Hostname: page-component-857557d7f7-d5hhr Total loading time: 0 Render date: 2025-12-04T00:21:50.765Z Has data issue: false hasContentIssue false

A fishy perspective on the social brain hypothesis

Published online by Cambridge University Press:  27 November 2025

Redouan Bshary*
Affiliation:
Institute of Biology, University of Neuchatel, Neuchatel, Switzerland redouan.bshary@unine.ch zegni.triki@unine.ch https://www.unine.ch/ethol/
Zegni Triki
Affiliation:
Institute of Biology, University of Neuchatel, Neuchatel, Switzerland redouan.bshary@unine.ch zegni.triki@unine.ch https://www.unine.ch/ethol/
*
*Corresponding author.

Abstract

Ectotherms, particularly fish, challenge traditional brain evolution theories by exhibiting advanced cognitive abilities despite their smaller brains. While the social brain hypothesis may apply within clades, sensory-motor systems likely explain the brain size differences between average-brained ectotherms and endotherms. Evolved complex sensory-motor systems suggest that brain evolution models should expand to include sensory and motor systems, beyond cognitive processes alone.

Information

Type
Open Peer Commentary
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Redouan Bshary and Zegni Triki contributed equally to this work.

References

Adam, I., Maxwell, A., Rößler, H., Hansen, E.B., Vellema, M., Brewer, J., & Elemans, C.P.H. (2021). One-to-one innervation of vocal muscles allows precise control of birdsong. Current Biology, 31, 31153124.e5. https://doi.org/10.1016/j.cub.2021.05.008.CrossRefGoogle ScholarPubMed
Agrillo, C., Piffer, L., & Bisazza, A. (2010). Large number discrimination by mosquitofish. PLOS ONE, 5, e15232. https://doi.org/10.1371/journal.pone.0015232.CrossRefGoogle ScholarPubMed
Aronson, L.R. (1951). Orientation and jumping behaviour in the gobiid fish Bathygobius soporator . American Museum Novitiates, 1286, 122.Google Scholar
Barrett, L., Henzi, S.P., & Barton, R.A. (2021). Experts in action: Why we need an embodied social brain hypothesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 377, 20200533. https://doi.org/10.1098/rstb.2020.0533. CrossRefGoogle ScholarPubMed
Van der Bijl, W., Buechel, S.D., Kotrschal, A., & Kolm, N.. (2018). Revisiting the social brain hypothesis: contest duration depends on loser’s brain size. bioRxiv, 300335. https://doi.org/10.1101/300335.CrossRefGoogle Scholar
Blank, M., Guerim, L.D., Cordeiro, R.F., & Vianna, M.R.M. (2009). A one-trial inhibitory avoidance task to zebrafish: Rapid acquisition of an NMDA-dependent long-term memory. Neurobiology of Learning and Memory, 92, 529534. https://doi.org/10.1016/j.nlm.2009.07.001.CrossRefGoogle ScholarPubMed
Brown, C. (2023). Fishes: From social learning to culture, In. Tehrani, J.J., Kendal, J, & Kendal, R., (Eds.), The oxford handbook of cultural evolution. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198869252.013.27.Google Scholar
Brown, C. (2015). Fish intelligence, sentience and ethics. Animal Cognition, 18, 117. https://doi.org/10.1007/s10071-014-0761-0. CrossRefGoogle ScholarPubMed
Brown, C. (2012). Tool use in fishes. Fish Fish, 13, 105115. https://doi.org/10.1111/j.1467-2979.2011.00451.x.CrossRefGoogle Scholar
Bshary, R., & Brown, C. (2014). Fish cognition. Current Biology, 24, R947R950. https://doi.org/10.1016/j.cub.2014.08.043.CrossRefGoogle ScholarPubMed
Bshary, R., Hohner, A., Ait-el-Djoudi, K., & Fricke, H.. (2006). Interspecific communicative and coordinated hunting between groupers and giant moray eels in the Red Sea. PLoS Biololy, 4, e431. https://doi.org/10.1371/journal.pbio.0040431.CrossRefGoogle ScholarPubMed
Bshary, R., Wickler, W., & Fricke, H. (2002). Fish cognition: a primate’s eye view. Animal Cognition, 5, 113. https://doi.org/10.1007/s10071-001-0116-5.CrossRefGoogle ScholarPubMed
DeCasien, A.R., Williams, S.A., & Higham, J.P. (2017). Primate brain size is predicted by diet but not sociality. Nature Ecology & Evolution, 1, 0112. https://doi.org/10.1038/s41559-017-0112.CrossRefGoogle Scholar
Dunbar, R.I.M. (2025). Structural and cognitive mechanisms of group cohesion in primates. Behavioral and Brain Sciences, 1–80. https://doi.org/10.1017/S0140525X2400030X.CrossRefGoogle Scholar
Emery, Y., Pessina, L., & Bshary, R. (2025). Population density drives concerted increase in whole brain volume in a wrasse species Coris batuensis . Brain Behaviour and Evolution, 100, 112122. https://doi.org/10.1159/000543220.CrossRefGoogle Scholar
González-Forero, M., & Gardner, A. (2018). Inference of ecological and social drivers of human brain-size evolution. Nature, 557, 554557. https://doi.org/10.1038/s41586-018-0127-x.CrossRefGoogle ScholarPubMed
Alejandro, VG., Svante, W., & Niclas, K. (2009). Social fishes and single mothers: brain evolution in African cichlids. Proceedings of the Royal Society of London, Series B, Biological Sciences, 276, 161167. https://doi.org/10.1098/rspb.2008.0979. Google Scholar
Heldstab, S.A., Kosonen, Z.K., Koski, S.E., Burkart, J.M., van Schaik, C.P., & Isler, K. (2016). Manipulation complexity in primates coevolved with brain size and terrestriality. Scientific Reports, 6, 24528. https://doi.org/10.1038/srep24528. CrossRefGoogle ScholarPubMed
Hotta, T., Ueno, K., Hataji, Y., Kuroshima, H., Fujita, K., & Kohda, M. (2020). Transitive inference in cleaner wrasses (Labroides dimidiatus). PloS One, 15, e0237817.CrossRefGoogle ScholarPubMed
Jerison, H. (1973). Evolution of the brain and intelligence. New York Academic Press.Google Scholar
Kohda, M., Bshary, R., Kubo, N., Awata, S., Sowersby, W., Kawasaka, K., Kobayashi, T., & Sogawa, S. (2023). Cleaner fish recognize self in a mirror via self-face recognition like humans. Proceedings of the National Academy of Sciences of the United States of America, 120, e2208420120.CrossRefGoogle Scholar
Kohda, M., Hotta, T., Takeyama, T., Awata, S., Tanaka, H., Asai, J., & Jordan, A.L. (2019). If a fish can pass the mark test, what are the implications for consciousness and self-awareness testing in animals? PLoS Biol, 17, e3000021.CrossRefGoogle Scholar
Lucon-Xiccato, T., Gatto, E., & Bisazza, A. (2017). Fish perform like mammals and birds in inhibitory motor control tasks. Scientific Reports, 7, 13144. https://doi.org/10.1038/s41598-017-13447-4.CrossRefGoogle ScholarPubMed
MacIver, M.A., & Finlay, B.L. (2021). The neuroecology of the water-to-land transition and the evolution of the vertebrate brain. Proceedings of the National Academy of Sciences of the United States of America, 377, 20200523. https://doi.org/10.1098/rstb.2020.0523.Google ScholarPubMed
Merel, J., Botvinick, M., & Wayne, G. (2019). Hierarchical motor control in mammals and machines. Nature Communications, 10, 5489. https://doi.org/10.1038/s41467-019-13239-6.CrossRefGoogle ScholarPubMed
Nilsson, G.E. (1996). Brain and body oxygen requirements of gnathonemus petersii, a fish with an exceptionally large brain. Journal of Experimental Biology, 199, 603607. https://doi.org/10.1242/jeb.199.3.603.CrossRefGoogle ScholarPubMed
Oliveira, R.F., & Bshary, R. (2021). Expanding the concept of social behavior to interspecific interactions. Ethology, 127, 758773.CrossRefGoogle Scholar
Pollen, A.A., Dobberfuhl, A.P., Scace, J., Igulu, M.M., Renn, S.C.P., Shumway, C.A., & Hofmann, H.A. (2007). Environmental complexity and social organization sculpt the brain in lake Tanganyikan cichlid fish. Brain, Behavior and Evolution, 70, 2139. https://doi.org/10.1159/000101067.CrossRefGoogle ScholarPubMed
Schaik, C.P. Van, S.Z., Schuppli, C., Drobniak, S.M., Heldstab, S.A., & Griesser, M. (2023). Extended parental provisioning and variation in vertebrate brain sizes. PLOS Biol, 21, e3002016. https://doi.org/10.1371/journal.pbio.3002016.CrossRefGoogle ScholarPubMed
Shettleworth, S.J. (2010). Cognition, evolution, and behavior, (2nd ed). Oxford University Press.Google Scholar
Song, Z., Drobniak, S.M., Liu, Y., van Schaik, C.P., & Griesser, M. (2024). Bird brains fit the bill: morphological diversification and the evolution of avian brain size. bioRxiv 2024–07.CrossRefGoogle Scholar
Triki, Z., & Bshary, R. (2019). Long-term memory retention in a wild fish species Labroides dimidiatus eleven months after an aversive event. Ethology, 126, 372376. https://doi.org/10.1111/eth.12978.CrossRefGoogle Scholar
Triki, Z., & Bshary, R. (2018). Cleaner fish Labroides dimidiatus discriminate numbers but fail a mental number line test. Animal Cognition, 21, 99107. https://doi.org/10.1007/s10071-017-1143-1.CrossRefGoogle Scholar
Triki, Z., Fong, S., Amcoff, M., Vàsquez-Nilsson, S., & Kolm, N. (2023). Experimental expansion of relative telencephalon size improves the main executive function abilities in guppy. PNAS Nexus, 2, pgad129. https://doi.org/10.1093/pnasnexus/pgad129.CrossRefGoogle ScholarPubMed
Triki, Z., Van Schaik, C., & Bshary, R. (2025). The fish challenge to vertebrate cognitive evolution. Philosophical Transactions B, 380, 20240124.CrossRefGoogle ScholarPubMed
Triki, Z., Zhou, T., Argyriou, E., Sousa de Novais, E., Servant, O., & Kolm, N. (2024). Social complexity affects cognitive abilities but not brain structure in a Poeciliid fish. Behavioral Ecology, 35, arae026. https://doi.org/10.1093/beheco/arae026.CrossRefGoogle ScholarPubMed
Warren, J.M. (1960). Reversal learning by paradise fish (Macropodus opercularis). Journal of Comparative and Physiological Psychology, 53, 376378. https://doi.org/10.1037/h0044187.CrossRefGoogle ScholarPubMed
Wismer, S., Grutter, A., & Bshary, R. (2016). Generalized rule application in bluestreak cleaner wrasse (Labroides dimidiatus): Using predator species as social tools to reduce punishment. Animal Cognition, 19, 769778. https://doi.org/10.1007/s10071-016-0975-4.CrossRefGoogle ScholarPubMed