Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T00:07:56.898Z Has data issue: false hasContentIssue false

Disentangling functional from structural descriptions, and the coordinating role of attention

Published online by Cambridge University Press:  20 August 2007

Knut Drewing
Affiliation:
General and Experimental Psychology, Institute for Psychology, Justus-Liebig University – Giessen, D-35394 Giessen, GermanyKnut.Drewing@psychol.uni-giessen.dehttp://www.allpsych.uni-giessen.de/knut/
Werner X. Schneider
Affiliation:
Neurocognitive Psychology Unit, Department of Psychology, Ludwig-Maximilians University – Munich, D-80802 Munich, Germany. wxs@psy.uni-muenchen.dehttp://www.psy.lmu.de/exp/ma/schneider.html

Abstract

The target article fails to disentangle the functional description from the structural description of the two somatosensory streams. Additional evidence and thorough reconsideration of the evidence cited argue for a functional distinction between the how processing and the what processing of somatosensory information, while questioning the validity and usefulness of the equation of these two types of processing with structural streams. We propose going one step further: to investigate how the distinct functional streams are coordinated via attention.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Binkofski, F., Buccino, G., Posse, S., Seitz, R. J., Rizzolatti, G. & Freund, H.-J. (1999a) A fronto-parietal circuit for object manipulation in man: Evidence from an fMRI-study. European Journal of Neuroscience 11:3276–86.CrossRefGoogle ScholarPubMed
Deubel, H. & Schneider, W. X. (1996) Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research 36:1827–37.CrossRefGoogle ScholarPubMed
Drewing, K., Stenneken, P., Cole, J., Prinz, W. & Aschersleben, G. (2004) Timing of bimanual movements and deafferentation: Implications for the role of sensory movement effects. Experimental Brain Research 158:5057.CrossRefGoogle ScholarPubMed
Franz, V. H., Fahle, M., Bulthoff, H. H. & Gegenfurtner, K. R. (2001) Effects of visual illusions on grasping. Journal of Experimental Psychology: Human Perception and Performance 27:1124–44.Google ScholarPubMed
Glover, S. (2002) Visual illusions affect planning but not control. Trends in Cognitive Sciences 6:288–92.CrossRefGoogle Scholar
Milner, A. D. & Goodale, M. A. (1995) The visual brain in action. Oxford University Press.Google Scholar
Özyurt, J., Rutschmann, R. M. & Greenlee, M. W. (2006) Cortical activation during memory-guided saccades. NeuroReport 17:1005–9.CrossRefGoogle ScholarPubMed
Pause, M., Kunesh, E., Binkofski, F. & Freund, H. J. (1989) Sensorimotor disturbances in patients with lesions of the parietal cortex. Brain 112:1599–625.CrossRefGoogle ScholarPubMed
Schenk, T. (2006) An allocentric rather than perceptual deficit in patient D.F. Nature Neuroscience 9(11):1369–70.CrossRefGoogle ScholarPubMed
Schmitz, C., Jenmalm, P., Ehrsson, H. H. & Forssberg, H. (2005) Brain activity during predictable and unpredictable weight changes when lifting objects. Journal of Neurophysiology 93:1498–509.CrossRefGoogle ScholarPubMed
Schneider, W. X. & Deubel, H. (2002) Selection-for-perception and selection-for-spatial-motor-action are coupled by visual attention: A review of recent findings and new evidence from stimulus-driven saccade control. In: Attention and performance XIX: Common mechanisms in perception and action, ed. Prinz, W. & Hommel, B., pp. 609–27. Oxford University Press.CrossRefGoogle Scholar
Stenneken, P., Prinz, W., Cole, J., Paillard, J. & Aschersleben, G. (2006) The effect of sensory feedback on the timing of movements: Evidence from deafferented patients. Brain Research 1084:123–31.CrossRefGoogle ScholarPubMed