Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T00:00:51.407Z Has data issue: false hasContentIssue false

Clinicians learn less and less about more and more until they know nothing about everything; researchers learn more and more about less and less until they know everything about nothing: Discuss

Published online by Cambridge University Press:  24 October 2012

Kenneth John Aitken*
Affiliation:
Psychology Department, Hillside, Aberdour, Fife KY3 0RH, Scotland. drken.aitken@btinternet.com

Abstract

A number of recent developments in our understanding of the biology of heritability question commonly held views on the immutability of genetic factors. These have numerous potential implications for improving understanding and practice in pre- and postconceptional care and for infant and child mental health, and they carry a cautionary message against overgeneralization.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, K. J. (2012) Sleep difficulties and autistic spectrum disorders. Jessica Kingsley Press.Google Scholar
Amir, R. E., Van den Veyver, I. B., Wan, M., Tran, C. Q., Francke, U. & Zoghbi, H. Y. (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics 23:185–88.CrossRefGoogle ScholarPubMed
Archer, T., Oscar-Berman, M. & Blum, K. (2011) Epigenetics in developmental disorder: ADHD and endophenotypes. Genetic Syndromes & Gene Therapy 2:104 doi: 10.4172/2157-7412.1000104.Google Scholar
Bell, J. T. & Saffery, R. (2012) The value of twins in epigenetic epidemiology. International Journal of Epidemiology 41:140–50.Google Scholar
Bell, J. T. & Spector, T. D. (2011) A twin approach to unraveling epigenetics. Trends in Genetics 27(3):116–25. doi:10.1016/j.tig.2010.12.005.Google Scholar
Bird, A. (2007) Perceptions of epigenetics. Nature 447:396–98.CrossRefGoogle ScholarPubMed
Boomsma, D., Busjahn, A. & Peltonen, L. (2002) Classical twin studies and beyond. Nature Reviews: Genetics 3:872–82.CrossRefGoogle ScholarPubMed
Brantsæter, A. L., Birgisdottir, B. E., Meltzer, H. M., Kvalem, H. E., Alexander, J., Magnus, P. & Haugen, M. (2011) Maternal seafood consumption and infant birth weight, length and head circumference in the Norwegian Mother and Child Cohort Study. British Journal of Nutrition 18:19.Google Scholar
Chahrour, M. & Zoghbi, H. Y. (2007) The story of Rett syndrome: From clinic to neurobiology. Neuron 56(3):422–37.CrossRefGoogle ScholarPubMed
Chatterjee, A. & Morison, I. M. (2011) Monozygotic twins: Genes are not the destiny? Bioinformation 7:369–70.CrossRefGoogle Scholar
Chonchaiya, W., Tassone, F., Ashwood, P., Hessl, D., Schneider, A., Campos, L., Nguyen, D. V. & Hagerman, R. J. (2010) Autoimmune disease in mothers with the FMR1 premutation is associated with seizures in their children with fragile X syndrome. Human Genetics 128:539–48.Google Scholar
Coleman, M. & Gillberg, C. (2012) The autisms. Oxford University Press.Google Scholar
Dolinoy, D. C., Huang, D. & Jirtle, R. L. (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. PNAS 104:13056–61.CrossRefGoogle ScholarPubMed
Geschwind, D. H. (2009) Advances in autism. Annual Review of Medicine 60:367–80.Google Scholar
Gheorghe, C. P., Goyal, R., Mittal, A. & Longo, L. D. (2011) Gene expression in the placenta: Maternal stress and epigenetic responses. International Journal of Developmental Biology 54:507–23.Google Scholar
Gheorghe, C. P., Goyal, R., Mittal, A. & Longo, L. D. (2011) Gene expression in the placenta: Maternal stress and epigenetic responses. International Journal of Developmental Biology 54:507–23.Google Scholar
Gluckman, P. & Hanson, M. (2005) The fetal matrix: Evolution, development and disease. Cambridge University Press.Google Scholar
Green, L. W. (2006) Public health asks of systems science: To advance our evidence-based practice, can you help us get more practice-based evidence? American Journal of Public Health 96:406–69.CrossRefGoogle ScholarPubMed
Gudsnuk, K. M. A. & Champagne, F. A. (2011) Epigenetic effects of early developmental experiences. Clinics in Perinatology 38:703–17.CrossRefGoogle ScholarPubMed
Guy, J., Jian, J., Selfridge, J., Cobb, S. & Bird, A. (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315:1143–47.CrossRefGoogle Scholar
Hammock, E. A. & Young, L. J. (2005) Microsatellite instability generates diversity in brain and sociobehavioural traits. Science 308(5728):1630–34.CrossRefGoogle Scholar
Hus, V., Pickles, A., Cook, E. H. Jr., Risi, S. & Lord, C. (2007) Using the autism diagnostic interview-revised to increase phenotypic homogeneity in genetic studies of autism. Biological Psychiatry 61:438–48.Google Scholar
Ioannidis, J. P. A. (2006a) Evolution and translation of research findings: From bench to where? PloS Clinical Trials 1(7): e36. doi: 10.1371/journal.pctr.0010036.Google Scholar
Jablonka, E. & Lamb, M. J. (2008) The epigenome in evolution: Beyond the modern synthesis. Information Bulletin VOGiS 12:242–54.Google Scholar
Jaenisch, R. & Bird, A. (2003) Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nature Genetics Supplement 33:243–54.CrossRefGoogle ScholarPubMed
Kozul, C. D., Nomikos, A. P., Hampton, T. H., Warnke, L. A., Gosse, J. A., Davey, J. C. Thorpe, J. E., Jackson, B. P., Ihnat, M. A. & Hamilton, J. W. (2008) Laboratory diet profoundly alters gene expression and confounds genomic analysis in mouse liver and lung. Chemico-Biological Interactions 173:129–40.Google Scholar
LaSalle, J. M. (2011) A genomic point-of-view on environmental factors influencing the human brain methylome. Epigenetics 6:18.Google Scholar
Lee, T. L., Raygada, M. J. & Rennert, O. M. (2012) Integrative gene network analysis provides novel regulatory relationships, genetic contributions and susceptible targets in autism spectrum disorders. Gene 496:8896.Google Scholar
Machin, G. A. (2004) Why is it important to diagnose chorionicity and how do we do it? Best Practice & Research Clinical Obstetrics and Gynaecology 18:515–30.CrossRefGoogle ScholarPubMed
Marrone, A. K. & Shcherbata, H. R. (2011) Dystrophin orchestrates the epigenetic profile of muscle cells via miRNAs. Frontiers in Genetics 2:64. doi: 10.3389/fgene.2011.00064.Google Scholar
McGowan, P. O., Meaney, M. J. & Szyf, M. (2008) Diet and the epigenetic(re)programming of phenotypic differences in behavior. Brain Research 1237:1224.Google Scholar
Meaney, M. J. (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annual Review of Neuroscience 24:1161–92.CrossRefGoogle Scholar
Mehler, M. F. (2008) Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Progress in Neurobiology 86:305–41.Google Scholar
Nikkels, P. G. J., Hack, K. E. A. & van Gemert, M. J. C. (2008) Pathology of twin placentas with special attention to monochorionic twin placentas. Journal of Clinical Pathology 61:1247–53.Google Scholar
Plomin, R., DeFries, J. C., Craig, I. W. & McGuffin, P. (Eds.) (2003) Behavioral genetics in the postgenomic era. American Psychological Association.Google Scholar
Qureshi, I. A. & Mehler, M. F. (2010) Epigenetic mechanisms underlying human epileptic disorders and the process of epileptogenesis. Neurobiology of Disease 39:5360.Google Scholar
Rahbar, M. H., Samms-Vaughan, M., Loveland, K. A., Pearson, D. A., Bressler, J., Chen, Z., Ardjomand-Hessabi, M., Shakespeare-Pellington, S., Grove, M. L., Beecher, C., Bloom, K. & Boerwinkle, E. (2012) Maternal and paternal age are jointly associated with childhood autism in Jamaica. Journal of Autism and Developmental Disorders. doi: 10.1007/s10803-011-1438-z.Google Scholar
Räikkönen, K., Pesonen, A-K., Heinonen, K., Lahti, J., Komsi, N., Eriksson, J. G., Seckl, J. R., Jarvenpaa, A-L. & Strandberg, T. E. (2009) Maternal licorice consumption and detrimental cognitive and psychiatric outcomes in children. American Journal of Epidemiology 170:1137–46.Google Scholar
Robinson, G. E., Fernald, R. D. & Clayton, D. F. (2008) Genes and social behavior. Science 322:896900.Google Scholar
Rossignol, D. A. & Frye, R. E. (2012) Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Molecular Psychiatry 17:290314.Google Scholar
Sherer, D. M. (2001) Adverse perinatal outcome of twin pregnancies according to chorionicity: Review of the literature. American Journal of Perinatology 18:2337.Google Scholar
Sidman, M. (2011) Can an understanding of basic research facilitate the effectiveness of practitioners? Reflections and personal perspectives. Journal of Applied Behavior Analysis 44:973–91.Google Scholar
Szyf, M. (2011) DNA methylation, the early-life social environment and behavioral disorders. Journal of Neurodevelopmental Disorders 3:238–49.Google Scholar
Trakhtenberg, E. F. & Goldberg, J. L. (2012) Epigenetic regulation of axon and dendrite growth. Frontiers in Molecular Neuroscience 5:24. doi: 10.3389/fnmol.2012.00024.CrossRefGoogle ScholarPubMed
van IJjzendoorn, M. H., Bakermans-Kranenburg, M. J. & Ebstein, R. P. (2011) Methylation matters in child development: Toward developmental behavioral epigenetics. Child Development Perspectives 5:305–10.CrossRefGoogle Scholar
Wong, C. C. Y., Caspi, A., Williams, B., Craig, I. W., Houts, R., Ambler, A., Moffit, T. E. & Mill, J. (2010) A longitudinal study of epigenetic variation in twins. Epigenetics 5(6):515–26.Google Scholar
Yuan, G.-C. (2012) Linking genome to epigenome. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. Online first: doi: 10.1002/wsbm.1165.Google Scholar