution. Aldine. [ESR]Google Scholar
Capaday, C. & Stein, R. B. (1985) Amplitude modulation of the soleus H-reflex in the human during walking and standing. Society for Neuroscience Abstracts. [CC]Google Scholar
Careri, G. (1984) Order and disorder in matter. Benjamin Cummings. [MTT]Google Scholar
Carlson, J. R. (1977) The imaginal ecdysis of the cricket (Teleogryllus oceanicus) I. Organization of motor programs and roles of central and sensory control. Journal of Comparative Physiology 115:319–36. [taMBB]Google Scholar
Chalfie, M., Horvitz, H. R. & Sulston, J. E. (1981) Mutation that leads to reiterations in the cell lineages of C. elegans. Cell 24:5969. [taMBB]Google Scholar
Chestnut, H. & Mayer, R. W. (1959) Servomechanisms and regulating system design. John Wiley. [PDN]Google Scholar
Cohen, A. H., Holmes, P. J. & Rand, R. H. (1982) The nature of the coupling between segmentai oscillators of the lamprey spinal generators for locomotion: A mathematical model. Journal of Mathematical Biology 13:345–69. [WHE]CrossRefGoogle Scholar
Cooke, J. D. (1980a) The organization of simple skilled movements. In: Tutorials in motor behavior, ed. Stelmach, G. E. & Requin, J.. North-Holland. [taMBB, KGM, WAM]Google Scholar
Cooke, J. D. (1980b) The role of stretch reflexes during active movements. Brain Research 181:493–97. [PME]Google Scholar
Coreos, D. M., Gottlieb, G. L. & Agarwal, G. C. (submitted) Kinematic and myoelectric correlates of accurate, rapid movements of the human elbow. Journal of Neurophysiology. [GCA]Google Scholar
Crago, P. E., Houk, J. C. & Hasan, Z. (1976) Regulatory actions of human stretch reflex. Journal of Neurophysiology 39:925–35. [taMBB, TRN]Google Scholar
Creed, R. S., Denny-Brown, D., Eccles, J. C., Liddell, E. G. T. & Sherrington, C. S. (1932) Reflex activity of the spinal cord. Oxford University Press. [LDP]Google Scholar
Darwin, C. (1872) The expression of the emotions in man and animals. John Murray. [taMBB]Google Scholar
Davis, W. J. & Kennedy, D. (1972) Command intemeurons controlling swimmeret movements in the lobster. III: Temporal relationships among bursts in different motoneurons. Journal of Neurophysiology 35:2029. [taMBB]Google Scholar
Davis, W. J., Mpitsas, G. J. & Pinnes, M. (1974) The behavioral hierarchy of the mollusk Pleurobranchca. II: Hormonal suppression of feeding associated with egg-laying. Journal of Comparative Physiology 90:225–43. [taMBB]Google Scholar
Davis, W. R. & Kelso, J. A. S. (1982) Analysis of “invariant characteristics” in the motor control of Down's syndrome and normal subjects. Journal of Motor Behavior 14:194212. [tarMBB]Google Scholar
Delatizky, J. (1982) Final position control in simulated planar horizontal arm movements. Ph.D. diss., MIT Department of Electrical Engineering and Computer Science. [KGM]Google Scholar
Deliagina, T. G., Feldman, A. G., Gelfand, I. M. & Orlovsky, G. N. (1975) On the role of central program and afferent inflow in the control of scratching movements in the cat. Brain Research 100:297313. [taMBB]Google Scholar
Desmedt, J. E. (1978) Cerebral motor control in man: Long loop mechanisms, vol. 4 of Progress in clinical neurophysiology. ed. Desmedt, J. E.. Karger. [PDN]Google Scholar
DiCaprio, R. A. & Clarac, F. (1981) Reversal of a walking leg reflex elicited by a muscle receptor. Journal of Experimental Biology 90:197203. [ZH]Google Scholar
Dimery, N. J. & Alexander, R. McN. (1985) Elastic properties of the hind foot of the Donkey Equus asinus. Journal of Zoology A, 207:920. [RMcNa]CrossRefGoogle Scholar
Dum, R. P., Burke, R. E., O'Donovan, M. J., Toop, J. & Hodgson, J. A. (1982) Motor-unit organization in flexor digitorum longus muscle of the cat. Journal of Neurophysiology 47:1108–25. [RME]Google Scholar
Eccles, J. C., Eccles, R. M. & Lundberg, A. (1957) The convergence of monosynaptic excitatory afferents on to many different species of alphamotoneurons. Journal of Physiology-London 137:2250. [GCA]Google Scholar
Edgerton, V. R., Grillner, S., Sjöström, A. & Zangger, P. (1976) Central generation of locomotion in vertebrates. n: Neural control of locomotion, ed. Herman, R., Grillner, S., Stein, P. & Stuart, D., vol. 18. Plenum Press. [taMBB]Google Scholar
Elftman, H. (1939) The function of muscles in locomotion. American Journal of Physiology 125:357–66. [LDP]Google Scholar
Engberg, I. & Lundberg, A. (1969) An electromyographic analysis of muscular activity in the hindlimb of the cat during unrestrained locomotion. Acta Physiologica Scandinavica 75:614–30. [taMBB]CrossRefGoogle ScholarPubMed
Enoka, R. M. (1983) Muscular control of a learned movement: The speed control system hypothesis. Experimental Brain Research 51:135–45. [taMBB]Google Scholar
Eshkol, N. & Wachman, A. (1958) Movement notation. Weidenfeld and Nicholson. [IG]Google Scholar
Evarts, E. (1981) Sherrington's concept of proprioception. Trends in Neurosciences 4:4446. [UW]Google Scholar
Evoy, W. H. & Ayers, J. (1982) Locomotion and control of limb movements. In: Biology of Crustacea, vol. 4, ed. Bliss, D. E.. Academic Press. [ZH]Google Scholar
Evoy, W. H., Roberts, A., Soffe, S. R. & Dale, N. (1984) Synaptic components of the central pattern generator for swimming in an amphibian embryo spinal cord. Neuroscience Abstracts 10:658. [WHE]Google Scholar
Eykhoff, P. (1974) System identification. John Wiley. [GFI]Google Scholar
Fabre, J. N. (18791907) Souvenirs entomologiques. Librairie Delagrave. [taMBB]Google Scholar
Fearing, F. (1930/1970) Reflex action: A study in the history of physiological psychology. MIT Press. [MTT]CrossRefGoogle Scholar
Feldman, A. G. (1966a) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscle. Biophysics 11:565–78 (Biofizika 11:498–508). [taMBB, RAS]Google Scholar
Feldman, A. G. (1966b) Functional tuning of the nervous system with control of movement or maintanance of a steady posture. III. Mechanographic analysis of execution by man of the simplest motor tasks. Biophyscs 11:766 (Biofizika 11:667–75). [taMBB]Google Scholar
Feldman, A. G. (1974a) Change of muscle length as a consequence of a shift in an equilibrium of muscle-load system. Biophyscs 19:544–48 (Biofizika 19:534–38). [tar MBB, CC, RME].Google Scholar
Feldman, A. G. (1974b) Control of the length of a muscle. Biophysics 19:776–71 (Biofizika 19:749–53). [tarMBB, CC, RAS]Google Scholar
Feldman, A. G. (1976) Control of postural length and strength of a muscle: Advantages of central co-activation of alpha and gamma motoneurons. Biophysics 21:188–90 (Biofizika 21:187–89). [taMBB]Google Scholar
Feldman, A. G. (1979) Central and reflex mechanisms in motor control. Nauka. In Russian. [tarMBB]Google Scholar
Feldman, A. G. (1980a) Superposition of motor programs. I. Rhythmic forearm movements in man. Neuroscience 5:8190. [taMBB, RME, TRN]Google Scholar
Feldman, A. G. (1980b) Superposition of motor programs. II. Rapid flexion of forearm in man. Neuroscience 5:9195. [taMBB, CG]Google Scholar
Feldman, A. G. (1981) The composition of central programs subserving horizontal eye movements in man. Biological Cybernetics 42:107–16. [rMBB]Google Scholar
Feldman, A. G. & Orlovsky, G. N. (1972) The influence of different descending systems on the tonic stretch reflex in the cat. Experimental Neurology 37:481–94. [taMBB]Google Scholar
Fentress, J. C. (1983) Ethological models of hierarchy and patterning of species-specific behavior. In: Handbook of behavioral neurobiology: Motivation, ed. Satinoff, E. & Teitelbaum, P.. Plenum. [JCF]Google Scholar
Fentress, J. C. (1984) The development of motor coordination. Journal of Motor Behavior 16:99134. [JCF]Google Scholar
Ferrier, D. (1886) The functions of the brain. Smith, Elder. [ESR]Google Scholar
Fitts, P. M. (1954) The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology. 47:381–91. [GCA]Google Scholar
Fitts, P. M. & Peterson, J. R. (1964) Information capacity of discrete motor responses. Journal of Experimental Psychology 67:103–12. [GCA]Google Scholar
Fodor, J. A. (1985) Précis of The modularity of mind. Behavioral and Brain Sciences 8:142. [JCF]Google Scholar
Ford, L. E., Huxley, A. F. & Simmons, R. M. (1981) The relation between stiffness and filament overlap in stimulated frog muscle fibres. Journal of Physiology 311:219249. [WAM]Google Scholar
Forssberg, H. (1979) Stumbling corrective reaction: A phase dependent compensatory reaction during locomotion. Journal of Neurophysiology 42:936–53. [taMBB, WHE]Google Scholar
Forssberg, H. (1982) Spinal locomotion function and descending control. In: Brainstcm control of spinal mechanisms, ed. Sjolund, B. & Bjorkland, A.. Ferstrom Foundation Series. [DJO]Google Scholar
Fowler, C. A. & Turvey, M. T. (1978) Skill acquisition: An event approach with special reference to searching for the optimum of a function of several variables. In: Information processing in motor control and learning, ed. Stelmach, G. E.. Academic. [KGM, MTT]Google Scholar
French, R. (1969) Robert Whytt, the soul, and medicine. Wellcome Institute for the History of Medicine. [ESR]Google Scholar
Frieshen, W. O., Poon, M. & Stent, G. S. (1978) Neuronal control of swimming in the medical leech. IV. Identification of a network of oscillatory intemeurons. Journal of Experimental Biology 75:2543. [taMBB]Google Scholar
Frisch, K. von (1950) Bees, their vision, chemical senses and language. Cornell University Press. [taMBB]Google Scholar
Fukson, O. I., Berkinblit, M. B. & Feldman, A. G. (1980) The spinal frog takes into account the scheme of its body during the wiping reflex. Science 209:1261–63. [taMBB]Google Scholar
Gallistel, C. R. (1981) Précis of Gallistel's The organization of action: A new synthesis. Behavioral and Brain Sciences 4:609–50. [taMBB]Google Scholar
Gasser, H. S. & Hill, A. V. (1924) The dynamics of muscular contraction. Proceedings of Royal Society of London B96:398437. [rMBB]Google Scholar
Gelfand, I. M., Gurfinkel, V. S., Tsetlin, M. L. & Shik, M. L. (1971) Some problems in the analysis of movements. In: Models of the structural–functional organization of certain biological systems, ed. Gelfand, I. M., Gurfinkel, V. S., Fomin, S. V. & Tsetlin, M. L.. MIT Press. [taMBB]Google Scholar
Gelfand, I. M. & Tsetlin, M. L. (1967) Mathematical modeling of mechanisms of the central nervous system. In: Models of the structural-functional organization of certain biological systems, ed. Gelfand, I. M., Gurfinkel, V. S., Fomin, S. V. & Tsetlin, M. L.. MIT Press. [taMBB]Google Scholar
Chiselin, M. T. (1984) The triumph of the Darwinian method, 2d ed.University of Chicago Press. [ESR]Google Scholar
Gibson, E. J. (1952) The role of shock in reinforcement. Journal of Comparative and Physiological Psychology 45:1830. [ESR]Google Scholar
Gibson, J. & Hudson, L. (1935) Bilateral transfer of the conditioned knee jerk. Journal of Experimental Psychology 18:774–83. [ESR]Google Scholar
Gibson, J., Jack, E. & Raffel, G. (1932) Bilateral transfer of the conditioned response in the human subject. Journal of Experimental Psychology 15:416–21. [ESR]CrossRefGoogle Scholar
Gibson, J. J. (1966) The senses considered as perceptual systems. Houghton-Mifflin. [ESR, MTT]Google Scholar
Gibson, J. J. (1979) The ecological approach to visual perception. Houghton-Mifflin. [MTT]Google Scholar
Gielen, C. C. A. M. & Houk, J. C. (1984) Nonlinear viscosity of the human wrist. Journal of Neurophysiohgy 52:553–69. [rMBB, CG]Google Scholar
Gielen, C. C. A. M., Houk, J. C., Marcus, S. L. & Miller, L. E. (1984) Viscoelastic properties of the wrist motor servo in man. Annals of Biomedical Engineering 12:599620. [GCA, CG]Google Scholar
Golani, I. & Fentress, J. C. (in press) Early ontogeny of face grooming in mice. Developmental Psychobiology. [JCF]Google Scholar
Gordon, J. & Ghez, C. (1984) EMG patterns in antagonist muscles during isometric contraction in man: Relations to response dynamics Experimental Brain Research 55: 167–71. [MBB, ZH]Google Scholar
Gottlieb, G. L. & Agarwal, G. C. (1978) Stretch and Hoffmann reflexes during phasic voluntary contractions of the human soleus muscle. Electroen-cephalography and Clinical Neurophysiology 44:533–61. [RME]Google Scholar
Gottlieb, G. L. & Agarwal, G. C. (1979) Response to sudden torques about ankle in man: Myotatic reflex. Journal of Neurophysiology 42:91106. [rMBB, RME]Google Scholar
Gottlieb, G. L. & Agarwal, G. C. (1980a) Response to sudden torques about ankle in man. II. Postmyototic reaction. Journal of Neurophysiology 43:86101. [UW]Google Scholar
Gottlieb, G. L. & Agarwal, G. C. (1980b) Response to sudden torques about ankle in man. III. Suppression of stretch-evoked responses during phasic contraction. Journal of Neurophysiology 44:233–46. [RME]Google Scholar
Gottlieb, G. L. & Agarwal, G. C. (1983) Muscle-reflex compliance: Elasticity and plasticity at the human elbow. Society for Neuroscience Abstracts 9:632. [GLG]Google Scholar
Gottlieb, G. L. & Agarwal, G. C. (1984) Muscle-reflex compliance: A comparison of elbow and ankle. Society Neuroscience Abstracts 10:335. [GCA, CLG]Google Scholar
Gracco, V. L. & Abbs, J. H. (in press) Dynamic control of the perioral system during speech: Kinematic analyses of autogenic and nonautogenic sensorimotor processes. Journal of Neurophysiology. [KGM]Google Scholar
Granit, R. (1970) The basis of motor control. Academic Press. [MI]Google Scholar
Granit, R. (1975) The purposive brain. MIT Press. [ESR]Google Scholar
Greene, P. H. (1972) Problems of organization of motor systems. Progress in Theoretical Biology 2:303–38. [WAM]Google Scholar
Greene, P. H. (1982) Why is it easy to control your arms? Journal of Motor Behavior 4:260–86. [taMBB]Google Scholar
Grillner, S. (1974) On the generation of locomotion in the spinal dogfish. Experimental Brain Research 20:459–70. [LDP]Google Scholar
Grillner, S. (1975) Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiological Review 55:277304. [taMBB]Google Scholar
Grillner, S. (1981) Control of locomotion in bipeds, tetrapods and fish. In: Handbook of physiology, motor control, ed. V. Brooks, vol. 3. [taMBB]Google Scholar
Grillner, S. (1982) Possible analogies of the control of innate motor acts and the production of sound in speech. In: Wennergren Center Internacional Simposium series, vol. 36, Speech motor control, ed. Grillner, S., Lindblom, B., Lubker, J. & Persson, A.. Pergamon Press. [taMBB]Google Scholar
Grillner, S. & Rossignol, S. (1978) On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Research 146:269–77. [taMBB]Google Scholar
Grillner, S. and Wallen, P. (1985) Central pattern generators for locomotion, with special reference to vertebrates. Annual Review of Neuroscience 8:233–61. [WHE]Google Scholar
Haken, H. (1978) Synergetics: An introduction. Spring-Verlag. [MTT]Google Scholar
Haken, H. (1981) Chaos and order in nature. Spring-Verlag. [MTT]Google Scholar
Halbertsma, J. (1983) The stride cycle of the cat: The modelling of locomotion by computerized analysis of automatic recordings. Acta Physiologica Scandinavica. Suppl. 521:175. [taMBB, RMcN, LDP]Google Scholar
Haller, A. von (1752) De partibus corporis humani sensibilus et irritabilus. Acta Gottingensis 2:1114. [ESR]Google Scholar
Harrison, P. J. (1985) An interneuronal system contributing to the coordination of the cat hind limb. In: Coordination of motor behavior, ed. Bush, B. M. H. and Clarac, F.. Society for Experimental Biology Seminar Series, no. 24. Cambridge University Press. [WHE]Google Scholar
Harrison, P. J. & Jankowska, E. (1985a) Organization of input to the interneurones mediating group I non-reciprocal inhibition of motoneurones in the cat. Journal of Physiology-London 361:403418. [UW]Google Scholar
Harrison, P. J. & Jankowska, E. (1985b) Sources of input to interneurones mediating group I non-reciprocal inhibition of motoneurons in the cat. Journal of Physiology-London 361:379401. [UW]Google Scholar
Hasan, Z. & Enoka, R. M. (1985) Isometric torque–angle relationship and movement-related activity of human elbow flexors: Implications for the equilibrium-point hypothesis. Experimental Brain Research 59:441–50. [ZH]Google Scholar
Hasan, Z., Enoka, R. M. & Stuart, D. G. (1985) The interface between biomechanics and neurophysiology in the study of movement: Some recent approaches. In: Exercise and Sport Sciences Reviews, ed. Terjung, R. L.. Macmillan. [RME]Google Scholar
Hebb, D. (1949) The organization of behavior. Wiley. [taMBB, KGM]Google Scholar
Helmholtz, H. (1848) Über die Wämeentwicklung bei der Muskelaction. Archiv für Anatomie, Physiologie und Wissenschaftliche Medizin, Leipzig 144–64. [taMBB]Google Scholar
Henneman, E., Solmjen, G. & Carpenter, D. O. (1965) Excitability and inhibitibility of motoneurons of different sizes. Journal of Neurophysiology 28:599620. [LDP]Google Scholar
Hoffer, J. A. (1982) Central control and reflex regulation of mechanical impedance: The basis for a unified motor-control scheme. Behavioral and Brain Sciences 5:548–49. [GFI]Google Scholar
Hoffer, J. A. & Andreassen, S. (1981) Regulation of soleus muscle stiffness in premammillary cats: Intrinstic and reflex components. Journal of Neurophysiology 45:267–85. [taMBB, WDC]Google Scholar
Hoffer, J. A., Leonard, T. A., Spence, N. L. & Cleland, C. L. (1984) Reflex gain, muscle stiffness and viscosity in normal cats. Society for Neuroscience Abstracts 10:330. [rMBB, TRN]Google Scholar
Hogan, N. (1982) Moving with control: Using control theory to understand motor behaviour. Behavioral and Brain Sciences 5:550. [UW]Google Scholar
Holmes, G. (1922) The Cooonian Lectures on the clinical symptoms of the cerebellar disease and their interpretation. Lancet 100, 1:1177–82, 1231–37; 2:5965, 111–15. [LDP]Google Scholar
Hoist, E. von & Mittelstaedt, H. (1950) Das Reafferenzprìnzip. Wechselwirkung zwischen Zentralnervensystem und Peripherie. Die Naturwissenschaften 37:464–76. [taMBB]Google Scholar
Houk, J. C. (1976) An assessment of Stretch reflex function. Progress in Brain Research 44:303–14. [tarMBB]Google Scholar
Houk, J. C. (1979) Regulation of stiffness by skeletomotor reflexes. Annual Review of Physiology 41:99114. [taMBB]Google Scholar
Houk, J. C., Crago, P. E. & Rymer, W. Z. (1981) Function of the spindle dynamic response in stiffness regulation – a predictive mechanism provided by non-linear feedback. In: Muscle receptors and movement, ed. Taylor, A. & Prochazka, A.. Macmillan. [TRN]Google Scholar
Houk, J. C. & Henneman, E. (1974) Feedback control of muscle: Introductory concepts. In: Medical physiology, ed. Mountcastle, V. B.. C. V. Mosby. [TRN]Google Scholar
Houk, J. C., Marcus, S. L. & Miller, L. E. (1983) Neural mechanisms for motor control and load adaptation. Annals of Biomedical Engineering 11:3940. [rMBB]Google Scholar
Houk, J. C., Rymer, W. Z. & Crago, P. E. (1981) Nature of the dynamic response and its relation to the high sensitivity of muscle spindles to small changes in length. In: Muscle receptors and movement, ed. Taylor, A. & Prochazka, A.. Macmillan. [GEL]Google Scholar
Howard, J. D., Hoit, J. D., Enoka, R. M. & Hassan, Z. (1986) Relative activation of two human elbow flexors under isometric conditions: A cautionary note concerning flexor equivalence. Experimental Brain Research 62: 199202. [RME]Google Scholar
Hoyle, C. (1984) The scope of neuroethology. Behavioral and Brain Sciences 7:367412. [taMBB, JCF]Google Scholar
Hughes, G. M. & Wiersma, C. A. (1960) The coordination of swimmeret movements in the crayfish, Procambarus clarkii (Girard). Journal of Experimental Biology 37:657–70. [taMBB]Google Scholar
Hunt, K. H. (1978) Kinematic geometry of mechanisms. Oxford University Press. [RMcNA]Google Scholar
Huxley, A. F. & Niedergerke, R. (1954) Structural changes in muscle during contraction. Interference microscopy of living muscle fibres. Nature 173:971–73. [taMBB]Google Scholar
Inbar, G. F. (1972) Muscle spindles in muscle control. III. Analysis of adaptive system model. Kybernetik 11:130–41. [GFI, PDN, UW]Google Scholar
Inbar, G. F. (1985) Adaptation in the neuromuscular system. In: Proceedings of the Tri-National Conference on Sensorimotor Plasticity: Theoretical. Experimental and Clinical Aspects, ed. Ron, S.. North-Holland. [GFI]Google Scholar
Inbar, G. F. & Yafe, A. (1976) Parameter and signal adaptation in the stretch reflex loop. Progress in Brain Research 44:317–37. [GFI, PDN]Google Scholar
Jacob, M. (1981) The radical enlightenment: Pantheists, Freemasons and republicans. Allen & Unwin. [ESR]Google Scholar
Jander, R. (1957) Die optische Richtungsorientierung der Roten Waldameise (Formico rufa L). Zeitschrift für Vergleichende Physiologie 40:162–38. [taMBB]Google Scholar
Jankowska, E. & Lundberg, A. (1981) Intenieuroncs in the spinal cord. Trends in Neuroscience 4:230–33. [GEL]Google Scholar
Jenkins, F. A. (1971) Posture and locomotion in the Virginia opossum (Didelphis marsupialis) and in other non-cursorial mammals. Journal of Zoology 165:303–15. [RMcNA]Google Scholar
Jordan, L. M. (1983) Factors determining motoneuron rhythmicity during fictive locomotion. In: Neural origin in rhythmic movements, ed. Roberts, A. & Roberts, B. L.. Symposia of the Society for Experimental Biology, no. 37. Cambridge University Press. [WHE]Google Scholar
Joseph, V. & Inbar, G. F. (1985) Estimation of the mechanical impedance parameters of human subjects in response to white noise mechanical perturbations. Submitted for publication. [GFI]Google Scholar
Kahn, J. A. & Roberts, A. (1982) Experiments of the central pattern generator for swimming in amphibian embryons. Philosophical Transactions of the Royal Society of London Series B 296:229–43. [taMBB]Google Scholar
Kandel, E. R. (1976) Cellular basis of behavior. An introduction to behavioral neurobiology. W. H. Freeman. [taMBB]Google Scholar
Keele, S. W. (1968) Movement control in skilled motor performances. Psychological Bulletin 70:387403. [KGM]Google Scholar
Kelso, J. A. S. (1977) Motor control mechanisms underlying human movement reproduction. Journal of Experimental Psychology: Human Perception and Performance 3:529–43. [taMBB]Google Scholar
Kelso, J. A. S. (1978) Changing views of feedforward and feedback in voluntary movement. Behavioral and Brain Sciences 1:153–54. [taMBB]Google Scholar
Kelso, J. A. S. (1984) Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology 246:R100004. [taMBB]Google Scholar
Kelso, J. A. S. & Holt, K. G. (1980) Exploring a vibratory system analysis of human movement production. Journal of Neurophysiology 43:1183–96. [taMBB, KGM, RAS]Google Scholar
Kelso, J. A. S., Holt, K. G., Kugler, P. N. & Turvey, M. T. (1980) On the concept of coordinative structures as dissipative structures; II. Empirical lines of convergency. In Tutorials in motor behavior, ed. Stelmach, C. E. & Requin, J.. North-Holland. [RAS]Google Scholar
Kelso, J. A. S., Holt, K. G., Rubin, P., Kugler, P. N. (1981) Patterns of human interlimb coordination emerge from the properties of non-linear, limit cycle oscillatory processes: Theory and data. Journal of Motor Behavior 13:226–61. [RAS]Google Scholar
Kelso, J. A. S. & Saltzman, E. L. (1982) Motor control: Which themes do we orchestrate? Behavioral and Brain Sciences 5:554–57. [taMBB]Google Scholar
Kelso, J. A. S., Southard, D. L. & Goodman, D. (1979) On the nature of human interlimb coordination. Science 203:1029–31. [taMBB]Google Scholar
Kelso, J. A. S. & Tuller, B. (1983) “Compensatory articulation” under conditions of reduced afferent information: A dynamic formulation. Journal of Speech and Hearing Research 26:217–24. [taMBB]Google Scholar
Kelso, J. A. S. & Tuller, B. (1984) Converging evidence in support of common dynamic principles for speech and movement coordination. American Journal of Physiology 15:R928–R935. [MLL]Google Scholar
Kelso, J. A. S. & Tuller, B. (in press) Intrinsic time in speech production: Theory, methodology, and preliminary observations. In: Motor and sensory processes of language, ed. Keller, E. & Gopnik, M.. Erlbaum. [KGM]Google Scholar
Kelso, J. A. S., Tuller, B., V.-Bateson, E. & Fowler, C. A. (1984) Functionally specific articulatory cooperation adaptation to jaw perturbations during speech: Evidence for coordinative structures. Journal of Experimental Psychology: Human Perception and Performance 10:812–32. [KGM, DGO]Google Scholar
Kelso, J. A. S., V.-Bateson, E., Saltzman, E. L. & Kay, B. A. (1985) A qualitative dynamic analysis of reiterant speech production: Phase portraits, kinematics and dynamic modeling. Journal of the Acoustical Society of America 77:266–80. [KGM]Google Scholar
Kennedy, W. & Davis, W. J. (1977) Organization of invertebrate motor systems. In: Handbook of physiology, ed. S. P. Geiger, E. R. Kandel, I. M. Brookhart & V. B. Mountcastle. [taMBB]Google Scholar
Kuffler, D. P. & Muller, K. I. (1974) The properties and connections of supernumerary sensory and motor nerve cells in the central nervous system of an abnormal leech. Journal of Neurobiology 5:331–48. [taMBB]Google Scholar
Kugler, P. N., Kelso, J. A. S. & Turvey, M. T. (1980) On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. In: Tutorials in motor behavior, ed. Stelmach, C. E. & Requin, J.. North-Holland. [taMBB]Google Scholar
Kugler, P. N. & Turvey, M. T. (in press) Information, natural law and the self-assembly of rhythmic movement. Erlbaum. [KGM, MTT]Google Scholar
Kupfermann, I. & Weiss, K. R. (1978) The command neuron concept. Behavioral and Brain Sciences 1:339. [taMBB, WHE]Google Scholar
Lacquaniti, F. & Soechting, J. F. (1983) Changes in mechanical impedance and gain of the myotatic response during transitions between two motor tasks. In: Neural coding of motor performance, ed. Massion, J., Paillard, J., Schultz, W. & Wiesendanger, M.. Springer-Verlag. [PDN]Google Scholar
Lange, F. A. (1880) The history of materialism, vol. 2. Trubner. [ESR]Google Scholar
Lashley, K. S. (1942) The problem of cerebral organization in vision. In: Visual mechanisms, ed. Kluver, H., Biological Symposium 7. [KGM]Google Scholar
Lee, W. A. (1984) Neuromotor synergies as a basis for coordinated intentional action. Journal of Motor Behavior 16:135–70. [WAL]Google Scholar
Lestienne, F. (1979) Effects of inertial load and velocity on the braking process of voluntary limb movements. Experimental Brain Research 35:407–18. [WAM]Google Scholar
Llinás, R. & Precht, W., eds. (1976) Frog neurobiology. A handbook. Springer-Verlag. [UW]CrossRefGoogle Scholar
Lloyd, D. P. C. (1946) Integrative patterns of excitation and inhibition in two-neuron reflex arcs. Journal of Neurophysiology 9:439–44. [TRN]Google Scholar
Loeb, G. E. (1984) The control and responses of mammalian muscle spindles during normally executed motor tasks. Exercise and Sport Sciences Reviews 12:157204. [GEL, UW]Google Scholar
Lombard, W. P. & Abbott, F. M. (1907) The mechanical effects produced by the contraction of individual muscles of the thigh of the frog. American Journal of Physiology. 20:160. [LDP]Google Scholar
Lorenz, K. Z. (1950) The comparative method in studying innate behavior patterns. Symposia of the Society for Experimental Biology 4:221–68. [taMBB]Google Scholar
Lorenz, K. Z. (1966) Evolution and modification of behaviors. Methuen. [taMBB]Google Scholar
Lorenz, K. Z. (1981) The foundations of ethology. Springer-Verlag. [LDP]Google Scholar
Lorenz, K. & Tinbergen, N. (1938) Taxis und Instinkthandlung in der Eirollbewegung der Graugans I. Zeitschrift für Tierpsychologie 2:129. [WDC]Google Scholar
Lubbock, J. (1888) On the senses, instincts and intelligence of animals. London. [taMBB]Google Scholar
Lundberg, A. (1975) Control of spinal mechanisms from the brain. In: The nervous system ed. Tower, D. B., vol. 2. Raven Press. [taMBB]Google Scholar
Lundberg, A. & Voorhoeve, P. (1962) Effects from pyramidal tract on the spinal reflex arcs. Acta Physiologica Scandinavica 56:201–19. [rMBB]Google Scholar
Luria, A. R. (1973) The working brain. Penguin. [ESR]Google Scholar
MacKay, W. A., Kwan, H. C., Murphy, J. T. & Wong, Y. C. (1983) Stretch reflex modulation during a cyclic elbow movement. Electroencephalo graphy and Clinical Neurophysiology 55:687–98. [WAM]Google Scholar
Magnus, R. (1924) Körperstellung. Springer. [taMBB]Google Scholar
Marsden, C. D., Merton, P. A. & Morton, H. B. (1983) Rapid postural reactions to mechanical displacements of the hand in man. In: Motor control mechanisms in health and disease, ed. Desmedt, J.. Raven. [KGM]Google Scholar
Marsden, C. D., Obeso, J. A. & Rothwell, J. C. (1983) The function of the antagonist muscle during fast limb movements in man. Journal of Physiology (London) 335:113. [CG]Google Scholar
Matthews, P. B. C. (1959) The dependence of tension upon extension in the stretch reflex of the soleus of the decerebrate cat. Journal of Physiology (London) 47:521–46. [taMBB]Google Scholar
Matthews, P. B. C. (1972) Mammalian muscle receptors and their central actions. Physiology Society Monographs, Arnold. [GEL]Google Scholar
Matthews, P. B. C. (1981) Muscle spindles: Their messages and their fusimotor supply. In: Handbook of physiology, Sect. 1: The nervous system, vol. 2, part 1. American Physiological Society. [PDN]Google Scholar
Matthews, P. B. C. & Watson, J. D. G. (1981) Effect of vibrating agonist or antagonist muscle on the reflex response to sinusoidal displacement of the human forearm. Journal of Physiology-London 321:297316. [TRN]Google Scholar
Mayr, E. (1982) The growth of biological thought. Harvard University Press. [ESR]Google Scholar
McCulloch, W. S. (1947) Modes of functional organization of the cerebral cortex. Federation of American Societies for Experimental Biology, Proceedings 6:448–52. [WAM]Google Scholar
McMahon, T. A. (1975) Using body size to understand the structural design of animals: Quadrapedal locomotion. Journal of Applied Physiology 39:619–27. [GEL]Google Scholar
Mecacci, L. (1979) Brain and history. M. E. Sharpe. [ESR]Google Scholar
Merton, P. A. (1953) Speculations on the servo-control of movement. In: CIBA Foundation Symposium, The spinal cord, ed. Wolstenholme, G. E. W.. Churchill. [taMBB, GCA, GLG]Google Scholar
Meyer, D. E., Smith, J. E. K. & Wright, C. E. (1982) Models for the speed and accuracy of aimed movements. Psychological Reviews 89:449–82. [WAM]Google Scholar
Miller, J. P. & Selverston, A. I. (1982) Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. 4. Network properties of the pyloric system. Journal of Neurophysiology 48:1416–32. [WDC]Google Scholar
Minsky, M. & Papert, S. (1969) Perceptron. MIT Press. [rMBB]Google Scholar
Morasso, P., Bizzi, E. & Dichgans, J. (1973) Adjustment of saccade characteristics during head movements. Experimental Brain Research 16:492500. [LDP]Google Scholar
Morasso, P. & Mussa Ivaldi, F. A. (1982) Trajectory formation and handwriting: A computational model. Biological Cybernetics 45:131–42. [taMBB]Google Scholar
Morgan, C. L. (1900) Animal behavior. London. [taMBB]Google Scholar
Mortin, L. I., Keifer, J. & Stein, P. S. G. (1982) Three forms of the turtle scratch reflex. Society for Neuroscience Abstracts 8:159. [taMBB]Google Scholar
Munhall, K. G. & Kelso, J. A. S. (1985) Phase dependent sensitivity to perturbation reveals the nature of speech cooperative structures. Journal of the Acoustical Society of America 78:538. [KGM]Google Scholar
Munhall, K. G., Ostry, D. O. & Parush, A. (1985) Characteristics of velocity profiles of speech movements. Journal of Experimental Psychology: Human Perception and Performance 11:457–74. [KGM]Google Scholar
Nashner, L. M. (1976) Adapting reflexes controlling the human posture. Experimental Brain Research 26:5972. [RME]Google Scholar
Nashner, L. M. (1981) Analysis of stance posture in human. In: Handbook of behavioral neurobiology, ed. Towe, A. L. & Luschei, E. S.. Vol. 5. Plenum. [taMBB]Google Scholar
Nashner, L. M. & McCollum, G. (1985) The organization of human postural movements. Behavioral and Brain Sciences 8:135–72. [taMBB]Google Scholar
Neilson, P. D. & Lance, J. W. (1978) Reflex transmission characteristics during voluntary activity in normal man and in patients with movement disorders. In: Cerebral motor control in man: Long loop mechanisms, vol. 4 of Progress in clinical neurophyisology ed. Desmedt, J. E.. Karger. [PDN]Google Scholar
Neilson, P. D. & McCaughey, J. (1981) Effect of contraction level and magnitude of stretch on tonic stretch reflex transmission characteristics. Journal of Neurology, Neurosurgery and Psychiatry 44:320–30. [PDN]Google Scholar
Neilson, P. D. & McCaughey, J. (1982) Self-regulation of spasm and spasticity in cerebral palsy. Journal of Neurology, Neurosurgery and Psychiatry 45:320–30. [PDN]Google Scholar
Neilson, P. D. & O'Dwyer, N. J. (1984) Adaptive control of tonic stretch reflexes in man. Spastic Centre Research Unit Progress Report, The Prince Henry Hospital, Sydney, Australia. [PDN]Google Scholar
Nichols, T. R. (1974) Soleus muscle stiffness and its reflex control. Ph.D. thesis, Harvard University. [TRN]Google Scholar
Nichols, T. R. (1981) Evidence for authentic changes in the gain of an autogenetic reflex in the soleus muscle in the decerebrate cat. Society for Neuroscience Abstracts 7:688. [TRN]Google Scholar
Nichols, T. R. (1982) Reflex action in the context of motor control. Behavioral and Brain Sciences 5:559–60. [taMBB]Google Scholar
Nichols, T. R. (1983) Reflex action in an agonist–antagonist muscle system in the decerebrate cat. Society for Neuroscience Abstracts 9:527. [rMBB, TRN]Google Scholar
Nichols, T. R. & Houk, J. C. (1976) The improvement in linearity and the regulation of stiffness that results from the actions of the stretch reflex. Journal of Neurophysiology 39:119–42. [taMBB]Google Scholar
Nuberg, N. D., Bongard, M. M. & Nikolaev, P. P. (1971) On the constancy of colour perception. Biofizika 16:1052–63. [taMBB]Google Scholar
O'Donovan, M. J., Pinter, M. J., Dum, R. P. & Burke, R. E. (1982) Actions of FDL and FHL muscles in intact cats: Functional dissociation between anatomical synergists. Journal of Neurophysiology 47:1126–43. [RME]Google Scholar
Ostry, D. J. & Munhall, K. G. (1985) Control of rate and duration of speech movements. Journal of the Acoustical Society of America 77:640–48. [KGM, DJO]Google Scholar
Ostry, J., Keller, E. & Parush, A. (1983) Similarities in the control of the speech articalators and the limbs: Kinematics of tongue dorsum movements in speech. Journal of Experimental Psychology 9:622–36. [taMBB]Google Scholar
Partridge, L. D. (1972) Interrelationships studied in semibiological “reflex.” American Journal of Physiology 223:144–58. [taM BB]Google Scholar
Partridge, L. D. (1981) Neural control drives a muscle spring: A presisting yet limited theory. Experimental Brain Research Supplement 7:280–90. [LDP]Google Scholar
Partridge, L. D. (1982) The good enough calculi of evolving control systems: Evolution is not engineering. American Journal of Physiology 242:R173–R177. [LDP]Google Scholar
Partridge, L. D. (1983) Neural control drives a muscle spring: A persisting yet limited motor theory. In: Neural coding of motor performace, ed. Massion, J., Paillard, J., Schultz, W. & Wiesendanger, M.. Experimental Brain Research, Sappl 7. Springer. [taMBB]Google Scholar
Partridge, L. D. & Benton, L. A. (1981) Muscle the motor. In: Handbook of physiology – The nervous system ed. Brooks, V. B.. American Physiology Society. [LDP]Google Scholar
Paton, G. (1846) On the perceptive power of the spinal cord, as manifested by cold-blooded animals. Edinburgh Medical and Surgical Journal 65:251–69. [taMBB]Google Scholar
Pattee, H. H. (1972) Laws and constraints, symbols and language. In Towards a theoretical biology, ed. Waddington, C. H.. Atherton-Aldine. [MTT]Google Scholar
Pearson, K. G. (1972) Central programming and reflex control of walking in the cockroach. Journal of Experimental Biology 56:173–93. [taMBB]Google Scholar
Pearson, K. G. (1981) Function of sensory input in insect motor systems. Canadian Journal of Physiology and Pharmacology 59:660–66. [taMBB]Google Scholar
Pearson, K. G. & Duysens, J. (1976) Function of segmental reflexes in the control of stepping in cockroaches and cats. In: Neural control of locomotion, ed. Herman, R. M., Grillner, S., Stein, P. & Stuart, D.. Plenum. [taMBB]Google Scholar
Pellionisz, A. & Llinas, R. (1979) Brain modelling by tensor network theory and computer simulation. The cerebellum: Distributed processor for predictive coordination. Neuroscience 4:323–48. [taMBB]Google Scholar
Pfluger, E. (1853) Die Sensoriscen Functionen des Rückenmarks bei Wirbelttieren. Berlin. [taMBB]Google Scholar
Polit, A. & Bizzi, E. (1978) Processes controlling arm movements in monkeys. Science 201:1235–37. [RAS]Google Scholar
Popper, K. & Eccles, J. (1977) The self and its brain. Springer. [ESR]Google Scholar
Prigogine, I. (1980) From being to becoming: Time and complexity in the physical sciences. W. H. Freeman. [MTT]Google Scholar
Rack, P. M. H. & Westbury, D. R. (1969) The effects of length and stimulus rate on tension in the isometric cat soleus muscle. Journal of Physiology (London) 204:443–60. [taMBB]Google Scholar
Ralston, H. J., Inman, V. T., Strait, L. A. & Shaffrath, M. D. (1947) Mechanics of human isolated voluntary muscle. American Journal of Physiology 151:612–20. [taMBB]Google Scholar
Reaumur, R. A. (17321742) Memoires pour servir à l'hystoire des insektes. Paris. [taMBB]Google Scholar
Reed, E. S. (1979) Evolution, classification and symmetry in Ghiselin's “radical solution” to the species problem. Systematic Zoology. [ESR]Google Scholar
Reed, E. S. (1980) The corporeal ideas hypothesis and the origin of scientific psychology. Ph.D. Diss., Boston University. [ESR]Google Scholar
Reed, E. S. (1982a) The corporal idea hypothesis and the origin of experimental psychology. Review of Metaphysics 35:731–52. [MTT]Google Scholar
Reed, E. S. (1982b) An outline of a theory of action systems. Journal of Motor Behavior 14:98134. [ESR, MTT]Google Scholar
Reed, E. S. (1984) From action Cestalts to direct action. In: Human motor actions: Bernstein reasessed, ed. Whiting, H. T. A.. North-Holland. [ESR]Google Scholar
Reed, E. S. (1985) The ecological approach to the evolution of behavior. In: Issues in the ecological study of learning, ed. Johnston, T. & Pietrewicz, A.. Erlbaum. [ESR]Google Scholar
Ritzmann, R. E. & Tobias, M. L. (1980) Flight activity initiated via giant interneurons of the cockroach: Evidence for bifunctional trigger interneurons. Science 210:443–45. [taMBB]Google Scholar
Roberts, A., Dale, N., Evoy, W. H. & Soffe, S. R. (1985) Synaptic potentials in motoneurons during fictive swimming in spinal Xenopus embryos. Journal of Neurophysiology 54:110. [WHE]Google Scholar
Roberts, A., Dale, N. & Soffe, S. R. (1984) Sustained responses to brief stimuli: Swimming in Xenopus embryos. Journal of Experimental Biology 112:321–35. [WHE]Google Scholar
Roberts, T. D. M. (1963) Rhythmic excitation of a stretch reflex, revealing (a) hysteresis and (b) a difference between the responses to pulling and to stretching. Quarterly Journal of Experimental Physiology 48:328–45. [TDMR]Google Scholar
Rothwell, J. C., Traub, M. M., Day, B. L., Obeso, J. A., Thomas, P. K. & Marsden, C. D. (1982) Manual motor performance in a deafferented man. Brain 105:515–42. [PDN]Google Scholar
Rudomin, P. & Dutton, H. (1969) Effects of conditioning afferent volleys on variability of monosynaptic responses of extensor motoneurons. Journal of Neurophysiology 32:130–57. [GEL]Google Scholar
Saltzman, E. (1979) Levels of sensomotor representation. Journal of Mathematical Psychology 20:91163. [taMBB]Google Scholar
Saltzman, E. L. & Kelso, J. A. S. (1983) Skilled actions: A task dynamic approach. Haskins Laboratories Status Reports on Speech Research SR-76, 350. [KGM]Google Scholar
Sanes, J. N. & Jennings, V. A. (1984) Centrally programmed patterns of muscle activity in voluntary motor behavior of humans. Experimental Brain Research 54:2332. [rMBB, CG]Google Scholar
Sanes, J. N., Mauritz, K.-H., Dalakas, M. C. & Evarts, E. V. (1985) Motor control in humans with large-fiber sensory neuropathy. Human Neurobiology 4:101–14. [rMBB]Google Scholar
Schleidt, W. M. (1974) How “fixed” is the fixed action pattern? Sonderdruck aus Zeitschrift für Tierpsychologie 36:184211. [taMRR, RJ]Google Scholar
Schmidt, R. A. (1975) A schema theory of discrete motor skill learning. Psychological Review 82:225–60. [RAS]Google Scholar
Schmidt, R. A. (1982) Motor control and learning: A behavioral emphasis. Human Kinetics Press. [RAS]Google Scholar
Schmidt, R. A. (1980a) On the theoretical status of time in motor-program representations. In: Tutorials in motor behavior, ed. Stelmach, G. E. & Requin, J.. North-Holland. [RAS]Google Scholar
Schmidt, R. A. (1980b) Past and future issues in motor programming. Research Quarterly for Exercise and Sport 51:122–40. [taMBB]Google Scholar
Schmidt, R. A. (1982) Motor control and learning: A behavioral emphasis. Human Kinetics Publishers. [taMBB]Google Scholar
Schmidt, R. A. & McGown, C. (1980) Terminal accuracy of unexpectly loaded rapid movements: Evidence for a mass-spring mechanisms in programming. Journal of Motor Behavior 12:149–61. [RAS]Google Scholar
Schmidt, R. A. & McCown, C. (1980) Terminal accuracy of unexpectedly loaded rapid movements: Evidence for a mass-spring mechanisms programming. Journal of Motor Behavior 12:149–61. [RAS]Google Scholar
Schmidt, R. A., McCown, C., Quinn, J. T. & Hawkins, B. (in press) Unexpected inertial loading in rapid reversal movements: Violations of equifinality. Human Movement Science. [RAS]Google Scholar
Seller, W. (1864) Memoir of the life and writings of Robert Whytt. Transactions of the Royal Society of Edinburgh 23:99131. [ESR]Google Scholar
Selverston, A. I. (1980) Are central pattern generators understandable? Behavioral and Brain Sciences 3:535–71. [taMBB]Google Scholar
Shapiro, D. C. & Walter, C. B. (1982) Control of rapid bimanual aiming movements: The effect of a mechanical block. Society for Neuroscience Abstracts, 8:733 (Abstract). [RAS]Google Scholar
Sherrington, C. S. (1906) The integrative action of the nervous system. Yale University Press. [taMBB, PBCM, TRN]Google Scholar
Sherrington, C. S. (1947) Man on his nature. Doubleday. [ESR]Google Scholar
Shik, M. L. (1976) Control of terrestrial locomotion in mammals. In: Physiology of movement, ed. Alekseev, M. A., Gurfinkel, V. S., Kostyuk, P. G., Person, R. S., Shapovalov, A. I. & Shik, M. L.. Nauka. [taMBB]Google Scholar
Shik, M. L. & Orlovsky, C. N. (1976) Neurophysiology of locomotor automatism. Physiological Reviews 56:465501. [taMBB]Google Scholar
Siegler, M. V. S. (1982) Electrical coupling between superhumerary motor neurons in the locust. Journal of Experimental Biology. 101:105–19. [taMBB]Google Scholar
Siegler, M. V. S. (1984) Local interneurons and local interactions in arthropods. Journal of Experimental Biology 112:253–81. [WHE]Google Scholar
Sillar, K. T. (1985) Comparative overview and perspectives. In: Coordination of motor behavior, ed. Bush, B. M. H. & Clarac, F.. Society for Experimental Biology Seminar Series, no. 24. Cambridge University Press. [WHE]Google Scholar
Simon, H. A. (1962) The architecture of complexity. Proceedings of the American Philosophical Society 106:467–82. [GCA]Google Scholar
Smith, A. P. (1978) An investigation of the mechanisms underlying nest construction in the mud wasp Paralastor sp. (Hymenoptera Eumenidae). Animal Behavior 26:332–40. [taMBB]Google Scholar
Smith, J. L., Betts, B., Edgerton, V. R. & Zernicke, R. F. (1980) Rapid ankle extension during paw shakes: Selective recruitment of fast ankle extensors. Journal of Neurophysiology 43:612–20. [LDP]Google Scholar
Soechting, J. F., Dufresne, J. R. & Lacquaniti, F. (1981) Time-varying properties of myotatic response in man during some simple motor tasks. Journal of Neurophysiology 46:1226–43. [RME, PDN]Google Scholar
Soffe, S. R. (1985) Central coordination of swimming in lower vertebrates. In: Coordination of motor behavior, ed. Bush, B. M. H. & Clarac, F.. Society for Experimental Biology Seminar Series, no. 24. Cambridge University of Press. [WHE]Google Scholar
Sperry, R. (1952) Neurobiology of the mind-brain problem. American Scientist 40:291312. [ESR]Google Scholar
Stanley, W. D. (1975) Digital spinal processing. Reston. [PDN]Google Scholar
Stark, L. (1968) Neurological control systems: Studies in bioengineering. Plenum Press. [WAM]Google Scholar
Steeves, J. D. & Pearson, K. G. (1983) Variability in the structure of an identified interneuron in isogenetic clones of locusts. Journal of Experimental Biology 103:4754. [taMBB]Google Scholar
Stein, P. S. G. (1978) Motor systems, with specific reference to the control of locomotion. Annual Review of Neurosciences 1:6181. [taMBB]Google Scholar
Stein, P. S. G. (1983) The vertebrate scratch reflex. In: Society for Experimental Biology sympoisum XXXVII. Neural origin of rhythmic movements, ed. A. Roberts & B. Roberts. [taMBB]Google Scholar
Stein, P. S. G. & Grossman, M. L. (1980) Central program of stretch reflex in turtle. Journal of Comparative Physiology 140:287–94. [taMBB]Google Scholar
Stein, R. B. (1982) What muscle variable(s) does the nervous system control in limb movements? Behavioral and Brain Sciences 5:535–77. [taMBB, WDC]Google Scholar
Stevens, P. S. (1974) Patterns in nature. Atlantic Monthly Press. [MTT]Google Scholar
Taub, E. & Berman, A. J. (1968) Movement and learning in the absence of sensory feedback. In: The neurophysiology of spatially oriented behavior, ed. Freedman, S. J.. Dorsey. [PDN]Google Scholar
Terzuolo, C. A., Soechting, J. F. & Dufresne, J. R. (1981) Operational characteristic of reflex response to change in muscle length during different motor tasks and their functional utility. In: Brain mechanisms and perceptual awareness, ed. Pompeiano, O. & Marsan, C. Ajmone. Raven. [PDN]Google Scholar
Thelen, E., Bradshaw, G., Ward, J. A. (1981) Spontaneous kicking in month-old infants: Manifestation of a human central locomotor program. Behavioral and Neural Biology 32:4553. [DJO]Google Scholar
Thom, R. (1985) Less cybernetics, more geometry … Brain and Behavioral Sciences 8:166–67. [KGM]Google Scholar
Thrope, W. H. (1979) The origins and rise of ethology. Praeger. [taMBB]Google Scholar
Tinbergen, N. (1950) The hierarchical organization of nervous mechanisms underlying instinctive behaviour. Symposia of the Society for Experimental Biology 4:305–12. [taMBB]Google Scholar
Tinbergen, N. (1951) The study of instinct. Oxford University Press. [taMBB]Google Scholar
Tomovic, R. & Bellman, R. (1970) A system approach to muscle control. Mathematical Biosciences 8:265–77. [LDP]Google Scholar
Treistman, S. W. & Schwartz, J. H. (1976) Functional constancy in Aplysia nervous system with anomalously duplicated identified neurons. Brain Research 109:607–14. [taMBB]Google Scholar
Tuller, B., Kelso, J. A. S. & Harris, K. S. (1982) Interarticulator phasing as an index of temporal regularity in speech. Journal of Experimental Psychology: Human Perception and Performance G:460–72. [DJO]Google Scholar
Turvey, M. T. (1977) Preliminaries to a theory of action with reference to vision. In: Perceiving, acting, and knowing, Shaw, R. & Bransford, J.. Erlbaum. [RAS]Google Scholar
Valk-Fai, T. & Crowe, A. (1978) Analyses of the reflex movements in the hind limbs of the terrapin Pseudemys seripta elegans. Journal of Comparative Physiology 125:351–57. [taMBB]Google Scholar
Valk-Fai, T. & Crowe, A. (1979) Further analyses of reflex movements in the hind limbs of the terrapin Pseudemys scripta elegans. Journal of Comparative Physiology 130:241–49. [taMBB]Google Scholar
Vedel, J.-P. (1982) Reflex reversal resulting from active movements in the antenna of the rock lobster. Journal of Experimental Biology 101:121–33. [ZH]Google Scholar
Vincken, M. H., Gielen, C. C. A. M. & Denier van der Gon, I. J. (1983) Intrinsic and afferent components in apparent muscle stiffness in man. Neuroscience 9:529–34. [taMBB]Google Scholar
Vincken, M. H., Gielen, C. C. A. M. & Denier van der Gon, I. J. (1984) Stiffness control after fast goal-directed arm movements. Human Movement Sciences 3:269–80. [CG]Google Scholar
Viviani, P. & Terzuolo, C. (1982) Trajectory determines movement dynamics. Neuroscience 7:431–37. [taMBB]Google Scholar
Waddington, C. H. (1957) The strategy of the genes. Allen & Unwin. [taMBB]Google Scholar
Wadman, W. J., Denier van der Gon, J. J., Geuze, R. H. & Mol, C. R. (1979) Control of fast goal-directed arm movements. Journal of Human Movement Studies 5:317. [rMBB, CG, RAS]Google Scholar
Wagner, V. (1910) Biological fundamentals for comparative psychology. Vol. 1. [taMBB]Google Scholar
Wallace, S. A. (1981) An impulse-timing theory for reciprocal control of muscular activity in rapid, discrete movements. Journal of Motor Behavior 13:144–60. [taMBB, RAS]Google Scholar
Walmsley, B. & Proske, U. (1981) Comparison of stiffness of soleus and medial gastrocnemius muscles in cats. Journal of Neurophysiology 46:250–59. [WAM]Google Scholar
Weeks, J. C. (1982) Synaptic basis of swim-initiation in the leech. II. A pattern-generating neuron (cell 208) which mediates motor effects on swim-initiating neurons. Journal of Comparative Physiology 148:265–79. [taMBB]Google Scholar
Weiss, P. (1967) 1 + 1 ≠ 2 (when one plus one does not equal two). In: The neurosciences: A study program, ed. Quarton, G. C., Melnechuk, T., Schmitt, F. O.. Rockefeller University Press. [MTT]Google Scholar
Wetzel, M. C. & Stuart, D. G. (1976) Ensemble characteristics of cat locomotion and its neural control. Progress in Neurobiology 7:198. [taMBB]Google Scholar
Whytt, Robert (1751) An essay on the vital and other involuntary motions of animals. Balfour. [ESR]Google Scholar
Whytt, Robert (1755) Observations on the sensibility and irritability of the parts of men and other animals, occasioned by M. de Haller's late treatise on these subjects. Balfour. [ESR]Google Scholar
Whytt, Robert (1768) Works. Balfour. [ESR]Google Scholar
Wickens, D. D. (1938) The transference of conditioned excitation and conditioned inhibition from one muscle group to the antagonistic muscle group. Journal of Experimental Psychology 22:101–23. [ESR]Google Scholar
Wickens, D. D. (1939) The simultaneous transfer of conditioned excitation and inhibition. Journal of Experimental Psychology 24:332–38. [ESR]Google Scholar
Wilkie, D. R. (1954) Facts and theories about muscle. Progress in Biophysics 4:288324. [RME]Google Scholar
Wilson, D. M. (1966) Insect walking. Annual Review of Entomology 11:103–22. [taMBB]Google Scholar
Windhorst, U. (1979) A possible partitioning of segmental muscle stretch reflex into incompletely de-coupled parallel loops. Biological Cybernetics 34:205–13. [UW]Google Scholar
Wine, J. J. (1984) The structural basis of an innate behavioral pattern. Journal of Experimental Biology 112:283319. [WDC]Google Scholar
Winter, D. (1984) Kinematic and kinetic patterns in human gait: Variability and compensating effects. Human Movement Science 3:5176. [WAM]Google Scholar
Wolpaw, J. R., O'Keefe, J. A. & Dowman, R. (1984) Adaptive plasticity in primate spinal stretch reflex (SSR): A two-phase process. Society for Neuroscience Abstracts 10:129. [rMBB, TRN]Google Scholar
Young, R. M. (1971) Mind, brain, and adaptation in the nineteenth century. Cambridge University Press. [ESR]Google Scholar
Ziegler, H. E. (1911) Der Begriff des Instinktes einst und jetzt. Berlin. [taMBB]Google Scholar