Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T20:39:42.296Z Has data issue: false hasContentIssue false

Can sense be made of spinal interneuron circuits?

Published online by Cambridge University Press:  19 May 2011

D. A. McCrea
Affiliation:
Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3, Electronic mail: dave@scrc.umanitoba.ca

Abstract

It is increasingly clear that spinal reflex systems cannot be described in terms of simple and constant reflex actions. The extensive convergence of segmental and descending systems onto spinal interneurons suggests that spinal interneurons are not relay systems but rather form a crucial component in determining which muscles are activated during voluntary and reflex movements. The notion that descending systems simply modulate the gain of spinal interneuronal pathways has been tempered by the observation that spinal interneurons gate and distribute descending control to specific motoneurons. Spinal reflex systems are complex but current approaches will continue to provide insight into motor systems. During movement, several neural mechanisms act to reduce the functional complexity of motor systems by inhibiting some of the parallel reflex pathways available to segmental afferents and descending systems. The flexion reflex system is discussed as an example of the flexibility of spinal interneuron systems and as a useful conceptual construct. Examples are provided of the kinds of experiments that can be developed using current approaches to spinal interneuronal systems.

Type
Target Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, B. C. & Aubert, X. M. (1952) The force exerted by active striated muscle during and after change of length. Journal of Physiology (London) 117:7786. [GCA]CrossRefGoogle ScholarPubMed
Abdusamatov, R. M., Adamovich, S. V., Berkinblit, M. B., Chernavsky, A. V. & Feldman, A. G. (1988) Rapid one-joint movements: A qualitative model and its experimental verification. In: Stance and motion: Facts and concepts, ed. Gurfinkel, V. S., loffe, M. E., Massion, J. & Roll, J. P.. Plenum. [SVA]Google Scholar
Abdusamatov, R. M., Adamovich, S. V. & Feldman, A. G. (1987) A model for one-joint motor control in man. In: Motor control, ed. Gantchev, G. N., Dimitrov, B. & Gatev, P.. Plenum. [SVA]Google Scholar
Abeles, M. (1991) Corticonics. Neural circuits of the cerebral cortex. Cambridge University Press. [VB]CrossRefGoogle Scholar
Abend, W., Bizzi, E. & Morasso, P. (1982) Human arm trajectory formation. Brain 105:331–48. [aSCG, JDe]CrossRefGoogle ScholarPubMed
Abernethy, B. & Sparrow, W. A. (1992) The rise and fall of dominant paradigms in motor behavior research. In: Approaches to the study of motor control and learning, ed. Summers, J. J.. North-Holland. [JJS]Google Scholar
Abraham, L. D. & Loeb, G. E. (1985) The distal musculature of the cat: Patterns of normal use. Experimental Brain Research 58:580–93. [CAP]CrossRefGoogle ScholarPubMed
Abraham, L., Potegal, M. & Miller, S. (1983) Evidence for a caudate nucleus involvement in an egocentric spatial task. Physiological Psychology 11:1117. [DI]CrossRefGoogle Scholar
Adamovich, S. V., Burlachkova, N. I. & Feldman, A. G. (1984) Wave nature of the central process of formation of the trajectories of change in the joint angle in man. Biophysics 29:130–34. [SVA]Google Scholar
Adamovich, S. V. & Feldman, A. G. (1984) Model of the central regulation of the parameters of motor trajectories. Biophysics 29:338–42. [SVA, DJO]Google Scholar
Adamovich, S. V. & Feldman, A. G. (1989) The prerequisites for one-joint motor control theories. Behavioral and Brain Sciences 12:210–11. [MLL, SVA]Google Scholar
Ahissar, M., Ahissar, E., Bergman, H. & Vaadia, E. (1992) Encoding of sound-source location and movement: Activity of single neurons and interactions between adjacent neurons in the monkey auditory cortex. Journal of Neurophysiology 67:203–15. [APo]CrossRefGoogle ScholarPubMed
Albin, R. L., Young, A. B. & Penney, J. B. (1989) The functional anatomy of basal ganglia disorders. Trends in Neuroscience 12:366–75. [aGEA]CrossRefGoogle ScholarPubMed
Albus, J. S. (1971) A theory of cerebellar function. Mathematical Bioscience 10:2561. [PFCG, RFT]Google Scholar
Alexander, G. E. (1987) Selective neuronal discharge in monkey putamen reflects intended direction of planned limb movements. Experimental Brain Research 67:623–34. [aGEA]Google Scholar
Alexander, G. E. (1992) For effective sensorimotor processing must there be explicit representations and reconciliation of differing frames of reference? Behavioral and Brain Sciences 15:323–24. [MF]CrossRefGoogle Scholar
Alexander, G. E. & Crutcher, M. D. (1990a) Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends in Neuroscience 13:266–71. [aGEA, JMF]CrossRefGoogle ScholarPubMed
Alexander, G. E. & Crutcher, M. D. (1990b) Preparation for movement: Neural representations of intended direction in three motor areas of the monkey. Journal of Neurophysiology 64:133–50. [aGEA]CrossRefGoogle ScholarPubMed
Alexander, G. E. & Crutcher, M. D. (1990c) Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey. Journal of Neurophysiology 64:164–78. [aGEA, aEEF]CrossRefGoogle ScholarPubMed
Alexander, G. E., Crutcher, M. D. & DeLong, M. R. (1990) Basal gangliathalamocortical circuits: Parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Progress in Brain Research 85:119–46. [AB]CrossRefGoogle ScholarPubMed
Alexander, G. E. & DeLong, M. R. (1985) Microstimulation of the primate neostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. Journal of Neurophysiology 53:1417–30. [aGEA]CrossRefGoogle ScholarPubMed
Alexander, G. E. & Fuster, J. (1973) Effects of coding prefrontal cortex on cell firing in the nucleus medialis dorsalis. Brain Research 61:93105. [aEEF]CrossRefGoogle Scholar
Al-Falahe, N. A., Nagaoka, M. & Vallbo, Å B. (1990) Response profiles of human muscle afferents during active finger movements. Brain 113:325–46. [aSCG]CrossRefGoogle ScholarPubMed
Al-Falahe, N. A. & Vallbo, Å B. (1988) Role of the human fusimotor system in a motor adaptation task. Journal of Physiology (London) 401:7795. [arSCG]CrossRefGoogle Scholar
Allen, G. I. & Tsukahara, N. (1974) Cerebellar communication systems. Physiological Reviews 54:9571006. [aGEA, aJRB, cJFS]CrossRefGoogle ScholarPubMed
Allum, J. H. J. (1975) Responses to load disturbances in human shoulder muscles: The hypothesis that one component is a pulse test information signal. Experimental Brain Research 22:307–26. [aEB, MLL]CrossRefGoogle ScholarPubMed
Allum, J. H. J. & Mauritz, K.-H. (1984) Compensation for intrinsic muscle stiffness by short-latency reflexes in human triceps surae muscles. Journal of Neurophysiology 52:797818. [TRN]CrossRefGoogle ScholarPubMed
Aloisi, A. M., Carli, G. & Rossi, A. (1988) Response of hip joint afferent fibers to pressure and vibration in the cat. Neuroscience Letters 90:130–34. [aSCG]CrossRefGoogle ScholarPubMed
Alstermark, B., Johannisson, T. & Lundberg, A. (1986) The inhibitory feedback pathway from the forelimb to C3-C4 propriospinal neurones investigated with natural stimulation. Neuroscience Research 3:451–56. [DBur]CrossRefGoogle ScholarPubMed
Alstermark, B. & Kümmel, H. (1990) Transneuronal transport of wheat germ agglutinin conjugated horseradish peroxidase in last-order spinal interneurones projecting to acromio- and spinodeltoideus motoneurones in the cat. 2. Differential labelling of interneurones depending on movement type. Experimental Brain Research 80:96103. [AL]CrossRefGoogle ScholarPubMed
Alstermark, B., Kümmel, H., Pinter, M. & Tantisira, B. (1990) Integration in descending motor pathways controlling the forelimb in the cat. 17. Axonal projection and termination of C3-C4 propriospinal neurones in the C6-Th1 segments. Experimental Brain Research 81:447–61. [AL]Google Scholar
Alstermark, B., Lindström, S., Lundberg, A. & Sybirska, E. (1981a) Integration in descending motor pathways controlling the forelimb in the cat. 8. Ascending projection to the lateral reticular nucleus from C3–C4 propriospinal neurones also projecting to forelimb motoneurones. Experimental Brain Research 42:282–98. [AL]CrossRefGoogle Scholar
Alstermark, B., Lundberg, A., Norrsell, U. & Sybirska, E. (1981b) Integration in decending motor pathways controlling the forelimb in the cat. 9. Differential behavioural defects after spinal cord lesions interrupting defined pathways from higher centres to motoneurones. Experimental Brain Research 42:299318. [aSCG, DBur, cSCG, AL]Google Scholar
Alstermark, B., Lundberg, A., Pettersson, L.-G., Tantisira, B. & Walkowska, M. (1987) Motor recovery after serial spinal cord lesions of defined descending pathways in cats. Neuroscience Research 5:6873. [AL]CrossRefGoogle ScholarPubMed
Alstermark, B., Lundberg, A. & Sasaki, S. (1984) Integration in descending motor pathways controlling the forelimb in the cat. II. Inhibitory pathways from higher motor centres and forelimb afferents to C3–C4 propriospinal neurones. Experimental Brain Research 56:293307. [rEEF, DBur, AL]CrossRefGoogle ScholarPubMed
Alstermark, B. & Sasaki, S. (1986) Integration in descending motor pathways controlling the forelimb in the cat. 14. Differential control of fast and slow motoneurones from C3–C4 propriospinal neurones. Experimental Brain Research 63:530–42. [AL]CrossRefGoogle ScholarPubMed
An, C. H., Atkeson, C. G. & Hollerbach, J. M. (1988) Model-based control of a robot manipulator. MIT Press. [aGEA]Google Scholar
An, K. N., Kaufman, K. R. & Chao, E. Y. S. (1989) Physiological considerations of muscle force through the elbow joint. Journal of Biomechanics 22:1249–56. [SVA]Google Scholar
Anastasio, T. J. & Robinson, D. A. (1989) The distributed representation of vestibulo-ocular signals by brain-stem neurons. Biological Cybernetics 61:7988. [aDAR, MF]CrossRefGoogle ScholarPubMed
Anastasio, T. J. & Robinson, D. A. (1990a) Distributed parallel processing in the vertical vestibulo-ocular reflex: Learning networks compared to tensor theory. Biological Cybernetics 63:161–67. [arDAR, RE]Google Scholar
Anastasio, T. J. & Robinson, D. A. (1990b) Distributed parallel processing in the vestibulo-oculomotor system. Neural Computation 1:230–41. [aGEA, rDAR]Google Scholar
Andén, N. E., Jukes, M. G. M. & Lundberg, A. (1967) The effect of DOPA on the spinal cord. I. Influence on transmission from primary afferents. Acta Physiologica Scandinavica 67:373–86. [aDAM]CrossRefGoogle Scholar
Andersen, R. A. (1987) Inferior parietal lobule function in spatial perception and visuomotor integration. In: Handbook of physiology, ed. Plum, F. & Mountcastle, V. B.. American Physiological Society. [aJFS]Google Scholar
Andersen, R. A. (1989) Visual and eye movement functions of posterior parietal cortex. Annual Review of Neuroscience 12:377404. [aJFS]Google Scholar
Andersen, R. A., Asanuma, C. & Cowan, W. M. (1985a) Callosal and prefrontal associational projecting cell populations in area 7a of the macaque monkey: A study using retrogradely transported fluorescent dyes. Journal of Comparative Neurology 232:443–55. [aJFS]CrossRefGoogle ScholarPubMed
Andersen, R. A., Asanuma, C. Essick, G. & Siegel, R. M. (1990a) Corticocortical connections of anatomically and physiologically defined subdivisions of inferior parietal lobule. Journal of Comparative Neurology 296:65113. [aJFS]CrossRefGoogle ScholarPubMed
Andersen, R. A., Bracewell, R. M., Barash, S., Gnadt, J. W. & Fogassi, L. (1990b) Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of the macaque. Journal of Neuroscience 10:1176–96. [arJFS, RAA, CLC, JWG, APo]CrossRefGoogle ScholarPubMed
Andersen, R. A., Essick, G. & Siegel, R. M. (1985b) Encoding of spatial location by posterior parietal neurons. Science 230:456–58. [aEB, aJFS, RAA, JWG]Google Scholar
Andersen, R. A., Essick, G. & Siegel, R. M. (1987) Neurons of area 7 activated by both visual stimuli and oculomotor behavior. Experimental Brain Research 67:316–22. [aDAR]Google Scholar
Andersen, R. A. & Gnadt, J. W. (1989) Posterior parietal cortex. In: The neurobiology of saccadic eye movements, ed. Wurtz, R. H. & Goldberg, M. E.. Elsevier. [JWG]Google Scholar
Andersen, R. A. & Mountcastle, V. B. (1983) The influence of the angle of gaze upon the excitability of light sensitive neurones in the posterior parietal cortex. Journal of Neuroscience 3:532–48. [aJFS]CrossRefGoogle ScholarPubMed
Andersen, R. A. & Zipser, D. (1988) The role of the posterior parietal cortex in coordinate transformations for visual-motor integration. Canadian Journal of Physiology and Pharmacology 66:488501. [MF]CrossRefGoogle ScholarPubMed
Anderson, M. E. (1977) Segmental reflex inputs to motoneurons innervating dorsal neck musculature in the cat. Experimental Brain Research 28:175–87. [GEL]Google ScholarPubMed
Andrews, C. J. (1973) Influence of dystonia on the response to long-term L-Dopa therapy in Parkinson's disease. Journal of Neurology, Neurosurgery & Psychiatry 36:630–36. [GMa]Google Scholar
Andrews, J. R. & Hogan, N. (1983) Impedance control as a framework for implementing obstacle avoidance in a manipulator. In: Control of manufacturing and robotic systems, ed. Hardt, D. E. & Book, W. J.. ASME. [rEB]Google Scholar
Angel, R. W. & Malenka, R. C. (1982) Velocity-dependent suppression of cutaneous sensitivity during movement. Experimental Neurology 77:266–74. [aSCG]CrossRefGoogle ScholarPubMed
Aniss, A. M., Diener, H.-C., Hore, J., Burke, D. & Gandevia, S. C. (1990a) Reflex activation of muscle spindles in human pretibial muscles during standing. Journal of Neurophysiology 64:671–79. [arSCG]Google Scholar
Aniss, A. M., Diener, H.-C., Hore, J., Gandevia, S. C. & Burke, D. (1990b) Behavior of human muscle receptors when reliant on proprioceptive feedback during standing. Journal of Neurophysiology 64:661–70. [arSCG]Google Scholar
Aniss, A. M., Gandevia, S. C. & Burke, D. (1988a) Reflex changes in muscle spindle discharge during a voluntary contraction. Journal of Neurophysiology 59:908–21. [aSCG]CrossRefGoogle ScholarPubMed
Aniss, A. M., Gandevia, S. C. & Milne, R. J. (1988b) Changes in perceived heaviness and motor commands produced by cutaneous reflexes in man. Journal of Physiology (London) 397:113–26. [aSCG]CrossRefGoogle ScholarPubMed
Appenteng, K. & Prochazka, A. (1984) Tendon organ firing during active muscle lengthening in awake, normally behaving cats. Journal of Physiology (London) 353:8192. [aSCG]CrossRefGoogle ScholarPubMed
Araki, T., Eccles, J. C. & Ito, M. (1960) Correlation of the inhibitory postsynaptic potential of motoneurones with the latency and time course of inhibition of monosynaptic reflexes. Journal of Physiology (London) 154:354–77. [DBul]CrossRefGoogle ScholarPubMed
Arbib, M. A. (1981) Perceptual structures and distributed motor control. In: Handbook of physiology: Nervous system, vol. 2, ed. Brooks, V. B.. American Physiological Society. [CIC, JMF]Google Scholar
Arbib, M. A. (1987) Levels of modeling of mechanisms of visually guided behavior. Behavioral and Brain Sciences 10(3):407–65. [CIC]CrossRefGoogle Scholar
Arbib, M. A. (1990) Programs, schemas, and neural networks for control of hand movements: Beyond the RS framework. In: Attention and performance XIII. Motor representation and control, ed. Jeannerod, M.. Erlbaum. [aGEA]Google Scholar
Arbib, M. A. (1991) Interaction of multiple representations of space in the brain. In: The brain and space, ed. Paillard, J.. Oxford University Press. [aJFS]Google Scholar
Arkin, R. C. (1987) Towards cosmopolitan robots: Intelligent navigation in extended man-made environments. Technical report 87–80, Department of Computer and Information Science, University of Massachusetts. [CIC]Google Scholar
Arnold, D. B. & Robinson, D. A. (1991) A learning network model of the neural integrator of the oculomotor system. Biological Cybernetics 64:447–54. [arDAR]Google Scholar
Artim, J. & Bridgeman, B. (1989) The physiology of attention: Participation of cat striate cortex in behavioral choice. Psychological Research/Psychologische Forschung 50:223–28. [BB]Google Scholar
Asanuma, H. (1989) The motor cortex. Raven Press. [MEI]Google Scholar
Asanuma, C., Andersen, R. A. & Cowan, W. M. (1985) The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: Divergent cortical projections from cell clusters in the medial pulvinar nucleus. Journal of Comparative Neurology 241:357–81. [aJFS]CrossRefGoogle ScholarPubMed
Asanuma, C., Thach, W. T. & Jones, E. G. (1983a) Brainstem and spinal projections of the deep cerebellar nuclei in the monkey, with observations on the brainstem projections of the dorsal column nuclei. Brain Research Reviews 5:299322. [aJRB]CrossRefGoogle Scholar
Asanuma, C., Thach, W. T. & Jones, E. G. (1983b) Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Research Reviews 5:267–97. [aJRB]CrossRefGoogle Scholar
Asanuma, C., Thach, W. T. & Jones, E. G. (1983c) Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Research Reviews 5:237–65. [aJRB]Google Scholar
Asatryan, D. B. & Feldman, A. G. (1965) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. I. Mechanographic analysis of the work of the joint or execution of a postural task. Biofizika 10:837–46 [English translation 925–35]. [GCA, SVA, AGF]Google Scholar
Ashford, J. A. W. & Fuster, J. M. (1985) Occipital and inferotemporal responses to visual signals in the monkey. Experimental Neurology 90:444–66. [JMF]Google Scholar
Astrom, K. J. & Wittenmark, B. (1989) Adaptive control. Addison-Wesley. [PDN]Google Scholar
Atkeson, C. G. (1989) Learning arm kinematics and dynamics. Annual Review of Neuroscience 12:157–83. [aGEA]Google Scholar
Atkinson, R. C., Bower, G. H. & Crothers, E. J. (1965) An introduction to mathematical learning theory. Wiley. [HH]Google Scholar
Babinski, J. (1899) De l'asynergie cérébelleuse. Revue Neurologique 7:806–16. [AMS]Google Scholar
Baev, K. V. & Shimansky, Y. P. (1992) Principles of organization of neural systems controlling automatic movements in animals. Progress in Neurobiology 39:45112. [rJRB]Google Scholar
Baizer, J., Ungerleider, J. G. & Desimone, R. (1991) Organisation of visual inputs to inferior temporal and posterior parietal cortex in macaques. Journal of Neuroscience 11:168–90. [aJFS]CrossRefGoogle ScholarPubMed
Balaban, C. D., Ito, M. & Watanabe, E. (1981) Demonstration of zonal projections from the cerebellar flocculus to vestibular nuclei in monkeys (Macaca fuscata). Neuroscience Letters 27:101–5. [NHB]Google Scholar
Baldissera, F., Cavallari, P., Fournier, E., Pierrot-Deseilligny, E. & Shindo, M. (1987) Evidence for mutual inhibition of opposite la interneurones in the human upper limb. Experimental Brain Research 66:106–14. [DBul]Google Scholar
Baldissera, F., Hultborn, H. & Illert, M. (1981) Integration in spinal neuronal systems. In: Handbook of physiology: The nervous system II, ed. Brookhart, J. M., Mountcastle, V. B., Brooks, V. B. & Geiger, S. R.. American Physiological Society. [aDAM, rEEF]Google Scholar
Baldissera, F. & Pierrot-Deseilligny, E. (1989) Facilitation of transmission in the pathway of non-monosynaptic la excitation to wrist flexor motoneurones at the onset of voluntary movement in man. Experimental Brain Research 74:437–39. [aSCG, AL]Google Scholar
Bamber, D. & van Santen, J. P. H. (1985) How many parameters can a model have and still be testable? Journal of Mathematical Psychology 29:443–73. [JGP]Google Scholar
Bando, T., Yamamoto, N. & Tsukahara, N. (1984) Cortical neurons related to lens accommodation in posterior lateral suprasylvian area in cats. Journal of Neurophysiology 52:879–91. [JWG]CrossRefGoogle ScholarPubMed
Bapi, R. S. & Levine, D. S. (1990) Networks modeling the involvement of the frontal cortex in performance of flexible motor sequences. Proceedings of the Twelfth Annual Conference of the Cognitive Science Society. Erlbaum. [DSL]Google Scholar
Baranyi, A. & Szente, M. B. (1987) Long-lasting potentiation of synaptic transmission requires postsynaptic modifications in the neocortex. Brain Research 423:378–84. [aGEA]Google Scholar
Barash, S., Bracewell, R. M., Fogassi, L., Gnadt, J. W. & Andersen, R. A. (1991) Saccade related activity in the lateral intraparietal area. Journal of Neurophysiology 66:10951124. [aJFS, CLC]Google Scholar
Barbas, H. & Mesulam, H.-M. (1985) Cortical afferent input to principalis region of rhesus monkey. Neuroscience 15:617–37. [aJFS]Google Scholar
Barbeito, R. & Ono, M. (1979) Four methods for locating the egocentre. Behavioral Research Methods Instruments & Computers 11:3136. [aJFS]Google Scholar
Bard, C., Paillard, J., Lajoie, Y., Fleury, M., Teasdale, N., Forget, R. & Lamarre, Y. (1992) Role of afferent information in the timing of motor command: A comparative study with a deafferented patient. Neuropsychologia 30:201–6. [JP]Google Scholar
Barlow, H. B. (1980) Cortical function: A tentative theory. In: Neural mechanics of behaviour, ed. McFadden, D.. Springer. [aJFS]Google Scholar
Barrack, R. L., Skinner, H. B., Brunet, M. E. & Haddad, R. J. (1983a) Functional performance of the knee after intra-articular anesthesia. American Journal of Sports Medicine 11:258–61. [aSCG]Google Scholar
Barrack, R. L., Skinner, H. B., Cook, S. D. & Haddad, R. J. (1983b) Effects of articular disease and total knee arthroplasty on knee joint-position sense. Journal of Neurophysiology 50:684–87. [aSCG]Google Scholar
Barraquand, J. & Latombe, J.-C. (1991) Robot motion planning: A distributed representation approach. International Journal of Robotics Research 10(6):628–49. [CIC]Google Scholar
Barto, A. G. & Sutton, R. S. (1981) Landmark learning, an illustration of associative search. Biological Cybernetics 42:18. [aJFS]CrossRefGoogle ScholarPubMed
Batini, C. & Billard, J. M. (1985) Release of cerebellar inhibition by climbing fiber deafferentation. Experimental Brain Research 57:370–80. [AMS]Google Scholar
Baum, E. B. (1990) On learning a union of half spaces. Journal of Complexity 6:67101. [HB]Google Scholar
Baumann, T. K., Emonet-Dénand, F. & Hulliger, M. (1982) After-effects of fusimotor stimulation on spindle la afferents' dynamic sensitivity, revealed during slow movements. Brain Research 232:460–65. [aSCG]CrossRefGoogle ScholarPubMed
Bauswein, E., Kolb, F. P., Leimbeck, B. & Rubia, F. J. (1983) Simple and complex spike activity in cerebellar Purkinje cells during active and passive movements in the awake monkey. Journal of Physiology (London) 339:379894. [JMB]Google Scholar
Baxendale, R. H. & Ferrell, W. R. (1981) The effect of knee joint afferent discharge on transmission in flexion reflex pathways in decerebrate cats. Journal of Physiology (London) 315:231–42. [aSCG]Google Scholar
Bayoumi, A. & Ashby, P. (1988) Projections of group la afferents to motoneurons of thigh muscles in man. Experimental Brain Research 342:16. [aSCG]Google Scholar
Beckstead, R. M. & Cruz, C. J. (1986) Striatal axons to the globus pallidus, entopeduncular nucleus and substantia nigra come mainly from separate cell populations in cat. Neuroscience 19:147–58. [aGEA]Google Scholar
Beek, P. J. & Bootsma, R. J. (1991) Physical and informational principles in modelling coordinated movements. Human Movement Science 10:8192. [GJvIS]Google Scholar
Beer, R. D., Hillel, J. C. & Sterling, L. S. (1991) A biological perspective on autonomous agent design. In: Designing autonomous agents, ed. Maes, A. P.. MIT Press. [SG]Google Scholar
Beitz, A. J. & Chan-Palay, V. (1979) A golgi analysis of neuronal organization in the medial cerebellar nucleus of the rat. Neuroscience 4:4763. [aJRB]Google Scholar
Bekoff, A. (1989) Continuity of pattern generating mechanisms in embryonic and posthatching chicks. In: Neurobiology of early infant behavior, ed. von Euler, V., Forssberg, H., von Hofsten, C., Lagerkranz, H. & Zetterstrom, R.. Macmillan. [CAP]Google Scholar
Bekoff, A., Nusbaum, M. P., Sabichi, A. L. & Clifford, M. (1987) Neural control of limb coordination. I. Comparison of hatching and walking motor output patterns in normal and deafferented chicks. Journal of Neuroscience 7:2320–30. [CAP]Google Scholar
Belinkii, V., Gurfinkel, V. & Paltsev, Y. (1967) Elements of control of voluntary movements. Biofizika 12:135–41. [ADK]Google Scholar
Benecke, R., Rothwell, J. C., Day, B. L., Dick, J. P. R. & Marsden, C. D. (1986) Motor strategies involved in the performance of sequential movements. Experimental Brain Research 63:585–95. [aSCG]Google Scholar
Benedetti, F., Montarolo, P. G. & Rabachi, S. (1984) Inferior olive lesion induces long-lasting functional modification in the Purkinje cells. Experimental Brain Research 55:368–74. [AMS]CrossRefGoogle ScholarPubMed
Bennett, D. J. (1990) The control of human arm movement: Models and mechanical constraints. Doctoral Dissertation, Department of Brain and Cognitive Sciences, MIT. [aEB]Google Scholar
Bennett, D. J., Xu, Y., Hollerbach, J. M. & Hunter, I. W. (1989) Identifying the mechanical impedance of the elbow joint during posture and movement. Society for Neuroscience Abstracts 15:396. [aEB]Google Scholar
Bennett, K. M. B. (1992) Corticomotoneuronal control of precision grip tasks. Doctoral Dissertation, Cambridge University. [RL]Google Scholar
Bennett, K. M. B. & Lemon, R. N. (1991) The activity of monkey corticomotoneuronal (CM) cells is related to their pattern of post-spike facilitation of intrinsic hand muscles. Journal of Physiology 435:53p. [RL]Google Scholar
Benson, D. F. & Greenberg, J. P. (1969) Visual form agnosia. A specific defect in visual discrimination. Archives of Neurology 20:8289. [MAG]Google Scholar
Beppu, H., Nagaoka, M. & Tanaka, R. (1987) Analysis of cerebellar motor disorders by visually-guided elbow tracking movement. 2. Contribution of the visual cues on slow ramp pursuit. Brain 110:118. [aJRB]Google Scholar
Beppu, H., Suda, M. & Tanaka, R. (1984) Analysis of cerebellar motor disorders by visually guided elbow tracking movement. Brain 107:787809. [aJRB, MH]CrossRefGoogle ScholarPubMed
Berger, W., Altenmuller, E. & Dietz, V. (1984) Normal and impaired development of children's gait. Human Neurobiology 3:163–70. [VD]Google Scholar
Bergman, H., Wichmann, T. & DeLong, M. R. (1990) Reversal of experimental Parkinsonism by lesion of the subthalamic nucleus. Science 249:1436–38. [DSB]CrossRefGoogle ScholarPubMed
Berkinblit, M. B., Feldman, A. G. & Fukson, O. I. (1986) Adaptability in innate motor patterns and motor control mechanisms. Behavioral and Brain Sciences 9:585638. [aEB, GCA, MBB, AP]Google Scholar
Bernstein, N. (1935) The problem of interrelation between coordination and localization [in Russian]. Archives of Biological Sciences 38:135. [MLL]Google Scholar
Bernstein, N. (1940/1967) Biodynamics of locomotion. In: The coordination and regulation of movements (originally published in Russian in 1940). Pergamon Press. [ZH]Google Scholar
Bernstein, N. (1967) The coordination and regulation of movements. Pergamon Press. [aGEA, aEB, aSCG, aDAM, JMF]Google Scholar
Bernstein, N. (1966) Notes on the movement physiology and physiology of activity [in Russian]. Medicina. [AAF]Google Scholar
Berthoz, A. & Grantyn, A. (1986) Neuronal mechanisms of eye head coordination. In: Progressive brain research 64, ed. Freund, U.. Elsevier. [aJFS]Google Scholar
Beuter, A., Belair, J. & Labrie, C. (1992) Feedback and delays in neurological diseases: A modeling study using dynamical systems. Bulletin of Mathematical Biology, in press. [AB]Google Scholar
Beuter, A., Labrie, C. & Vasilakos, K. (1991) Transient dynamics in motor control of patients with Parkinson's disease. Chaos 1(3):279–86. [AB]Google Scholar
Bigland-Ritchie, B., Dawson, N. J., Johansson, R. S. & Lippold, O. C. J. (1986) Reflex origin for the slowing of motoneurone firing rates in fatigue of human voluntary contractions. Journal of Physiology (London) 379:451–59. [aSCG]Google Scholar
Biguer, B., Donaldson, I. M. L., Hein, A. & Jeannerod, M. (1988) Neck muscle vibration modifies the representation of visual motion and direction in man. Brain 111:1405–24. [aSCG]Google Scholar
Biguer, B., Jeannerod, M. & Prablanc, C. (1982) The coordination of eye, head, and arm movements during reaching at a single visual target. Experimental Brain Research 46:301–4. [VD]Google Scholar
Billard, J. M., Batini, C. & Daniel, H. (1988) The red nucleus activity in rats deprived of the inferior olivary complex. Behavioral Brain Research 28:127–30. [rJRB]CrossRefGoogle ScholarPubMed
Binder, M. D. & Stuart, D. G. (1980) Motor-unit muscle receptor interactions: Design features of the neuromuscular control system. In: Progress in clinical neurophysiology, vol. 8: Spinal and supraspinal mechanisms of voluntary motor control and locomotion, ed. Desmedt, J. E.. Karger. [aSCG]Google Scholar
Bindman, L. J., Murphy, K. P. S. J. & Pockett, S. (1988) Postsynaptic control of the induction of long-term changes in efficacy of transmission at neocortical synapses in slices of rat brain. Journal of Neurophysiology 1053–65. [aGEA]CrossRefGoogle Scholar
Bischof, H. (1991) Modular, hierarchical and geometrical neural networks. Technical Report (PRIP-TR-9, December), Department for Pattern Recognition and Image Processing, Technical University of Vienna. [HB]Google Scholar
Bischof, H., Pinz, A. & Kropatsch, W. G. (1992) Visualization methods for neural networks. Proceedings of the 11th International Conference for Pattern Recognition (ICPR92), The Hague. [HB]Google Scholar
Bisiach, E., Capitani, E. & Porta, E. (1985) Two basic properties of space representation in the brain. Journal of Neurology, Neurosurgery and Psychiatry 48:141–44. [aJFS]Google Scholar
Bisiach, E. & Luzatti, C. (1978) Unilateral neglect of representational space. Cortex 14:129–33. [aJFS]Google Scholar
Bizzi, E., Accornero, N., Chapple, W. & Hogan, N. (1982) Arm trajectory formation in monkeys. Experimental Brain Research 46:139–43. [aEB, GCA, SVA, GLG, MLL]Google Scholar
Bizzi, E., Accornero, N., Chapple, W. & Hogan, N. (1984) Posture control and trajectory formation during arm movement. Journal of Neuroscience 4:2738–44. [aEB, aSCG, GCA, SVA, PRC, GEL, RBS]Google Scholar
Bizzi, E., Dev, P., Morasso, P. & Polit, A. (1978) Effect of load disturbances during centrally initiated movements. Journal of Neurophysiology 39:435–44. [aEB, AGF, GEL]CrossRefGoogle Scholar
Bizzi, E. & Mussa-Ivaldi, F. A. (1990) Emergent issues in the control of multi-joint movements. In: From neuron to action, ed. Deecke, L., Eccles, J. C. & Mountcastle, V. B.. Springer-Verlag. [aEB]Google Scholar
Bizzi, E., Mussa-Ivaldi, F. A. & Giszter, S. (1982) Arm trajectory formation in monkeys. Experimental Brain Research 46:139–43. [aEB]Google Scholar
Bizzi, E., Mussa-Ivaldi, F. A. & Giszter, S. (1991) Computations underlying the execution of movement: A biological perspective. Science 253:287–91. [aEB, SG]Google Scholar
Bizzi, E., Polit, A. & Morasso, P. (1976) Mechanisms underlying achievement of final head position. Journal of Neurophysiology 39:435–44. [aEB]Google Scholar
Blin, O., Ferrandez, A. M., Pailhous, J. & Serratrice, G. (1991) Dopasensitive and Dopa-resistant gait parameters in Parkinson's disease. Journal of Neurological Sciences 103:5154. [GMa]Google Scholar
Bloedel, J. R. (1987) Cerebellum and memory storage. Technical comments. Science 238:1728–29. [rJRB]Google Scholar
Bloedel, J. R., Bracha, V., Kelly, T. M. & Wu, J.-Z. (1991) Substrates for motor learning: Does the cerebellum do it all? In: Activity-driven changes in learning and development, ed. J. R. Wolpaw and J. T. Schmidt. Annals of the New York Academy of Science 627:305–18. [arJRB]Google Scholar
Bloedel, J. R. & Courville, J. (1981) Cerebellar afferent systems. In: Handbook of physiology. Section I: The nervous system, ed. Brooks, V. B.. American Physiological Society. [JMB]Google Scholar
Bloedel, J. R. & Ebner, T. J. (1985) Climbing fiber function: Regulation of Purkinje cell responsiveness. In: Cerebellar functions, ed. Bloedel, J. R., Dichgans, J. & Precht, W.. Springer-Verlag. [arJRB]Google Scholar
Bloedel, J. R., Ebner, T. J. & Yu, Q.-Z. (1983) Increased responsiveness of Purkinje cells associated with climbing fiber inputs to neighboring neurons. Journal of Neurophysiology 50:220–39. [arJRB, cJFS]CrossRefGoogle ScholarPubMed
Bloedel, J. R., Gregory, R. S. & Martin, S. H. (1972) Action of interneurons and axon collaterals in cerebellar cortex of a primate. Journal of Neurophysiology 35:847–63. [rJRB]Google Scholar
Bloedel, J. R. & Kelly, T. M. (1992) The dynamic selection hypothesis: A proposed function for cerebellar sagittal zones. In: The cerebellum revisited, ed. Llinas, R. & Sotelo, C.. Springer-Verlag, in press. [aJRB, PFCG]Google Scholar
Bloedel, J. R. & Roberts, W. J. (1969) Functional relationship among neurons of the cerebellar cortex in the absence of anesthesia. Journal of Neurophysiology 32:7584. [rJRB]Google Scholar
Bloedel, J. R. & Roberts, W. J. (1971) The action of climbing fibers in the feline cerebellar cortex. Journal of Neurophysiology 34:1731. [rJRB, AMS]Google Scholar
Boegman, R., Parent, A. & Hawkes, R. (1988) Zonation in the rat cerebellar cortex: Patches of high acetylcholinesterase activity in the granular layer are congruent with Purkinje cell compartments. Brain Research 448:237–51. [aJRB, NHB]Google Scholar
Borrett, D. S., Yeap, T. H. & Kwan, H. C. (1992) Neural networks, movements and Parkinson's disease, submitted. [DSB]Google Scholar
Botterman, B. R., Binder, M. D. & Stuart, D. G. (1978) Functional anatomy of the association between motor units and muscle receptors. American Journal of Zoology 18:135–52. [aSCG]Google Scholar
Bouisset, S. & Zattara, M. (1987) Biomechanical study of the programming of anticipatory postural adjustments associated with voluntary movement. Journal of Biomechanics 20:735–42. [ADK]Google Scholar
Bouisset, S. & Zattara, M. (1990) Segmental movement as a perturbation to balance? Facts and concepts. In: Multiple muscle systems, ed. Winters, J. M. & Woo, S. L.-Y.. Springer-Verlag. [ADK, JMW]Google Scholar
Bower, J. M. (1990) Reverse engineering the nervous system: An anatomical, physiological, and computer-based approach. In: An introduction to neural and electronic networks, ed. Zornetzer, S. F., Davis, J. L. & Lau, C.. Academic. [WAM]Google Scholar
Bower, J. M. & Kassel, J. (1990) Variability in tactile projection patterns to cerebellar folia Crus IIA in the Norway rat. Journal of Comparative Neurology 302:768–78. [JMB]Google Scholar
Box, G. E. P. & Jenkins, G. M. (1976) Time series analysis: Forecasting and control. Prentice-Hall. [PDN]Google Scholar
Boyd, I. A. & Roberts, T. D. M. (1953) Proprioceptive discharges from stretch-receptors in the knee joint of the cat. Journal of Physiology (London) 122:3858. [aSCG]Google Scholar
Bracewell, R. M., Barash, S., Massoni, P. & Andersen, R. A. (1991) Neurones in the macaque lateral intraparietal cortex (LIP) appear to encode the next intended saccade. Society for Neuroscience Abstracts 17:1282. [JWG, APo]Google Scholar
Bracha, V., Wu, J.-Z., Cartwright, M. & Bloedel, J. R. (1991) Selective involvement of the spinal trigeminal nucleus in the conditioned nictitating membrane reflex of the rabbit. Brain Research 556:317–20. [arJRB]Google Scholar
Bracke-Tolkmitt, R., Linden, A., Canavan, A. G. M., Rockstroh, B., Scholz, E., Wessel, K. & Diener, H.-C. (1989) The cerebellum contributes to mental skills. Behavioral Neuroscience 103:442–46. [aJRB, MH]Google Scholar
Brain, W. R. (1941) Visual disorientation with special reference to lesions to the right cerebral hemisphere. Brain 64:244–72. [DPC]CrossRefGoogle Scholar
Braitenberg, V. (1983) The cerebellum revisited. Journal of Theoretical Neurobiology 2:237–41. [VB]Google Scholar
Braitenberg, V. (1987) The cerebellum and the physics of movement: Some speculations. In: Cerebellum and neuronal plasticity, ed. Glickstein, M., Yeo, C. & Stein, J.. Plenum. [VB]Google Scholar
Braitenberg, V. & Onesto, N. (1962) The cerebellar cortex as a timing organ. Discussion of an hypothesis. In: Proceedings of the First International Conference on Medical Cybernetics, Naples, Italy. [VB]Google Scholar
Braitenberg, V. & Preisel, H. (1992) The cerebellum and the physics of movement, in preparation. [VB]Google Scholar
Brand, S., Dahl, A. L. & Mugnaini, E. (1976) The length of parallel fibers in the cat cerebellar cortex. An experimental light and electron microscopic study. Experimental Brain Research 26:3958. [aJRB]Google Scholar
Bras, H., Cavallari, P. & Jankowska, E. (1988) Demonstration of initial axon collaterals of cells of origin of the ventral spinocerebellar tract in the cat. Journal of Comparative Neurology 273:584–92. [aDAM]Google Scholar
Bras, H., Cavallari, P., Jankowska, E. & Kubin, L. (1989a) Morphology of midlumbar interneurones relaying information from group II muscle afferents in the cat spinal cord. Journal of Comparative Neurology 290:115. [aDAM]Google Scholar
Bras, H., Cavallari, P., Jankowska, E. & McCrea, D. (1989b) Comparison of the effects of monoamines on transmission in spinal pathways from group I and II muscle spindle afferents. Experimental Brain Research 76:2737. [aDAM]Google Scholar
Bridgeman, B. (1980) Temporal response characteristics of cells in monkey striate cortex measured with metacontrast masking and brightness discrimination. Brain Research 196:347–64. [BB]Google Scholar
Bridgeman, B. (1982) Multiplexing in single cells of the alert monkey's visual cortex during brightness discrimination. Neuropsychologia 20:3342. [BB]Google Scholar
Bridgeman, B. & Artim, J. (1983) Information flow through single cells of cat striate cortex. Neuroscience Abstracts 9:619. [BB]Google Scholar
Brink, E. (1988) Segmental organization of the upper cervical cord. In: Control of head movement, ed. Peterson, B. W. & Richmond, F. J. R.. Oxford University Press. [GEL]Google Scholar
Brink, E., Jankowska, E., McCrea, D. A. & Skoog, B. (1983) Inhibitory interactions between interneurones in reflex pathways from group la and group Ib afferents in the cat. Journal of Physiology (London) 343:361–73. [aDAM, DBul]Google Scholar
Brink, E. & Mackel, R. (1987) Sensorimotor performance of the hand during peripheral nerve regeneration. Journal of the Neurological Sciences 77:249–66. [aSCG]Google Scholar
Brochu, G., Maler, L. & Hawkes, R. (1990) Zebrin II: A polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. Journal of Comparative Neurology 291:538–52. [NHB]Google Scholar
Brodal, P. (1978) Principles of organisation of the monkey corticopontine projection. Brain 64:244–72. [aJFS]Google Scholar
Brody, B. A. & Pribram, K. H. (1978) The role of frontal and parietal cortex in cognitive processing: Tests of spatial and sequence functions. Brain 101:607–33. [DSL]Google Scholar
Brooke, J. D. & McIlroy, W. E. (1989) Effect of knee joint angle on a heteronymous Ib reflex in the human lower limb. Canadian Journal of Neurological Sciences 16:5862. [aSCG]Google Scholar
Brooks, R. A. (1991) Elephants don't play chess. In: Designing autonomous agents, ed. Maes, A. P.. MIT Press. [SG]Google Scholar
Brooks, V. B. (1984) Cerebellar functions in motor control. Human Neurobiology 2:251–60. [aJRB]Google Scholar
Brooks, V. B. (1986) The neural basis of motor control. Oxford University Press. [aGEA, AAF]Google Scholar
Brooks, V. B., Kozlovskaya, I. B., Atkin, A., Horvath, F. E. & Uno, M. (1973) Effects of cooling dentate nucleus on tracking-task performance in monkeys. Journal of Neurophysiology 36:974–95. [aJRB]Google Scholar
Brooks, V. B. & Thach, W. T. (1981) Cerebellar control of posture and movement. In: Handbook of physiology, section I: The nervous system, vol. 2: Motor control, ed. Brookhart, J. M. & Mountcastle, V. B.. American Physiology Society. [aJRB]Google Scholar
Brooks, V. B. & Wilson, V. J. (1959) Recurrent inhibition in the cat's spinal cord. Journal of Physiology (London) 146:380–91. [TMH]Google Scholar
Brotchie, P. R. & Andersen, R. A. (1991) Body-centered coordinate system in posterior parietal cortex. Society for Neuroscience Abstracts 17:511.1. [rJFS, RAA, APo]Google Scholar
Brotchie, P., lansek, R. & Horne, M. (1991a) The motor function of the monkey globus pallidus: I. Neuronal discharge and parameters of movement. Brain 114:1667–83. [RI]Google Scholar
Brotchie, P., Iansek, R. & Horne, M. (1991b) The motor function of the monkey globus pallidus: II. Cognitive aspects of movement and phasic neuronal actvity. Brain 114:16851702. [RI]Google Scholar
Brotchie, P., Iansek, R. & Horne, M. (1991c) A neural network model of neural activity in the monkey globus pallidus. Neuroscience Letters 131:3336. [RI]Google Scholar
Brown, J. (1977) Mind, brain, and consciousness. Academic Press. [JMF]Google Scholar
Brown, K., Lee, J. & Ring, P. A. (1954) The sensation of passive movement at the metatarso-phalangeal joint of the great toe in man. Journal of Physiology (London) 126:448–58. [aJRB]Google Scholar
Brown, T. G. (1914) On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. Journal of Physiology 48:1846. [aDAM]Google Scholar
Brown, T. H., Kairiss, E. W. & Keenan, C. L. (1990) Hebbian synapses: Biophysical mechanisms and algorithms. Annual Review of Neuroscience 13:475511, [aGEA]Google Scholar
Bruce, C. J. & Goldberg, M. E. (1985) Primate frontal eye field. I. Single neurons discharging before saccades. Journal of Neurophysiology 53:603–35. [APo]Google Scholar
Brüwer, M. & Cruse, H. (1990) A network model for the control of the movement of a redundant manipulator. Biological Cybernetics 62:549–55. [aGEA]Google Scholar
Brüwer, M. & Dean, J. (1992) Control of human arm movements in two dimensions: A comparison of movements with 2 and 3 mobile joints. Proceedings of the 20th Gottingen Neurobiology Conference. Thieme Verlag, in press. [JDe]Google Scholar
Buford, J. A. & Smith, J. L. (1990) Adaptive control for backward quadrupedal walking. 2. Hindlimb muscle synergies. Journal of Neurophysiology 64:756–66. [GMc]CrossRefGoogle ScholarPubMed
Buford, J. A., Zernicke, R. F. & Smith, J. L. (1990) Adaptive control for backward quadrupedal walking. 1. Posture and kinematics. Journal of Neurophysiology 64:745–55. [GMc]Google Scholar
Bullock, D. & Contreras-Vidal, J. L. (1991) How spinal neural networks reduce discrepancies between motor intention and motor realization. CAS/CNS Technical Report 91–023. In: Variability and motor control, ed. Newell, K. & Corcos, D.. Human Kinetics. [DBul]Google Scholar
Bullock, D., Contreras-Vidal, J. L. & Grossberg, S. (1992) Equilibria and dynamics of a neural network model for opponent muscle control. CAS/CNS Technical Report 92-017. In: Neural networks in robotics, ed. Goldberg, K. & Bekey, G.. Kluwer Academic. [DBul]Google Scholar
Bullock, D. & Grossberg, S. (1988a) Neural dynamics of planned arm movements: Emergent variants and speed-accuracy properties during trajectory formation. In: Neural network and natural intelligence, ed. Grossberg, S.. MIT Press. [AAF]Google Scholar
Bullock, D. & Grossberg, S. (1988b) Neuromuscular realization of planned trajectories. Neural Networks 1(suppl. 1);329. [DBul]Google Scholar
Bullock, D. & Grossberg, S. (1989) VITE & FLETE: Neural modules for trajectory formation and postural control. In: Volitional action, ed. Hershberger, W. A.. North-Holland/Elsevier. [DBul, TMH, DSL]Google Scholar
Bullock, D. & Grossberg, S. (1990) Spinal network computations enable independent control of muscle length and joint compliance. In: Advanced neural computers, ed. Eckmiller, R.. North-Holland. [DBul]Google Scholar
Bullock, D. & Grossberg, S. (1991) Adaptive neural networks for control of movement trajectories invariant under speed and force rescaling. Human Movement Science 10:353. [DBul, DSL, GJvIS]Google Scholar
Bullock, D. & Grossberg, S. (in press) Emergence of tri-phasic muscle activation from the nonlinear interactions of central and spinal neural network circuits. Human Movement Science 11. [DBul]Google Scholar
Bures, J., Buresova, O. & Krivanek, J. (1988) Brain and behavior. Academia. [MEI]Google Scholar
Burgess, P. R. & Clark, F. J. (1969) Characteristics of knee joint receptors in the cat. Journal of Physiology (London) 203:317–35. [aSCG]Google Scholar
Burgess, P. R., Wei, J. Y., Clark, F. J. & Simon, J. (1982) Signaling of kinesthetic information by peripheral sensory receptors. Annual Review of Neuroscience 5:171–87. [aSCG]Google Scholar
Burke, D. (1981) The activity of human muscle spindle endings in normal motor behavior. International Review of Physiology 25:91126. [arSCG]Google Scholar
Burke, D., Aniss, A. M. & Gandevia, S. C. (1987) In-parallel and in-series behavior of human muscle spindle endings. Journal of Neurophysiology 58:417–26. [aSCG]Google Scholar
Burke, D., Dickson, H. G. & Skuse, N. F. (1991) Task-dependent changes in the responses to low-threshold cutaneous afferent volleys in the human lower limb. Journal of Physiology (London) 432:445–58. [aSCG]CrossRefGoogle ScholarPubMed
Burke, D., Gandevia, S. C. & Macefield, G. (1988) Responses to passive movement of receptors in joint, skin and muscle of the human hand. Journal of Physiology (London) 402:347–61. [aSCG]Google Scholar
Burke, D., Gandevia, S. C. & McKeon, B. (1983) The afferent volleys responsible for spinal proprioceptive reflexes in man. Journal of Physiology 339:535–52. [rSCG]Google Scholar
Burke, D., Gandevia, S. C. & McKeon, B. (1984) Monosynaptic and oligosynaptic contributions to human ankle jerk and H-reflex. Journal of Neurophysiology 52:435–48. [rSCG]Google Scholar
Burke, D., Gandevia, S. C., McKeon, B. & Skuse, N. F. (1982) Interactions between cutaneous and muscle afferent projections to cerebral cortex in man. Electroencephalography and Clinical Neurophysiology 53:349–60. [aSCG]Google Scholar
Burke, D., Gracies, J. M., Mazevet, D., Meunier, S. & Pierrot-Deseilligny, E. (1992) Convergence of descending and various peripheral inputs onto common propriospinal-like neurones in man. Journal of Physiology (London) 449:655710. [aSCG, DBur]Google Scholar
Burke, D., Hagbarth, K.-E. & Löfstedt, L. (1978a) Muscle spindle activity in man during shortening and lengthening contractions. Journal of Physiology (London) 277:131–42. [aSCG]Google Scholar
Burke, D., Hagbarth, K.-E. & Löfstedt, L. (1978b) Muscle spindle responses in man to changes in load during accurate position maintenance. Journal of Physiology (London) 276:159–64. [aSCG]Google Scholar
Burke, D., Hagbarth, K.-E., Löfstedt, L. & Wallin, B. G. (1976a) The responses of human muscle spindle endings to vibration of noncontracting muscles. Journal of Physiology (London) 261:673–93. [aSCG]Google Scholar
Burke, D., Hagbarth, K.-E., Löfstedt, L. & Wallin, B. G. (1976b) The responses of human muscle spindle endings to vibration during isometric contraction. Journal of Physiology (London) 261:695711. [aSCG]Google Scholar
Burke, D., Hagbarth, K.-E. & Skuse, N. F. (1979) Voluntary activation of spindle endings in human muscles temporarily paralysed by nerve pressure. Journal of Physiology (London) 287:329–36. [aSCG]Google Scholar
Burke, D., McKeon, B. & Skuse, N. F. (1981) Dependence of the Achilles tendon reflex on the excitability of spinal reflex pathways. Annals of Neurology 10:551–56. [rSCG]Google Scholar
Burke, D. McKeon, B., Skuse, N. F. & Westerman, R. A. (1980) Anticipation and fusimotor activity in preparation for a voluntary contraction. Journal of Physiology (London) 306:337–48. [aSCG]Google Scholar
Burton, J. E. & Onoda, N. (1977) Interpositus neurons discharge in relation to a voluntary movement. Brain Research 121:167–72. [aJRB]Google Scholar
Bushnell, M. C., Goldberg, M. E. & Robinson, D. L. (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. Journal of Neurophysiology 46:755–72. [aJFS]Google Scholar
Bussel, B., Morin, C. & Pierrot-Deseilligny, E. (1978) Mechanism of monosynaptic reflex reinforcement during Jendrassik Manoeuvre in man. Journal of Neurology, Neurosurgery and Psychiatry 41:4044. [rSCG]Google Scholar
Buys, E. R., Lemon, R. N., Mantel, G. W. B. & Muir, R. B. (1986) Selective facilitation of different hand muscles by single corticospinal neurones in the conscious monkey. Journal of Physiology (London) 381:529–49. [aGEA, aEEF, cSCG]Google Scholar
Cafarelli, D. (1988) Force sensation in fresh and fatigued human skeletal muscle. Exercise and Sports Science Review 16:139–68. [aSCG]Google Scholar
Calancie, B. M. & Stein, R. B. (1988) Microneurography for the recording and selective stimulation of afferents: An assessment. Muscle and Nerve 11:638–44. [aSCG]CrossRefGoogle ScholarPubMed
Cameron, W. E., Binder, M. D., Botterman, B. R., Reinking, R. M. & Stuart, D. G. (1980) Motor unit-muscle spindle interactions in active muscles of decerebrate cats. Neuroscience Letters 19:5560. [aSCG]Google Scholar
Caminiti, R., Johnson, P. B. & Urbano, A. (1990) Making arm movements within different parts of space: Dynamic aspects in the primate motor cortex. Journal of Neuroscience 10:2039–58. [aEB]Google Scholar
Cannon, S. C. & Robinson, D. A. (1985) An improved neural network model for the neural integrator of the oculomotor system: More realistic neuron behavior. Biological Cybernetics 53:93108. [MF]Google Scholar
Canny, J. F. (1987) The complexity of robot motion planning. Doctoral Dissertation, Massachusetts Institute of Technology. MIT Press. [CIC]Google Scholar
Capaday, C. & Stein, R. B. (1986) Amplitude modulation of the soleus H-reflex in the human during walking and standing. Journal of Neuroscience 6:1308–13. [arSCG, TRN]Google Scholar
Capaday, C. & Stein, R. B. (1987) Difference in the amplitude of the human soleus H reflex during walking and running. Journal of Physiology (London) 392:513–22. [arSCG]Google Scholar
Cappa, S., Sterzi, R., Villar, G. & Bisiach, E. (1987) Remission of hemineglect and anosognosia during vestibular stimulation. Neuropsychologia 25:774–80. [aJFS]Google Scholar
Carlson-Kuhta, P. & Smith, J. L. (1990) Scratch responses in normal cats: Hindlimb kinematics and muscle synergies. Journal of Neurophysiology 64:1653–67. [CAP]Google Scholar
Carpenter, M. B., Nakano, K. & Kim, R. (1976) Nigrothalamic projections in the monkey demonstrated by autoradiographic technics. Journal of Comparative Neurology 165:401–16. [aGEA]Google Scholar
Carr, J. N., Louca, D. & Grobstein, P. (1991) Directed movement in the frog: Explorations using back propagation networks. Society for Neuroscience Abstracts 17:1578. [PG]Google Scholar
Carter, R. R., Crago, P. E. & Keith, M. W. (1990) Stiffness regulation by reflex action in the normal human hand. Journal of Neurophysiology 64:105–18. [TRN]Google Scholar
Cavada, C. & Goldman-Rakic, P. S. (1989a) Posterior parietal cortex in rhesus monkey. I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. Journal of Comparative Neurology 287:393421. [aJFS, WAM]Google Scholar
Cavada, C. & Goldman-Rakic, P. S. (1989b) Posterior parietal cortex in rhesus monkey. II. Evidence for segregated corticocortical networks linking sensory and limbic areas with frontal lobe. Journal of Comparative Neurology 287:422–45. [aJFS, MSG]Google Scholar
Cavada, C. & Goldman-Rakic, P. S. (1991) Topographical segregation of corticostriatal projections from posterior parietal subdivisions in the macaque monkey. Neuroscience 42:683–96. [MSG]Google Scholar
Cavallari, P., Edgley, S. A. & Jankowska, E. (1987) Post-synaptic actions of midlumbar interneurones on motoneurones of hind-limb muscles in the cat. Journal of Physiology 389:675–89. [aDAM]Google Scholar
Cavallari, P., Fournier, E., Katz, R., Malmgren, K., Pierrot-Deseilligny, E. & Shindo, M. (1985) Cutaneous facilitation of transmission in Ib reflex pathways in the human upper limb. Experimental Brain Research 60:197–99. [aSCG]Google Scholar
Cavallari, P., Fournier, E., Katz, R., Pierrot-Deseilligny, E. & Shindo, M. (1984) Changes in reciprocal la inhibition from wrist extensors to wrist flexors during voluntary movement in man. Experimental Brain Research 56:574–76. [aSCG]Google Scholar
Cavanagh, P. R., Simoneau, G. G. & Ulbrecht, J. S. (1992) Ulceration, unsteadiness, and uncertainty: The biomechanical consequences of Diabetes Mellitus. Journal of Biomechanics, in press. [PRC]Google Scholar
Cavanagh, P. R. & Ulbrecht, J. S. (1991) Biomechanics of the diabetic foot: A quantitative approach to the assessment of neuropathy, deformity, and plantar pressure. In: Disorders of the foot & ankle, 2nd ed., ed. M. H. Jahss & W. B. Saunders. [PRC]Google Scholar
Chambers, W. W. & Sprague, J. M. (1951) Differential effects of cerebellar anterior lobe cortex and fastigial nuclei on postural tonus in the cat. Science 114:324–25. [aJRB, RFT]Google Scholar
Chambers, W. W. & Sprague, J. M. (1955) Functional localization in the cerebellum. II. Somatotopic organization in cortex and nuclei. Archives of Neurology and Psychiatry 74:653–80. [aJRB, RFT]Google Scholar
Chandler, C., Hewit, J. & Miller, S. (1982) Computers, brains and the control of movement. Trends in Neuroscience 5:376. [aGEA]Google Scholar
Chang, H. T., Wilson, C. J. & Kitai, S. T. (1981) Single neostriatal efferent axons in the globus pallidus: A light and electron microscopic study (abstract). Science 213:915–18. [aGEA]Google Scholar
Chang, H. T., Wilson, C. J. & Kitai, S. T. (1982) A golgi study of rat neostriatal neurons: Light microscopic analysis. Journal of Comparative Neurology 208:107–26. [aGEA]Google Scholar
Chan-Palay, V. (1973) A light microscopic study of the cytology and organization of neurons in the simple mammalian nucleus lateralis: Columns and swirls. Zeitschrift für Anatomie und Entwicklungsgeschichte 141:125250. [aJRB]Google Scholar
Chan-Palay, V. (1977) Cerebellar dentate nucleus: Organization, cytology and transmitters. Springer-Verlag. [aJRB]Google Scholar
Chapman, C. E., Spidalieri, G. & LaMarre, Y. (1986) Activity of dentate neurons during arm movements triggered by visual, auditory, and somesthetic stimuli in the monkey. Journal of Neurophysiology 55:203–26. [aJRB]Google Scholar
Chapula, L. M. (1991) Visual function of the pulvinar. In: The neural basis of visual function, ed. Leventhal, A. G.. CRC Press. [DPC]Google Scholar
Charpentier, A. (1891) Analyse experimentale de quelques elements de la sensation de poids. Archives de Physiologie Normale et Pathologique 3:122–35. [AMG]Google Scholar
Chelazzi, L., Ghirardi, M., Rossi, F., Strata, P. & Tempia, F. (1990) Spontaneous saccades and gaze-holding ability in the Pigmented Rat. II. Effects of localized cerebellar lesions. European Journal of Neuroscience 2:1085–94. [aJRB]Google Scholar
Chen, D.-F., Hyland, B., Maier, V., Palmeri, A. & Wiesendanger, M. (1991) Comparison of neural activity in the supplementary motor cortex and in the primary motor cortex in monkeys performing a choice-reaction task. Somatosensory and Motor Research 8:2744. [aGEA, aEEF]Google Scholar
Cheney, P. D. & Fetz, E. E. (1980) Functional classes of primate corticomotoneuronal cells and their relation to active force. Journal of Neurophysiology 44:773–91. [aEB, aEEF]Google Scholar
Cheney, P. D., Fetz, E. E. & Mewes, K. (1991) Neural mechanisms underlying corticospinal and rubrospinal control of limb movements. Progress in Brain Research 87:213–52. [rEEF]Google Scholar
Cheney, P. D., Fetz, E. E. & Palmer, S. S. (1985) Patterns of facilitation and suppression of antagonist forelimb muscles from motor cortex sites in the awake monkey. Journal of Neurophysiology 53:805–20. [aEEF]Google Scholar
Cheney, P. D., Mewes, K. & Fetz, E. E. (1988) Encoding of motor parameters by corticomotoneuronal (CM) and rubromotoneuronal (RM) cells identified by spike-triggered averaging in the awake monkey. Behavioral Brain Research 28:181–91. [aEEF, AL]Google Scholar
Cherubini, E., Herrling, P. L., Lanfumey, L. & Stanzione, P. (1988) Excitatory amino acids in synaptic excitation of rat striatal neurones in vitro. Journal of Physiology (London) 400:677–90. [aGEA]Google Scholar
Chomsky, N. (1986) Knowledge of language: Its nature, origin and uses. Praeger. [JER]Google Scholar
Claparé de, E. (1901) Experiences sur la vitesse du soulevement des poids de volumes differents. Archives de Psychologie de la Suisse Romande 1:6994. [AMG]Google Scholar
Clare, M. H. & Landau, W. M. (1964) Fusimotor function, part V. Reflex reinforcement under fusimotor block in normal subjects. Archives of Neurology 10:123–27. [rSCG]Google Scholar
Clark, F. J. (1975) Information signaled by sensory fibers in medial articular nerve. Journal of Neurophysiology 38:1464–72. [aSCG]Google Scholar
Clark, F. J. & Burgess, P. R. (1975) Slowly adapting receptors in cat knee joint: Can they signal joint angle? Journal of Neurophysiology 38:1448–63. [aSCG]Google Scholar
Clark, F. J., Burgess, R. C. & Chapin, J. W. (1986) Proprioception with the proximal interphalangeal joint of the index finger. Evidence for a movement sense without a static-position sense. Brain 109:11951208. [aSCG]Google Scholar
Clark, F. J., Burgess, R. C., Chapin, J. W. & Lipscomb, W. T. (1985) Role of intramuscular receptors in the awareness of limb position. Journal of Neurophysiology 54:1529–40. [aSCG]Google Scholar
Clark, F. J., Grigg, P. & Chapin, J. W. (1989) The contribution of articular receptors to proprioception with the fingers in humans. Journal of Neurophysiology 61:186–93. [aSCG]Google Scholar
Clark, F. J., Horch, K. W., Bach, S. M. & Larson, G. F. (1979) Contributions of cutaneous and joint receptors to static knee-position sense in man. Journal of Neurophysiology 42:877–88. [aSCG]Google Scholar
Clark, R. E., Zhang, A. A. & Lavond, D. G. (1992) Reversible lesions of the cerebellar interpositus nucleus during acquisition and retention of a classically conditioned behavior. Behavioral Neuroscience, in press. [rJRB, RFT]Google Scholar
Clarke, T. L. & Ronayne, T. (1991) Categorical approach to machine learning. Proceedings of the 1991 IEEE conference of systems, man and cybernetics. Institute of Electrical and Electronics Engineers. [TLC]Google Scholar
Cleland, C. & Rymer, W. (1990) Neural mechanisms underlying the clasp knife reflex in the cat. I. Characteristics of the reflex. Journal of Neurophysiology 64:1303–18. [aDAM]Google Scholar
Coburn, K. L., Ashford, J. W. & Fuster, J. M. (1990) Visual response latencies in temporal lobe structures as a function of stimulus information load. Behavioral Neuroscience 104:6273. [JMF]Google Scholar
Cogan, D. G. (1953) Ophthalmic manifestations of bilateral non-occipital cerebral lesions. British Journal of Ophthalmology 49:281–97. [JWG]Google Scholar
Cohen, L. A. (1961) Role of eye and neck proprioceptive mechanisms in body orientation and motor coordination. Journal of Neurophysiology 24:111. [DPC]Google Scholar
Colby, C. L. & Duhamel, J.-R. (1991) Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkey. Neuropsychologia 29:497515. [CLC]Google Scholar
Colby, C. L., Duhamel, J.-R. & Goldberg, M. E. (1992) The analysis of visual space by the lateral intraparietal area of the monkey: The role of extraretinal signals. Progress in Brain Research, in press. [CLC]Google Scholar
Cole, J. D. (1986) Observations on the sense of effort in a man without large myelinated cutaneous and proprioceptive sensory fibres below the neck. Journal of Physiology (London) 382:80P. [aSCG, PRC]Google Scholar
Cole, J. D., Katifi, H. A. & Sedgwick, E. M. (1986) Observations on a man without large myelinated fibre sensory input from below the neck. Journal of Physiology (London) 376:47P. [aSCG, PRC]Google Scholar
Cole, K. J. & Abbs, J. H. (1987) Kinematic and electromyographic responses to perturbation of a rapid grasp. Journal of Neurophysiology 57:14981510. [aSCG]Google Scholar
Colebatch, J. G. & McCloskey, D. I. (1987) Maintenance of constant arm position or force: Reflex and volitional components in man. Journal of Physiology (London) 386:247–61. [aSCG]Google Scholar
Colgate, J. E. (1988) The control of dynamically interacting systems. Doctoral Dissertation, Department of Mechanical Engineering. MIT Press. [aEB]Google Scholar
Colgate, J. E. & Hogan, N. (1988) Robust control of dynamically interacting systems. International Journal of Control 48:6588. [aEB]Google Scholar
Connolly, C. I., Burns, J. B. & Weiss, R. (1990) Path planning using Laplace's equation. In: Proceedings of the 1990 IEEE International Conference on Robotics and Automation 3. Institute of Electrical and Electronics Engineers Computer Society Press. [CIC]Google Scholar
Conway, B. A., Hultborn, H. & Kiehn, O. (1987) Proprioceptive input resets central locomotor rhythm in the spinal cat. Experimental Brain Research 68:643–56. [VD]Google Scholar
Cook, D. & Kesner, R. P. (1988) Caudate nucleus and memory for egocentric localization. Behavioral Neural Biology 49:332–43. [DI]Google Scholar
Cooke, J. D. (1980) The role of stretch reflexes during active movements. Brain Research 181:493–97. [aSCG]Google Scholar
Cooke, K. L. & Grossman, Z. (1982) Discrete delay, distributed delay and stability switches. Journal of Mathematical Analysis and Applications 86:592627. [AB]CrossRefGoogle Scholar
Cools, A. R., Jaspers, R., Schwarz, M., Sontag, K. H., Vrijmoed-deVries, M. & van den Bercken, J. (1984) Basal ganglia and switching motor programs. In: The basal ganglia. Structure and function, ed. McKenzie, J. S., Kemm, R. E. & Wilcock, L. N.. Plenum. [aGEA]Google Scholar
Corbetta, M., Miezin, F. M., Shulman, G. L. & Petersen, S. E. (1991) Selective attention modulates extrastriate visual regions in humans during visual feature discrimination and recognition. In: Exploring brain functional anatomy with positron tomography, ed. Chadwick, D. J. & Whelan, J.. Wiley. [RE]Google Scholar
Cordo, P. J. (1987) Mechanisms controlling accurate changes in elbow torque in humans. Journal of Neuroscience 7(2):432–42. [PJC]Google Scholar
Cordo, P. J. (1990) Kinesthetic control of a multijoint movement sequence. Journal of Neurophysiology 63:161–72. [aSCG]Google Scholar
Cordo, P. J. & Flanders, M. (1989) The sensory basis of target acquisition. Trends in Neuroscience 12:110–17. [PJC]Google Scholar
Corin, M. S. & Bender, M. B. (1972) Mislocalization in visual space. Archives of Neurology 27:252–62. [DPC]Google Scholar
Coulter, J. D. & Jones, E. G. (1977) Differential distribution of corticospinal projections from individual cytoarchitectonic fields in the monkey. Brain Research 129:335–40. [aEEF]Google Scholar
Courville, J. & Diakiw, N. (1976) Cerebellar cortico-nuclear projection in the cat. The vermis of the anterior and posterior lobes. Brain Research 110:120. [aJRB]Google Scholar
Crago, P. E., Houk, J. C. & Hasan, Z. (1976) Regulatory actions of the human stretch reflex. Journal of Neurophysiology 39:925–35. [SVA]Google Scholar
Crago, P. E., Houk, J. C. & Rymer, W. Z. (1982) Sampling of total muscle force by tendon organs. Journal of Neurophysiology 47:1069–83. [aSCG]Google Scholar
Crammond, D. J. & Kalaska, J. F. (1989) Neuronal activity in primate parietal cortex area 5 varies with intended movement direction during an instructed-delay period. Experimental Brain Research 76:458–62. [JFK, PM]Google Scholar
Craske, B. (1977) Perception of impossible limb positions induced by tendon vibration. Science 196:7173. [aSCG]Google Scholar
Crenna, P. & Frigo, C. (1987) Excitability of the soleus H-reflex arc during walking and stepping in man. Experimental Brain Research 66:4960. [aSCG]Google Scholar
Crepel, F. & Jaillard, D. (1991) Pairing of pre- and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro. Journal of Physiology 432:123–41. [rJRB, cJFS]Google Scholar
Crick, F. (1984) Function of the thalamic reticular complex. The searchlight hypothesis. Proceedings of the National Academy of Science USA 81:4586–90. [aJFS]Google Scholar
Crick, F. (1989) The recent excitement about neural networks. Nature 337:129–32. [RE]Google Scholar
Critchley, M. (1953) The parietal lobes. Hafher. [aJFS]Google Scholar
Crone, C., Hultborn, H., Jespersen, B. & Nielsen, J. (1987) Reciprocal la inhibition between ankle flexors and extensors in man. Journal of Physiology (London) 389:163–85. [aSCG]Google Scholar
Crone, C., Hultborn, H., Kiehn, O., Mazieres, L. & Wigström, H. (1988) Maintained changes in motoneuronal excitability by short-lasting synaptic inputs in the decerebrate cat. Journal of Physiology (London) 405:321–43. [aDAM, AGF]Google Scholar
Crone, C. & Nielsen, J. (1989) Spinal mechanisms in man contributing to reciprocal inhibition during voluntary dorsiflexion of the foot. Journal of Physiology (London) 416:255–72. [aSCG]Google Scholar
Cross, M. J. & McCloskey, D. I. (1973) Position sense following surgical removal of joints in man. Brain Research 55:443–45. [aSCG]Google Scholar
Cruse, H. (1985) Which parameters control the leg movements of a walking insect? I. Velocity control during the stance phase. Journal of Experimental Biology 116:343–55. [JDe]Google Scholar
Cruse, H. (1986) Constraints for joint angle control of the human arm. Biological Cybernetics 54:125–32. [JDe]Google Scholar
Cruse, H. & Graham, D. (1985) Models for the analysis of walking in arthropods. In: Coordination of motor behaviour. Society for Experimental Biology Seminar Series 24, ed. Bush, B. M. H. & Clarac, F.. Cambridge University Press. [JDe]Google Scholar
Cruse, H., Wischmeyer, E., Bruwer, M., Brockfeld, P. & Dress, A. (1990) On the cost functions for the control of the human arm movement. Biological Cybernetics 62:519–28. [JDe]Google Scholar
Crutcher, M. D. & Alexander, G. E. (1990) Movement-related neuronal activity selectively coding either direction or muscle pattern in three motor areas of the monkey. Journal of Neurophysiology 64:151–63. [aGEA, aEEF, JMF]Google Scholar
Crutcher, M. D. & DeLong, M. R. (1984a) Single cell studies of the primate putamen I. Functional organization. Experimental Brain Research 53:233–43. [aGEA, CIC, MSG]Google Scholar
Crutcher, M. D. & DeLong, M. R. (1984b) Single cell studies of the primate putamen II. Relations to direction of movement and pattern of muscular activity. Experimental Brain Research 53:244–58. [aGEA, CIC]Google Scholar
Cullheim, S. & Kellerth, J.-O. (1978) A morphological study of the axons and recurrent axon collaterals of cat alpha-motoneurones supplying different hindlimb muscles. Journal of Physiology (London) 281:285–99. [TMH]Google Scholar
Cummins, R. & Schwarz, G. (1991) Connectionism, computation, and cognition. In: Connectionism and the philosophy of mind, ed. Horgan, T. & Tienson, J.. Kluwer. [GS]Google Scholar
Currie, S. N. & Stein, P. S. G. (1990) Cutaneous stimulation evokes longlasting excitation of spinal interneurons in the turtle. Journal of Neurophysiology 64:1134–48. [CAP]Google Scholar
Dahhaoui, M., Caston, J., Auvray, N. & Reber, A. (1990) Role of the cerebellum in an avoidance conditioning task in the rat. Physiology & Behavior 47:1175–80. [rJRB]Google Scholar
Darpa Neural Network Study (1988) AFCEA International Press. [HB]Google Scholar
Darton, K., Lippold, O. C. J., Shahani, M. & Shahani, U. (1985) Longlatency spinal reflexes in humans. Journal of Neurophysiology 53:1604–18. [JDu]Google Scholar
Davey, N. J. & Ellaway, P. H. (1989) Facilitation of individual γ-motoneurones by the discharge of single slowly adapting type 1 mechanoreceptors in cats. Journal of Physiology (London) 411:97114. [aSCG]Google Scholar
Davidoff, R. & Hackman, J. (1984) Spinal inhibition. In: Handbook of the spinal cord, ed. Davidoff, R. A.. Marcel Dekker. [aDAM]Google Scholar
Davies, J. G. M., Kirkwood, P. A. & Sears, T. A. (1985) The detection of monosynaptic connexions from inspiratory bulbospinal neurones to inspiratory motoneurones in the cat. Journal of Physiology 368:3362. [rEEF, PAK]Google Scholar
Davis, C. M. & Roberts, W. (1976) Lifting movements in the size-weight illusion. Perception and Psychophysics 20:3336. [HER]Google Scholar
Dawson, M. R. W. (1991) The how and why of what went where in apparent motion: Modeling solutions to the motion correspondence problem. Psychological Review 98:569603. [MRWD]Google Scholar
Day, B. L. & Marsden, C. D. (1982) Accurate repositioning of the human thumb against unpredictable dynamic loads is dependent upon peripheral feedback. Journal of Physiology (London) 327:393407. [aEB, aSCG, AGF, MH]Google Scholar
Day, B. L., Marsden, C. D., Obeso, J. A., Rothwell, J. C. (1984) Reciprocal inhibition between the muscles of the human forearm. Journal of Physiology (London) 349:519–34. [aSCG]Google Scholar
Dean, J. (1984) Control of leg protraction in the stick insect: A targeted movement showing compensation for externally applied forces. Journal of Comparative Physiology 155:771–81. [JDe]Google Scholar
Dean, J. (1990) Coding proprioceptive information to control movement to a target: Simulation with a simple neural network. Biological Cybernetics 63:115–20. [JDe]Google Scholar
Dean, J. (1991a) A model of leg coordination in the stick insect, Carausius morosus. II. Simulation of normal step patterns. Biological Cybernetics 64:403–11. [JDe]Google Scholar
Dean, J. (1991b) Effect of load on leg movement and step coordination of the stick insect Carausius morosus. Journal of Experimental Biology 159:449–71. [JDe]Google Scholar
Dean, J. & Brüwer, M. (1992) Control of human arm movements in two dimensions: Paths and joint control in avoiding simple linear obstacles. Proceedings of the 20th Gottingen Neurobiology Conference. Thieme Verlag, in press. [JDe]Google Scholar
Dean, J. & Cruse, H. (1986) Evidence for the control of velocity as well as position in leg protraction and retraction by the stick insect. In: Generation and modulation of action patterns, ed. Heuer, H. & Fromm, C.. Experimental Brain Research Series 15. Springer-Verlag. [JDe]Google Scholar
Decety, J. & Ingvar, D. H. (1990) Brain structures participating in mental simulation of motor behavior. A neuropsychological interpretation. Acta Psychologica 73:1334. [PM]Google Scholar
Deliagina, T. G. & Feldman, A. G. (1981) Activity of Renshaw cells during fictive scratch reflex in cat. Experimental Brain Research 42:108115. [CAP]Google Scholar
Deliagina, T. G., Feldman, A. G., Gelfand, I. M. & Orlovsky, G. N. (1975) On the role of central program and afferent inflow in the control of scratching movement in the cat. Brain Research 100:297313. [MBB, AP]Google Scholar
Deliagina, T. G. & Orlovsky, G. N. (1980) Activity of la inhibitory interneurons during fictive scratch reflex in the cat. Brain Research 193:439–47. [CAP]Google Scholar
Deliagina, T., Orlovsky, G., Pavlova, G. & Popova, L. (1981) Activity of propriospinal neurons of ventral horn of upper lumbar segments during fictive scratch reflex. Nejrofiziologija 13:647–48. [aDAM]Google Scholar
DeLong, M. R., Crutcher, M. D. & Georgopoulos, A. P. (1985) Primate globus pallidus and subthalamic nucleus: Functional organization. Journal of Neurophysiology 53:530–43. [aGEA]Google Scholar
DeLuca, C. J. (1985) Control properties of motor units. Journal of Experimental Biology 115:125–36. [DBul]Google Scholar
Delwaide, P. J. & Gonce, M. (1988) Pathophysiology of Parkinson's signs. In: Parkinson's disease and movement disorders, ed. Jankovic, J. & Tolosa, E.. Urban & Schwarzenberg. [JJS]Google Scholar
Delwaide, P. J., Sabatino, M., Pepin, J. L. & La Grutta, V. (1988) Reinforcement of reciprocal inhibition by contralateral movements in man. Experimental Neurology 99:1016. [aSCG]Google Scholar
Denes, G., Caviezel, F. & Semenza, C. (1982) Difficulty in reaching objects and body parts: A sensorymotor disconnexion syndrome. Cortex 18:165–73. [MAG]Google Scholar
Deniau, J. M. & Chevalier, G. (1985) Disinhibition as a basic process in the expression of striatal functions. II. The striato-nigral influence on thalamocortical cells of the ventromedial thalamic nucleus. Brain Research 334:227–33. [aGEA]Google Scholar
Denning, P. J. & Tichy, W. F. (1990) Highly parallel computation. Science 250:1217–22. [aGEA]Google Scholar
Denny-Brown, D. (1962) The basal ganglia and their relation to disorders of movement. Oxford University Press. [GMa]Google Scholar
Denny-Brown, D. & Chambers, R. A. (1958) The parietal lobes and behavior. Research Publications for the Association of Research in Mental Disease 36:35117. [aJFS]Google Scholar
Desimone, R. & Ungerleider, L. G. (1989) Neural mechanisms of visual processing in monkeys. In: Handbook of neuropsychology, vol. 2, ed. Boiler, F. & Grafman, J.. Elsevier. [RE]Google Scholar
Devanandan, M.S., Ghosh, S. & John, K. T. (1983) A quantitative study of muscle spindles and tendon organs in some intrinsic muscles of the hand in the bonnet monkey (Macaca radiata). Anatomical Record 207:263–66. [aSCG]Google Scholar
Devaney, R. L. (1986) An introduction to chaotic dynamical systems. Cummings. [DSB]Google Scholar
DeVito, J. L. & Anderson, M. E. (1982) An autoradiographic study of efferent connections of the globus pallidus. Experimental Brain Research 46:107–17. [aGEA]Google Scholar
DeVito, J. L., Anderson, M. E. & Walsh, K. E. (1980) A horseradish peroxidase study of afferent connections of the globus pallidus in Macaca mulatta. Experimental Brain Research 38:6573. [aGEA]Google Scholar
Dichgans, J. & Diener, H. C. (1985) Clinical evidence for functional compartmentalization of the cerebellum. In: Cerebellar functions, ed. Bloedel, J. R., Dichgans, J. D. & Precht, W.. Springer. [aJRB]Google Scholar
Diener, H. C., Dichgans, J., Bacher, M. & Gompf, B. (1984) Quantification of postural sway in normals and patients with cerebellar diseases. Electroencephalography and Clinical Neurophysiology 57:134–42. [aJRB]Google Scholar
Dietrichs, E. & Walberg, F. (1979) The cerebellar corticonuclear and nucleocortical projections in the cat studied with anterograde and retrograde transport of horseradish peroxidase. I. The paramedian lobule. Anatomy and Embryology 158:1339. [aJRB]Google Scholar
Dietrichs, E. & Walberg, F. (1980) The cerebellar corticonuclear and nucleocortical projections in the cat as studied with anterograde and retrograde transport of horseradish peroxidase. II. Lobulus simplex, Crus I and Crus II. Anatomy and Embryology 161:83103. [aJRB]Google Scholar
Dietz, V. (1992) Human neuronal control of automatic functional movements: Interaction between central programs and afferent input. Physiological Reviews 72:3369. [VD]Google Scholar
Dietz, V., Berger, W. & Quintem, J. (1987) Task-dependent gating of somatosensory transmission in two different motor tasks in man: Falling and writing. Neuroscience Letters 75:288–92. [VD]Google Scholar
Dietz, V., Faist, M. & Pierrot-Deseilligny, E. (1990) Amplitude modulation of the quadriceps H-reflex in the human during the early stance phase of gait. Experimental Brain Research 79:221–24. [aDAM]Google Scholar
Dietz, V., Gollhofer, A., Kleiber, M. & Trippel, M. (1992) Regulation of bipedal stance: Dependency on “load” receptors. Experimental Brain Research 89:229–31. [VD]Google Scholar
Dietz, V., Horstmann, G. A. & Berger, W. (1989a) Interlimb co-ordination of leg muscle activation during perturbation of stance in humans. Journal of Neurophysiology 62:680–93. [VD]Google Scholar
Dietz, V., Horstmann, G. A., Trippel, M. & Gollhofer, A. (1989b) Human postural reflexes and gravity—an underwater simulation. Neuroscience Letters 106:350–55. [VD]Google Scholar
Dietz, V., Trippel, M. & Berger, W. (1991a) Reflex activity and muscle tone during elbow movements in patients with spastic paresis. Annals of Neurology 30:767–79. [VD]Google Scholar
Dietz, V., Trippel, M., Discher, M. & Horstmann, G. A. (1991b) Compensation of human stance perturbations: Selection of the appropriate electromyographic pattern. Neuroscience Letters 126:7174. [VD]Google Scholar
Dimitrov, B., Hallett, M. & Sanes, J. N. (1989) Differential influence of posture and intentional movement on human somatosensory evoked potentials evoked by different stimuli. Brain Research 496:211–18. [aSCG]Google Scholar
Dinse, H. R., Krueger, K. & Best, J. (1990) A temporal structure of cortical information processing. Concepts in Neuroscience 1:199238. [IT]Google Scholar
Disterhoft, J. F., Quinn, K. J., Weiss, C. & Shipley, M. T. (1985) Accessory abducens nucleus and conditioned eye retraction nictitating membrane extension in rabbit. Journal of Neuroscience 5:941–50. [RFT]Google Scholar
Divac, I., Lavail, J. H., Rakic, P. & Winston, K. R. (1977) Heterogeneous afferents to the inferior parietal lobule of the rhesus monkey revealed by the retrograde transport method. Brain Research 123:197207. [aJFS]Google Scholar
Dodwell, P. C. (1983) The Lie transformation group model of visual perception. Perception & Psychophysics 34:116. [TLC]Google Scholar
Donoghue, J. P., Suner, S. & Sanes, J. N. (1990) Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions. Experimental Brain Research 79:492503. [aGEA]Google Scholar
Dore, L., Jacobson, C. D. & Hawkes, R. (1990) Organization and postnatal development of zebrin II antigenic compartmentation in the cerebellar vermis of the grey opossum, Monodelphis domestica. Journal of Comparative Neurology 291:431–49. [aJRB]Google Scholar
Dow, R. S. & Moruzzi, G. (1958) The physiology and pathology of the cerebellum. University of Minnesota Press. [rJRB]Google Scholar
Drew, T., Dubuc, R. & Rossignol, S. (1986) Discharge patterns of reticulospinal and other reticular neurons in chronic, unrestrained cats walking on a treadmill. Journal of Neurophysiology 55:375401. [rDAM]Google Scholar
Driver, J. & Halligan, P. (1991) Can visual neglect operate in object-centered coordinates? Cognitive Neuropsychology 8:475–96. [rJFS]Google Scholar
Duenas, S. & Rudomin, P. (1988) Excitability changes of ankle extensor group la and Ib fibers during fictive locomotion in the cat. Experimental Brain Research 70:1525. [aDAM]Google Scholar
Dugas, C., Picard, N. & Smith, A. M. (1989) Changes in simple and complex spike activity in Purkinje cells induced by slip of an object held between the thumb and forefinger. Society for Neuroscience Abstracts 15:613. [JMB]Google Scholar
Duhamel, J.-R., Colby, C. L. & Goldberg, M. E. (1991) Congruent representations of visual and somatosensory space in single neurons of monkey ventral intra-parietal cortex (area VIP). In: Brain and space, ed. Paillard, J.. Oxford University Press. [JFK]Google Scholar
Duhamel, J.-R., Colby, C. L. & Goldberg, M. E. (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:9092. [CLC, RE, JWG]Google Scholar
Dum, R. P. & Strick, P. L. (1991) Premotor areas: Nodal points for parallel efferent systems involved in the central control of movement. In: Motor control: Concepts and issues, ed. Humphrey, D. R. & H.-J., Freund. Wiley. [aGEA]Google Scholar
Duncan, J. (1977) Response selection rules in spatial choice reaction tasks. In: Attention and performance, ed. Dornic, S.. Erlbaum. [RWP]Google Scholar
Durlach, N. I., Delhorne, L. A., Wong, A., Ko, W. Y., Rabinowitz, W. M. & Hollenbach, J. (1989) Manual discrimination and identification of length by the finger-span method. Perception & Phychophysics 46:2938. [FC]Google Scholar
Duysens, J. & Pearson, K. G. (1980) Inhibition of flexor burst generation by loading extensor muscles in walking cat. Brain Research 187:321–32. [VD, APr]Google Scholar
Duysens, J. & Stein, R. B. (1978) Reflexes induced by nerve stimulation in walking cats with implanted cuff electrodes. Experimental Brain Research 32:213–24. [JDu]Google Scholar
Duysens, J., Tax, A. A. M., Doelen, B. van der, Trippel, M. & Dietz, V. (1991) Selective activation of human soleus or gastrocnemius in reflex responses during walking and running. Experimental Brain Research 87:193204. [JDu]Google Scholar
Duysens, J., Trippel, M., Horstmann, G. A. & Dietz, V. (1990) Gating and reversal of reflexes in ankle muscles during human walking. Experimental Brain Research 82:351–35. [JDu]Google Scholar
Dyck, P. J. & Brown, M. J. (1987) Diabetic polyneuropathy. In: Diabetic neuropathy, ed. Dyck, P. J., Thomas, P. K., Asbury, A. K., Winegrad, A. I. & Porte, D.. Saunders. [PRC]Google Scholar
Dyck, P. J., Karnes, J. & O'Brien, P. C. (1987a) Diagnosis, staging, and classification of diabetic neuropathy and association with other complications. In: Diabetic neuropathy, ed. Dyck, P. J., Thomas, P. K., Asbury, A. K., Winegrad, A. I. & Porte, D.. Saunders. [PRC]Google Scholar
Dyck, P. J., Karnes, J., O'Brien, P. C. & Zimmerman, I. R. (1987b) Detection thresholds of cutaneous sensation in humans. In: Peripheral neuropathy, ed. Dyck, P. J., Thomas, P. K., Lambert, E. H. & Bunge, R.. Saunders. [PRC]Google Scholar
Ebner, T. J. & Bloedel, J. R. (1984) Climbing fiber action on the responsiveness of Purkinje cells to parallel fiber inputs. Brain Research 309:182–86. [arJRB]Google Scholar
Ebner, T. J., Yu, Q.-X. & Bloedel, J. R. (1983) Increase in Purkinje cell gain associated with naturally activated climbing fiber inputs. Journal of Neurophysiology 50:205–19. [arJRB]Google Scholar
Eccles, J. C. (1969) The dynamic loop hypothesis of movement control. In: Information processing in the nervous system, ed. Leibovic, K. N.. Springer-Verlag. [cJFS]Google Scholar
Eccles, J. C. (1977) An instruction-selection theory of learning in the cerebellar cortex. Brain Research 127:327–52. [RFT]Google Scholar
Eccles, J. C. (1982) The initiation of voluntary movements by the supplementary motor area. Archiv für Psychiatrie und Nervenkrankheiten 231:423–41. [aGEA]Google Scholar
Eccles, J. C., Eccles, R. M. & Lundberg, A. (1957) Synaptic actions on motoneurones caused by impulses in Golgi tendon organ afferents. Journal of Physiology (London) 138:227–52. [DBul]Google Scholar
Eccles, J. C., Fatt, P. & Koketsu, K. (1954) Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. Journal of Physiology (London) 126:524–62. [aDAM, DBul]Google Scholar
Eccles, J. C., Ito, M. & Szentagothai, J. (1967) The cerebellum as a neuronal machine. Springer-Verlag. [aJRB, RFT]Google Scholar
Eccles, J. C., Llinas, R. & Sasaki, K. (1966) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. Journal of Physiology 182:268–96. [cJFS]Google Scholar
Eccles, R. M. & Lundberg, A. (1958) Integrative pattern of Ia synaptic actions on motoneurons of hip and knee muscles. Journal of Physiology (London) 144:271–98. [DBul]Google Scholar
Eccles, R. M. & Lundberg, A. (1959) Synaptic action in motoneurones by afferents which may evoke the flexion reflex. Archives Italiennes de Biologie 97:199221. [aDAM]Google Scholar
Edelman, G. M. & Mountcastle, V. B. (1978) The mindful brain: Cortical organization and the group-selective theory of higher brain function. MIT Press. [aJRB]Google Scholar
Edgley, S. & Jankowska, E. (1987) An interneuronal relay for group I and II muscle afferents in the middle lumbar segments of the cat spinal cord. Journal of Physiology 389:647–74. [aDAM]Google Scholar
Edgley, S. A., Jankowska, E. & Schefchyk, (1988) Evidence that mid-lumbar neurones in reflex pathways from group II afferents are involved in locomotion in the cat. Journal of Physiology 403:5771. [aDAM, AL]Google Scholar
Edgley, S. & Wallace, N. (1989) A short-latency crossed pathway from cutaneous afferents to rat hindlimb motoneurones. Journal of Physiology 411:469–80. [aDAM]Google Scholar
Edin, B. B. & Abbs, J. H. (1991) Finger movement responses of cutaneous mechanoreceptors in the dorsal skin of the human hand. Journal of Neurophysiology 65:657–70. [aSCG]Google Scholar
Edin, B. B. & Vallbo, Å. B. (1990a) Dynamic response of human muscle spindle afferents to stretch. Journal of Neurophysiology 63:12971306. [aSCG]Google Scholar
Edin, B. B. & Vallbo, Å. B. (1990b) Classification of human muscle stretch receptor afferents: A Bayesian approach. Journal of Neurophysiology 63:1314–22. [aSCG]Google Scholar
Edin, B. B. & Vallbo, Å. B. (1990c) Muscle afferent responses to isometric contractions and relaxations in humans. Journal of Neurophysiology 63:1307–12. [aSCG]Google Scholar
Edin, B. E., Westling, G. & Johansson, R. S. (1992) Independent control of human finger tip forces at individual digits during precision lifting. Journal of Physiology, in press. [AMG]Google Scholar
Edwards, R. T. H., Wiles, C. M. & Mills, K. R. (1984) Quantitation of muscle contraction and strength. In: Peripheral neuropathy, ed. Dyck, P. J., Thomas, P. K., Lambert, E. H. & Bunge, R.. Saunders. [PRC]Google Scholar
Eich, J. (1982) A composite holographic associative recall model. Psychological Review 89:627–61. [BB]Google Scholar
Eklund, G. (1972) Position sense and state of contraction: The effects of vibration. Journal of Neurology, Neurosurgery & Psychiatry 35:606–11. [aSCG]Google Scholar
Eldred, E., Granit, R. & Merton, P. A. (1953) Supraspinal control of the muscle spindles and its significance. Journal of Physiology (London) 122:498523. [rEB]Google Scholar
Eliasson, A. C., Gordon, A. M. & Forssberg, H. (1991) Basic coordination of manipulative forces in children with cerebral palsy. Developmental Medicine and Child Neurology 33:661–70. [AMG]Google Scholar
Ellaway, P. H. (1968) Antidromic inhibition of fusimotor neurons. Journal of Physiology (London) 198:3940. [DBul]Google Scholar
Ellaway, P. H. & Murphy, P. R. (1980) A quantitative comparison of recurrent inhibition of alpha- and gamma-motoneurones in the cat. Journal of Physiology (London) 315:4358. [DBul]Google Scholar
Elman, J. (1990) Finding structure in time. Cognitive Science 14:179211. [JER]Google Scholar
Elner, A. M., Gurfinkel, V. S., Lipshits, M. I., Mamasakhlisov, G. H. & Popov, K. E. (1976) Facilitation of stretch reflex by additional support during quiet stance. Agressologie 17:1520. [VD]Google Scholar
Emonet-Dénand, F., Hunt, C. C. & Laporte, Y. (1985) Effects of stretch on dynamic fusimotor after-effects in cat muscle spindle. Journal of Physiology (London) 360:201–21. [JP]Google Scholar
Engberg, I. (1964) Reflexes to foot muscles in the cat. Ada Physiologica Scandinavica 62:Suppl. 235. [aDAM]Google Scholar
Engberg, I., Lundberg, A. & Ryall, R. W. (1968) Reticulospinal inhibition of interneurones. Journal of Physiology 194:225–36. [aDAM]Google Scholar
Engen, T. (1971) Psychophysics. In: Experimental psychology, ed. Kling, J. W. & Riggs, L. A.. Holt, Rinehart & Winston. [HER]Google Scholar
Evans, A. L., Harrison, L. M. & Stephens, J. A. (1989) Task-dependent changes in cutaneous reflexes recorded from various muscles controlling finger movement in man. Journal of Physiology (London) 418:112. [aSCG]Google Scholar
Evarts, E. V. (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. Journal of Neurophysiology 31:1427. [aEEF, MEI]Google Scholar
Evarts, E. V. (1981) Role of motor cortex in voluntary movement In: Handbook of physiology, vol. 2. American Physiological Society, Waverly Press. [aEEF, MEI]Google Scholar
Evarts, E. V., Fromm, C., Kroller, J. & Jennings, V. A. (1983) Motor cortex control of finely graded forces. Journal of Neurophysiology 49:11991215. [aEB]Google Scholar
Ewert, J.-P. & Gebauer, L. (1973) Grossenkonstanzphanomene im Beutefangverhalten der Erdkröte. Bufo bufo L. Journal of Comparative Physiology 85:303–15. [DI]Google Scholar
Farah, M. (1990) Visual agnosia. MIT Press. [MAG]Google Scholar
Feigenbaum, J. D. & Rolls, E. T. (1991) Allocentric and egocentric spatial information processing in the hippocampal formation of the behaving primate. Psychobiology 19:2140. [WAM]Google Scholar
Feldman, A. G. (1966a) Functional tuning of the nervous system during control of movement or maintenance of a steady posture II. Controllable parameters of the muscle. Biofizika 11:498508 [English translation 565–78]. [GCA, AGF, GLG, MLL, JBJS]Google Scholar
Feldman, A. G. (1966b) Functional tuning of the nervous system during control of movement or maintenance of a steady posture. III. Mechanographic analysis of the execution by man of the simplest motor task. Biophysics 11:766–75. [aEB, SRG]Google Scholar
Feldman, A. G. (1976) Control of postural length and force of a muscle: Advantages of the central co-activation of alpha and gamma static motoneurons. Biophysics 21:187–89. [AGF]Google Scholar
Feldman, A. G. (1979) Central and reflex mechanisms in the control of movement [in Russian]. Nauka. [SVA, AAF, AGF]Google Scholar
Feldman, A. G. (1980a) Superposition of motor programs. I. Rhythmic forearm movements in man. Neuroscience 5:8190. [PRB]Google Scholar
Feldman, A. G. (1980b) Superposition of motor programs. II. Rapid forearm movements in man. Neuroscience 5:8190. [SVA]Google Scholar
Feldman, A. G. (1986) Once more for the equilibrium point hypothesis (Ι. model). Journal of Motor Behavior 18:1754. [aEB, GCA, AAF, AGF, SRG, MLL, NL, DJO, GJvIS, RBS]Google Scholar
Feldman, A. G., Adamovich, S. V., Ostry, D. J. & Flanagan, J. R. (1990) The origin of electromyograms - Explanations based on the point hypothesis. In: Multiple muscle systems: Biomechanics and movement organization, ed. Winters, J. & Woo, S. L.-Y.. Springer-Verlag. [SVA, AGF, GLG, SRG, NL, DJO, JBJS]Google Scholar
Feldman, J. A. & Ballard, D. H. (1982) Connectionist models and their properties. Cognitive Science 6:205–54. [aGEA]Google Scholar
Feldman, A. G. & Latash, M. L. (1982) Interaction of afferent and efferent signals underlying joint position sense: Empirical and theoretical approaches. Journal of Motor Behavior 14:174–93. [AGF]Google Scholar
Feldman, A. G. & Orlovsky, G. N. (1972) The influence of different descending systems on the tonic stretch reflex in the cat. Experimental Neurology 37:481–94. [AGF, MLL]Google Scholar
Felleman, D. J. & Van Essen, D. C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1:147. [GS]Google Scholar
Ferrell, W. R. (1980) The adequacy of stretch receptors in the cat knee joint for signalling joint angle throughout a full range of movement. Journal of Physiology (London) 299:8599. [aSCG]Google Scholar
Ferrell, W. R. (1987) The effect of acute joint distension on mechanoreceptor discharge in the knee of the cat. Quarterly Journal of Experimental Physiology 72:493–99. [aSCG]Google Scholar
Ferrell, W. R., Baxendale, R. H. Carnachan, C. & Hart, I. K. (1985) The influence of joint afferent discharge on locomotion, proprioception and activity in conscious cats. Brain Research 347:4148. [aSCG]Google Scholar
Ferrell, W. R., Gandevia, S. C. & McCIoskey, D. I. (1987) The role of joint receptors in human kinaesthesia when intramuscular receptors cannot contribute. Journal of Physiology (London) 386:6371. [aSCG]Google Scholar
Ferrell, W. R. & Smith, A. (1988) Position sense at the proximal interphalangeal joint of the human index finger. Journal of Physiology (London) 399:4961. [aSCG]Google Scholar
Ferrell, W. R. & Smith, A. (1989) The effect of loading on position sense at the proximal interphalangeal joint of the human index finger. Journal of Physiology (London) 418:145–61. [aSCG]Google Scholar
Ferrington, D. G., Nail, D. S. & Rowe, M. (1977) Human tactile detection thresholds: Modification by inputs from specific tactile receptor classes. Journal of Physiology 272:415–33. [aSCG]Google Scholar
Fetz, E. E. (1981) Neuronal activity associated with conditioned limb movements. In: Handbook of behavioral neurobiology, vol. 2: Motor coordination, ed. Towe, A. L. & Luschei, E. S.. Plenum Press. [arEEF]Google Scholar
Fetz, E. E. (1992) Dynamic neural network models of sensorimotor behavior. In: The neurobiology of neural networks, ed. Gardner, D.. MIT Press, in press. [rEEF]Google Scholar
Fetz, E. E. & Cheney, P. D. (1980) Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. Journal of Neurophysiology 44:751–72. [aGEA, aEEF, cSCG, AL]Google Scholar
Fetz, E. E., Cheney, P. D., Mewes, K. & Palmer, S. (1989) Control of forelimb muscle activity by populations of corticomotoneuronal and rubromotoneuronal cells. In: Peripheral control of posture and locomotion, ed. Allum, J. A. H. & Hulliger, M.. Elsevier [aGEA, aEEF]Google Scholar
Fetz, E. E., Cheney, P. D., Mewes, K. & Palmer, S. (1990) Control of forelimb muscle activity by populations of corticomotoneuronal and rubromotoneuronal cells. Progress in Brain Research 80:437–49. [rEEF]Google Scholar
Fetz, E. E. & Finocchio, D. V. (1972) Operant conditioning of isolated activity in specific muscles and precentral cells. Brain Research 40:1923. [MEI]Google Scholar
Fetz, E. E. & Finocchio, D. V. (1975) Correlations between activity of motor cortex cells and arm muscles during operantly conditioned response patterns. Experimental Brain Research 23:217–40. [aEEF, MEI]Google Scholar
Fetz, E. E., Finocchio, D. V., Baker, M. A. & Soso, M. J. (1980) Sensory and motor responses of precentral cortex cells during comparable passive and active joint movements. Journal of Neurophysiology 43:1070–89. [aEEF]Google Scholar
Fetz, E. E. & Shupe, L. E. (1990) Neural network models of the primate motor system. In: Advanced neural computers, ed. Eckmiller, R.. Elsevier/North-Holland. [aEEF]Google Scholar
Fetz, E. E., Shupe, L. E. & Murthy, V. N. (1990) Neural networks controlling wrist movements. Proceedings of the 1990 International Joint Conference on Neural Networks 2:675–79. [aGEA, aEEF]Google Scholar
Fetz, E. E., Toyama, K. & Smith, W. (1991) Synaptic interactions between cortical neurons. In: Cerebral cortex, vol. 9: Altered cortical states, ed. Peters, A. & Jones, E. G.. Plenum Press. [rEEF]Google Scholar
Fischer, B. & Rogal, L. (1986) Eye-hand-coordination in man: A reaction time study. Biological Cybernetics 55:253–61. [VD]Google Scholar
Flament, D., Fortier, P. A. & Fetz, E. E. (1992) Response patterns and postspike effects of peripheral afferents in dorsal root ganglia of behaving monkeys. Journal of Neurophysiology 67:875–89. [arEEF]Google Scholar
Flament, D. & Hore, J. (1986) Movement and electromyographic disorders associated with cerebellar dysmetria. Journal of Neurophysiology 55:1221–33. [aJRB]Google Scholar
Flanagan, J. R., Feldman, A. G. & Ostry, D. J. (1992) Equilibrium trajectories underlying rapid target-directed arm movements. In: Tutorials in motor behavior. II, ed. Stelmach, G. E. & Requin, J.. North-Holland. [DJO]Google Scholar
Flanagan, J. R., Ostry, D. J. & Feldman, A. G. (1990) Control of human jaw and multi-joint arm movements. In: Cerebral control of speech and limb movements, ed. Hammond, G. E.. Elsevier Science. [arEB, DJO]Google Scholar
Flanders, M. & Soechting, J. F. (1990) Parcellation of sensorimotor transformations for arm movements. Journal of Neuroscience 10:2420–27. [MF]Google Scholar
Flanders, M., Tillery, S. I. H. & Soechting, J. F. (1992) Early stages in a sensorimotor transformation. Behavioral and Brain Sciences 15(2):309–20. [MF, PG]Google Scholar
Flash, T. (1987) The control of hand equilibrium trajectories in multi-joint arm movements. Biological Cybernetics 57:257–74. [aEB, SVA, JDe, AAF, GEL, NL]Google Scholar
Flash, T. & Henis, E. (1991) Arm trajectory modifications during reaching towards visual targets. Journal of Cognitive Neuroscience 3:220230. [rEB]Google Scholar
Flash, T. & Hogan, N. (1985) The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neuroscience 5:16881703. [aGEA, JDe, SRG]Google Scholar
Fleshman, J. W., Munson, J. B. & Sypert, G. W. (1981) Homonymous projection of individual group Ia fibers to physiologically characterized medial gastrocnemius motoneurons in the cat. Journal of Neurophysiology 46:1339–48. [TRN]Google Scholar
Fleshman, J., Rudomin, P. & Burke, R. (1988) Supraspinal control of a shortlatency cutaneous pathway to hindlimb motoneurons. Experimental Brain Research 69:449–59. [aDAM]Google Scholar
Fodor, J. (1983) The modularity of mind. MIT Press. [GS]Google Scholar
Fogassi, L., Gallese, V., de Pellegrino, G., Fadiga, L., Gentilucci, M., Luppino, G., Matelli, M., Pedotti, A. & Rizzolatti, G. (submitted) Space coding by premotor cortex. [MSG]Google Scholar
Forget, R. & Lamarre, Y. (1987) Rapid elbow flexion in the absence of proprioceptive and cutaneous feedback. Human Neurobiology 6:2737. [aSCG, PRC]Google Scholar
Forssberg, H. (1985) Ontogeny of human locomotor control I. Infant stepping, supported locomotion and transition to independent locomotion. Experimental Brain Research 57:480–93. [VD]Google Scholar
Fortier, P. A., Kalaska, J. F. & Smith, A. M. (1989) Cerebellar neuronal activity related to whole-arm reaching movements in the monkey. Journal of Neurophysiology 62:198211. [aJRB, aEEF]Google Scholar
Fournier, E., Katz, R. & Pierrot-Deseilligny, E. (1983) Descending control of reflex pathways in the production of voluntary isolated movements in man. Brain Research 288:357–77. [aSCG]Google Scholar
Fox, C. A., Andrade, A. N., Hillman, D. E. & Schwyn, R. C. (1971) The spiny neurons in the primate striatum. A golgi and electron microscopic study. Journal für Hirnforschung 13:181201. [aGEA]Google Scholar
Fox, G. C. (1988) Solving problems with concurrent processors. Prentice Hall. [aJFS]Google Scholar
Francois, C., Percheron, G., Yelnick, J. & Heyner, S. (1984) A golgi analysis of the primate globus pallidus. I. Inconstant processes of large neurons, other neuronal types, and afferent axons. Journal of Comparative Neurology 227:182–99. [aGEA]Google Scholar
Freeman, W. J. (1987) Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biological Cybernetics 56:139–50. [IT]Google Scholar
Freeman, W. J. (1990) Nonlinear neural dynamics in olfaction as a model for cognition. In: Chaos in brain function, ed. Basar, E.. Springer-Verlag. [TLC]Google Scholar
Freeman, W. J. & van Dijk, B. W. (1987) Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey. Brain Research 422:267–76. [aJFS]Google Scholar
Frolov, A. A., Biryukova, E. V. & Roschin, V. Y. (1992) Neural model of multijoint movement learning and control. In: Proceedings of 1992 RNNS/IEEE Symposium on Neuroinformatics and Neurocomputers, Rostov-on-Don, in press. [AAF]Google Scholar
Frolov, A. G. (1983) The effect of instrumentalization of inborn reaction on its transformation into contrary directed escape response in dogs and the problem of reinforcement. Acta Neurobiologiae Experimentalis 43:114. [MEI]Google Scholar
Fromm, C. & Evarts, E. V. (1981) Relation of size and activity of motor cortex pyramidal tract neurons during skilled movements in the monkey. Journal of Neuroscience 1:453–60. [aSCG]Google Scholar
Fu, T., Hultborn, H., Larsson, R. & Lundberg, A. (1978) Reciprocal inhibition during the tonic stretch reflex in the decerebrate cat. Journal of Physiology 284:345369. [rDAM]Google Scholar
Fujita, M. (1982) Adaptive filter model of the cerebellum. Biological Cybernetics 45:195206. [aJRB, AAF]Google Scholar
Fukami, Y. & Wilkinson, R. S. (1977) Responses of isolated Golgi tendon organs of the cat. Journal of Physiology (London) 265:673–89. [aSCG]Google Scholar
Fukson, O. I., Berkinblit, M. B. & Feldman, A. G. (1980) The spinal frog takes into account the scheme of its body during the wiping reflex. Science 209:1261–63. [aEB, SG]Google Scholar
Fukushima, K., Perlmutter, S. I., Baker, J. F. & Peterson, B. W. (1990) Spatial properties of second-order vestibulo-ocular relay neurons in the alert cat. Experimental Brain Research 81:462–78. [aDAR, CLC]Google Scholar
Fung, S. J., Pompeiano, O. & Barnes, C. C. (1988) Coerulospinal influence on recurrent inhibition of spinal motonuclei innervating antagonistic hindleg muscles of the cat. Pflugers Archiv-European Journal of Physiology 412(4):346–53. [FBH]Google Scholar
Fuster, J. M. (1985) The prefrontal cortex and temporal integration. In: The cerebral cortex, vol. 4, ed. Peters, A. & Jones, E. G.. [aEEF]Google Scholar
Fuster, J. M. (1989) The prefrontal cortex, 2nd ed. Raven Press. [JMF]Google Scholar
Gaffan, D. & Harrison, S. (1989) Place memory and scene memory effects of fomix transection in the monkey. Experimental Brain Research 74:202–12. [aJFS]Google Scholar
Galleti, C. & Battaglini, P. P. (1989) Gaze-dependent visual neurons in area {V}3a of monkey prestriate cortex. Journal of Neuroscience 9:1112–25. [APo]Google Scholar
Gandevia, S. C. (1982) The perception of motor commands or effort during muscular paralysis. Brain 105:151–59. [aSCG]Google Scholar
Gandevia, S. C. (1985) Illusory movements produced by electrical stimulation of lowthreshold muscle afferents from the hand. Brain 108:965–81. [aSCG]Google Scholar
Gandevia, S. C. (1987) Roles for perceived voluntary motor commands in motor control. Trends in Neurosciences 10:8185. [aSCG]Google Scholar
Gandevia, S. C. & Burke, D. (1985) Effect of training on voluntary activation of human fusimotor neurons. Journal of Neurophysiology 54:1422–29. [aSCG]Google Scholar
Gandevia, S. C. & Burke, D. (1988) Projection to the cerebral cortex from proximal and distal muscles in the human upper limb. Brain 111:389403. [aSCG]Google Scholar
Gandevia, S. C., Burke, D. & McKeon, B. (1984) The projection of muscle afferents from the hand to cerebral cortex in man. Brain 107:113. [aSCG]Google Scholar
Gandevia, S. C., Burke, D. & McKeon, B. (1986a) Coupling between human muscle spindle endings and motor units assessed using spike-triggered averaging. Neuroscience Letters 71:181–86. [aSCG]Google Scholar
Gandevia, S. C., Hall, L. A., McCloskey, D. I. & Potter, E. K. (1983) Proprioceptive sensation at the terminal joint of the middle finger. Journal of Physiology (London) 335:507–17. [aSCG]Google Scholar
Gandevia, S. C. & Kilbreath, S. (1990) Accuracy of weight estimation for weights lifted by proximal and distal muscles of the human upper limb. Journal of Physiology (London) 423:299310. [aSCG]Google Scholar
Gandevia, S. C. & Macefield, G. (1989) Projection of low-threshold afferents from human intercostal muscles to the cerebral cortex. Respiration Physiology 77:203–14. [aSCG]Google Scholar
Gandevia, S. C., Macefield, G., Burke, D. & McKenzie, D. K. (1990) Voluntary activation of human motor axons in the absence of muscle afferent feedback: The control of the deafferented hand. Brain 113:1563–81. [aSCG]Google Scholar
Gandevia, S. C. & Mahutte, C. K. (1982) Theoretical requirements for the interpretation of signals of intramuscular tension. Journal of Theoretical Biology 97:141–53. [aSCG]Google Scholar
Gandevia, S. C. & McCloskey, D. I. (1976) Joint sense, muscle sense, and their combination as position sense measured at the distal interphalangeal joint of the middle finger. Journal of Physiology (London) 260:387407. [aSCG]Google Scholar
Gandevia, S. C. & McCloskey, D. I. (1977a) Sensations of heaviness. Brain 100:345–54. [aSCG]Google Scholar
Gandevia, S. C. & McCloskey, D. I. (1977b) Effects of related sensory inputs on motor performances in man studied through changes in perceived heaviness. Journal of Physiology (London) 272:653–72. [aSCG]Google Scholar
Gandevia, S. C. & McCloskey, D. I. (1978) Interpretation of perceived motor commands by reference to afferent signals. Journal of Physiology (London) 283:493–99. [aSCG]CrossRefGoogle ScholarPubMed
Gandevia, S. C., McCloskey, D. I. & Burke, D. (1992) Kinaesthetic signals and muscle contraction. Trends in Neurosciences 15:6265. [rSCG]CrossRefGoogle ScholarPubMed
Gandevia, S. C., Miller, S., Aniss, A. M. and Burke, D. (1986b) Reflex influences on muscle spindle activity in relaxed human leg muscles. Journal of Neurophysiology 56:159–70. [aSCG]Google Scholar
Gandevia, S. C. & Rothwell, J. C. (1987) Knowledge of motor commands and the recruitment of human motoneurons. Brain 110:1117–30. [aSCG, MLL]Google Scholar
Garcia-Rill, E. (1986) The basal ganglia and the locomotor regions. Brain Research Reviews 11:4763. [GMa]Google Scholar
Garner, W. R. (1962) Uncertainty and structure as psychological concepts. Wiley. [FJC]Google Scholar
Garner, W. R. & McGill, W. J. (1956) The relation between information and variance analysis. Psychometrika 21:219–28. [FJC]CrossRefGoogle Scholar
Gasser, H. S. & Hill, A. V. (1924) The dynamics of muscular contraction. Proceedings of The Royal Society B96:398s–437. [ZH]Google Scholar
Gauthier, G. M. & Mussa-Ivaldi, F. (1988) Oculo-manual tracking of visual targets in monkeys: Role of the arm afferent information in the control of arm and eye movements. Experimental Brain Research 73:138–54. [aJRB]Google Scholar
Gauthier, G. M., Vercher, J.-L., Mussa-Ivaldi, F. & Marchetti, E. (1988) Oculo-manual tracking of visual targets: Control learning, coordination control and coordination model. Experimental Brain Research 73:127–37. [aJRB]Google Scholar
Gelfand, I. M., Gurfinkel, V. S., Kots, Y. M., Tsetlin, M. L. & Shik, M. L. (1963) Synchronization of motor units and associated model concepts. Biofizika 8:475–86. [TMH]Google Scholar
Gellman, R., Gibson, A. R. & Houk, J. C. (1985) Inferior olivary neurons in the awake cat: Detection of contact and passive body movement. Journal of Neurophysiology 54:4060. [aJRB]Google Scholar
Gentilucci, M., Fogassi, L. Luppino, G., Matelli, M., Camarda, R. & Rizzolatti, G. (1988) Functional organization of inferior area 6 in the macaque monkey. I. Somatotopy and the control of proximal movements. Experimental Brain Research 71:475–90. [JFK]Google Scholar
Gentilucci, M., Scandolara, C., Pigarev, I. & Rizzolatti, G. (1983) Visual responses in the postarcuate cortex (area 6) of the monkey that are independent of eye position. Experimental Brain Research 50:464–68. [MSG]Google Scholar
Georgopoulos, A. P. (1991) Higher order motor control. Annual Review of Neuroscience 14:361–77. [aEB, MF, RBS]Google Scholar
Georgopoulos, A. P., Caminiti, R., Kalaska, J. F. & Massey, J. T. (1983) Spatial coding of movement: A hypothesis concerning the coding of movement direction by motor cortical populations. Experimental Brain Research (suppl.) 7:327–36. [aEB, WAM]Google Scholar
Georgopoulos, A. P., Crutcher, M. D. & Schwartz, A. B. (1989) Cognitive spatial motor processes. III. Motor cortical prediction of movement direction during an instructed delay period. Experimental Brain Research 75:183–94. [aGEA]Google Scholar
Georgopoulos, A. P. & Grillner, S. (1989) Visuomotor coordination in reaching and locomotion. Science 245:1209–10. [JFK]Google Scholar
Georgopoulos, A. P., Kalaska, J. F., Caminiti, R. & Massey, J. T. (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. Journal of Neuroscience 2:1527–37. [aEB, MH, DSL, PM]Google Scholar
Georgopoulos, A. P., Kalaska, J. F., Crutcher, M. D., Caminiti, R. & Massey, J. T. (1984) The representation of movement direction in the motor cortex: Single cell and population studies. In: Dynamic aspects of neocortical function, ed. Edelman, G. E., Gall, W. E. & Cowan, W. M. Wiley. [aEEF, BB]Google Scholar
Georgopoulos, A. P., Kettner, R. E. & Schwartz, A. B. (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction by a neuronal population. Journal of Neuroscience 8:2928–37. [aSCG]Google Scholar
Georgopoulos, A. P. & Massey, J. T. (1988) Cognitive spatial-motor processes. Experimental Brain Research 69:315–26. [FJC]Google Scholar
Georgopoulos, A. P., Schwartz, A. B. & Kettner, R. E. (1986) Neuronal population coding of movement direction. Science 233:13571440. [aJRB, PR]Google Scholar
Gevins, A. S., Bressler, S. L., Morgan, N. H., Cutillo, B. A., White, R. M., Greer, D. S. & Illes, J. (1989a) Event-related covariances during a bimanual visuomotor task. I. Methods and analysis of stimulus-and response-locked data. Electroencephalography and Clinical Neurophysiology 74:5875. [JMF]CrossRefGoogle ScholarPubMed
Gevins, A. S., Cutillo, B. A., Bressler, S. L., Morgan, N. H., White, R. M., Illes, J. & Greer, D. S. (1989b) Event-related covariances during a bimanual visuomotor task. II. Preparation and feedback. Electroencephalography and Clinical Neurophysiology 74:147–60. [JMF]Google Scholar
Ghez, C. & Gordon, J. (1987) Trajectory control in targeted force impulses. I. Role of opposing muscles. Experimental Brain Research 67:225–40. [MLL]Google Scholar
Ghez, C., Gordon, J., Ghilardi, M. F., Christakos, C. M. & Cooper, S. E. (1990) Roles of proprioceptive input in the programming of armtrajectories. Cold Spring Harbor Symposia in Quantitative Biology, vol. 55, in press. [aSCG]Google Scholar
Ghez, C. & Martin, J. H. (1982) The control of rapid limb movement in the cat 3. agonist-antagonist coupling. Experimental Brain Research 45:115–25. [NL]Google Scholar
Gibson, A. R., Houk, J. C. & Kohlerman, N. J. (1985) Relation between red nucleus discharge and movement parameters in trained macaque monkeys. Journal of Physiology (London) 358:551–70. [aEEF]Google Scholar
Gibson, A. R., Robinson, F. R., Alam, J. & Houk, J. C. (1987) Somatotopic alignment between climbing fiber input and nuclear output of the cat intermediate cerebellum. Journal of Comparative Neurology 260:362–77. [aJRB]CrossRefGoogle ScholarPubMed
Gielen, C. C. A. M. & Houk, J. C. (1984) Nonlinear viscosity of human wrist. Journal of Neurophysiology 52:553–69. [GCA]Google Scholar
Gielen, C. C. A. M. & Houk, J. C. (1986) Simple changes in reflex threshold cannot explain all aspects of rapid voluntary movements. Behavioral and Brain Sciences 9:605–07. [JBJS]Google Scholar
Gielen, C. C. A. M., Ramaekers, L. & Van Zuylen, E. J. (1988) Long-latency stretch reflexes as coordinated functional responses in man. Journal of Physiology (London) 407:275–92. [aSCG, ZH, JBJS]Google Scholar
Gielen, C. C. A. M. & Van Ingen Schenau, G. J. (1992) The constrained control offeree and position by multilink manipulators. IEEE Transactions on Systems, Man, and Cybernetics, in press. [GJvIS]Google Scholar
Gielen, C. C. A. M. & Van Zuylen, E. J. (1986) Coordination of arm muscles during flexion and supination: Application of the tensor analysis approach. Neuroscience 17:527–39. [aGEA]Google Scholar
Gielen, C. C. A. M., van den Heuvel, P. J. M. & van Gisbergen, J. A. M. (1984) Coordination of fast eye and arm movements in a tracking task. Experimental Brain Research 56:154–61. [VD]Google Scholar
Gilbert, P. F. C. (1974) A theory of memory that explains the function and structure of the cerebellum. Brain Research 70:118. [PFCG]Google Scholar
Gilbert, P. F. C. (1975) How the cerebellum could memorize movements. Nature 254:688–89. [PFCG]Google Scholar
Gilbert, P. F. C. & Thach, W. T. (1977) Purkinje cell activity during motor learning. Brain Research 128:309–28. [arJRB, PFCG]Google Scholar
Gilhodes, J. C., Roll, J. P. & Tardy-Gervet, M. F. (1986) Perceptual and motor effects of agonist-antagonist muscle vibration in man. Experimental Brain Research 61:395402. [aSCG]Google Scholar
Gilman, S., Bloedel, J. R. & Lechtenberg, R. (1981) Disorders of the cerebellum. Davis. [aJRB]Google Scholar
Giszter, S. (1992) Force fields and muscle use strategies that underlie reflex behaviors in the spinal frog. Society for Neuroscience Abstracts, submitted. [rEB]Google Scholar
Giszter, S. F., Bizzi, E. & Mussa-Ivaldi, F. A. (1991a) Motor organization in the frog spinal cord. In: Analysis and modelling of neural systems, ed. Eeckman, F. H. & Deno, C. D.. Kluwer. [rEB, SG]Google Scholar
Giszter, S. F., Bizzi, E. & Mussa-Ivaldi, F. A. (1991b) Movement primitives in the frog spinal cord. In: Analysis and modelling of neural systems 2, ed. Eeckman, F. H. & Deno, C. D.. Kluwer Press, in press. [arEB]Google Scholar
Giszter, S. F., Bizzi, E. & Mussa-Ivaldi, F. A. (1992a) Movement primitives in the frog spinal cord. In: Analysis and modelling of neural systems II, ed. Eeckman, F. H.. Kluwer, in press. [SG]Google Scholar
Giszter, S. F., McIntyre, J. & Bizzi, E. (1989) Kinematic strategies and sensorimotor transformations in the wiping movements of frogs. Journal of Neurophysiology 62:750–67. [aEB, SG]Google Scholar
Giszter, S. F., Mussa-Ivaldi, F. A. & Bizzi, E. (1991c) Equilibrium point mechanisms in the spinal frog. In: Visual structures and integrated functions, ed. Arbib, M. A. & Ewert, J. P.. Plenum. [SG]Google Scholar
Giszter, S. F., Mussa-Ivaldi, F. A. & Bizzi, E. (1992b) The organization of limb motor space in the spinal cord. Experimental Brain Research Series 22, in press. [arEB, SG]Google Scholar
Giszter, S. F., Mussa-Ivaldi, F. A. & Bizzi, E. (1992c) Convergent force fields organized in the frog spinal cord. Journal of Neuroscience, submitted. [rEB]Google Scholar
Glickstein, M. (1990) Brain pathways in the visual guidance of movement. In: Brain circuits and functions of the mind, ed. Trevarthen, C.. Cambridge University Press. [aJFS]Google Scholar
Glickstein, M., Cohen, J. L., Dixon, B., Gibson, A., Hollins, M., LaBossiere, E. & Robinson, F. (1980) Corticopontine visual projections in macaque monkeys. Journal of Comparative Neurology 90:209–29. [aJFS]Google Scholar
Gnadt, J. W. & Andersen, R. A. (1988) Memory related motor planning activity in posterior parietal cortex of macaque. Experimental Brain Research 70:216–20. [aJFS, CLC, JWG, JFK]CrossRefGoogle ScholarPubMed
Gnadt, J. W. & Mays, L. E. (1989) Posterior parietal cortex, the oculomotor near response and spatial coding in 3-D space. Society for Neuroscience Abstracts 15:786. [JWG]Google Scholar
Gnadt, J. W. & Mays, L. E. (1991) Depth-tuning in area LIP by disparity and accommodative cues. Society for Neuroscience Abstracts 17:1113s. [JWG]Google Scholar
Godschalk, M., Lemon, R. N., Kuypers, H. G. J. M. & Van der Steen, J. (1985) The involvement of monkey premotor cortex neurons in preparation of visually cued arm movements. Behavioral Brain Research 18:143–57. [aEEF]Google Scholar
Godwin-Austen, R. B. (1965) A case of visual disorientation. Journal of Neurology Neurosurgery and Psychiatry 28:453–48. [JWG]CrossRefGoogle ScholarPubMed
Goldberg, D. E. (1989) Genetic algorithms. Addison-Wesley. [IK]Google Scholar
Goldberg, G. (1985) Supplementary motor area structure and function: Review and hypotheses. Behavioral and Brain Sciences 8:567616. [aGEA]Google Scholar
Goldberg, M. E. & Bruce, C. (1985) Cerebral cortical activity associated with the orientation of visual attention in the Rhesus monkey. Vision Research 25:471–81. [JFK]Google Scholar
Goldberg, M. E. & Bruce, C. (1990) Primate frontal eye field. III. Maintenance of a spatially accurate saccade signal. Journal of Neurophysiology 64:489508. [aJFS, APo, PQ]Google Scholar
Goldberg, M. E. & Colby, C. L. (1989) The neurophysiology of spatial vision. In: Handbook of neuropsychology, vol. 2, ed. Boller, F. & Grafman, J.. Elsevier. [aJFS]Google Scholar
Goldberg, M. E., Colby, C. L. & Duhamel, J.-R. (1990) Representation of visuomotor space in the parietal lobe of the monkey. Cold Spring Harbor Symposia on Quantitative Biology 55:729–39. [CLC, DPC]Google Scholar
Goldman-Rakic, P. (1988) Topography of cognition: Parallel distributed networks in primate association cortex. Annual Review of Neuroscience 11:137–56. [aJFS, DPC, BS]Google Scholar
Goldscheider, A. (1889) Cited by Sherrington(1900). [aSCG]Google Scholar
Goldstein, H. (1950) Classical mechanics. Addison-Wesley. [rEB]Google Scholar
Gollhofer, A., Horstmann, G. A., Berger, W. & Dietz, V. (1989) Compensation of translational and rotational perturbations in human posture: Stabilization of the centre of gravity. Neuroscience Letters 105:7378. [VD]Google Scholar
Gonshor, A. & Jones, M. (1976) Extreme vestibulo-ocular adaptation induced by prolonged optical reversal of vision. Journal of Physiology 256:381414. [ADK]Google Scholar
Goodale, M. A. & Milner, A. D. (1992) Separate visual pathways for perception and action. Trends in Neuroscience 15:2025. [MAG]Google Scholar
Goodale, M. A., Milner, A. D., Jakobson, L. S. & Carey, D. P. (1991) A neurological dissociation between perceiving objects and grasping them. Nature 349:154–56. [rSCG, DPC, MAG]Google Scholar
Goodale, M. A., Pelisson, D. & Prablanc, C. (1986) Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320:748–50. [DPC]Google Scholar
Goodman, S. G. & Andersen, R. A. (1989) Microstimulation of a neuralnetwork mdodel for visually guided saccades. Journal of Cognitive Neuroscience 1:317–26. [RAA]Google Scholar
Goodman, S. G. & Andersen, R. A. (1990) Algorithm programmed by a neural network model for coordinate transformation. Proceedings of the International Joint Conference on Neural Networks 2:381–86. [RAA]Google Scholar
Goodwin, G. M., McCloskey, D. I. & Matthews, P. B. C. (1972) The contribution of muscle afferent to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain 95:705–48. [aSCG]Google Scholar
Gordon, A. M., Forssberg, H., Johansson, R. S. & Westling, G. (1991a) Visual size cues in the programming of manipulative forces during precision grip. Experimental Brain Research 83:477–82. [AMG]Google Scholar
Gordon, A. M., Forssberg, H., Johansson, R. S. & Westling, G. (1991b) The integration of haptically acquired size information in the programming of precision grip. Experimental Brain Research 83:483–88. [VD, AMG]Google Scholar
Gordon, A. M., Huxley, A. F. & Julian, F. J. (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. Journal of Physiology (London) 184:170–92. [aEB]Google Scholar
Gordon, J. & Ghez, C. (1987a) Trajectory control in targeted force impulses. II. Pulse height control. Experimental Brain Research 67:241–52. [aSCG]Google Scholar
Gordon, J. & Ghez, C. (1987b) Trajectory control in targeted force impulses. III. Compensatory adjustments for initial errors. Experimental Brain Research 67:253–69. [aSCG, PJC]Google Scholar
Gorenstein, C., Bundman, M. C., Bruce, J. L. & Rotter, A. (1987) Neuronal localization of pseudocholinesterase in the rat cerebellum: Sagittal bands of Purkinje cells in the nodulus and uvula. Brain Research 418:6875. [NHB]Google Scholar
Gormezano, I., Kehoe, E. J. & Marshall, B. S. (1983) Twenty years of classical conditioning research with the rabbit. In: Progress in psychobiology and physiological psychology, ed. Sprague, J. & Epstein, A. N.. Academic Press. [rJRB]Google Scholar
Gossard, J., Cabelguen, J. & Rossignol, S. (1989) Intra axonal recordings of cutaneous primary afferents during fictive locomotion in the cat. Journal of Neurophysiology 62:1177–88. [aDAM]Google Scholar
Gossard, J., Cabelguen, J. & Rossignol, S. (1990) Phase dependent modulation of primary afferent depolarization in single cutaneous primary afferents evoked by peripheral stimulation during fictive locomotion in the cat. Brain Research 537:1423. [aDAM]Google Scholar
Gossard, J., Cabelguen, J. & Rossignol, S. (1991) An intracellular study of muscle primary afferents during fictive locomotion in the cat. Journal of Neurophysiology 65:914–26. [aDAM]Google Scholar
Gottlieb, G. L. & Agarwal, G. C. (1978) Dependence of human ankle compliance on joint angle. Journal of Biomechanics 11:177–81. [GCA]Google Scholar
Gottlieb, G. L. & Agarwal, G. C. (1988) Compliance of single joints: Elastic and plastic characteristics. Journal of Neurophysiology 59:937–51. [GCA, MLL]Google Scholar
Gottlieb, G. L., Corcos, D. M. & Agarwal, G. C. (1989) Strategies for the control of voluntary movements with one mechanical degree of freedom. Behavioral and Brain Sciences 12(2): 189s–210. [SVA, GLG, ZH]Google Scholar
Gottlieb, G. L., Latash, M. L., Corcos, D. M., Liubinskas, T. J. & Agarwal, G. C. (1992) Organizing principles for single joint movements: V. Agonist-antagonist interactions. Journal of Neurophysiology 67(6). [GLG]Google Scholar
Gracies, J. M., Meunier, S., Pierrot-Deseilligny, E. & Simonetta, M. (1991) Pattern of propriospinal-like excitation to different species of human upper limb motoneurones. Journal of Physiology 434:151–67. [DBur]Google Scholar
Granit, R. (1955) Receptors and sensory perception. Yale University Press [rEB]Google Scholar
Granit, R. (1970) The basis of motor control. Academic Press. [aEB, GCA]Google Scholar
Granit, R. & Phillips, C. G. (1956) Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. Journal of Physiology 133:520–47. [cJFS]Google Scholar
Granit, R. & Rutledge, L. T. (1960) Surplus excitation in reflex action of motoneurons as measured by recurrent inhibition. Journal of Physiology (London) 154:288307. [TMH]Google Scholar
Graveland, G. A. & Difiglia, M. (1985) The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum. Brain Research 327:307–11. [aGEA]Google Scholar
Gray, C. M. & Singer, W. (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Science 86:16981702. [WAM]Google Scholar
Graziano, M. S. A. & Gross, C. G. (submitted) A bimodal map of space: Somatosensory receptive fields in the macaque putamen with corresponding visual receptive fields. [MSG]Google Scholar
Greene, D. A., Sima, A. A. F., Albers, J. W. & Pfeifer, M. A. (1990) In: Diabetes Mellitus theory and practice, ed. Rifkin, H. & Porte, D., 4th Ed. Elsevier. [PRC]Google Scholar
Greene, P. H. (1972) Problems of organizing motor systems. Progress in Theoretical Biology 2:303–38. [rEB, PJC]Google Scholar
Greene, P. H. (1982) Why is it so easy to control your arms? Journal of Motor behavior 14:260s–86. [PJC]Google Scholar
Gregory, J. E., Morgan, D. L. & Proske, U. (1988) Aftereffects in the responses of cat muscle spindles and errors of limb position sense in man. Journal of Neurophysiology 59:1220–30. [aSCG]Google Scholar
Griffiths, R. I. (1987) Ultrasound transit time gives direct measurement of muscle fibre length in vivo. Journal of Neuroscience Methods 21:159–65. [aSCG]Google Scholar
Grigg, P., Finerman, G. A. & Riley, L. H. (1973) Joint-position sense after total hip replacement. Journal of Bone and Joint Surgery 56:1016–25. [aSCG]Google Scholar
Grigg, P. & Greenspan, B. J. (1977) Response of primate joint afferent neurons to mechanical stimulation of knee joint. Journal of Neurophysiology 40:18. [aSCG]Google Scholar
Grigg, P., Schaible, H.-G. & Schmidt, R. F. (1986) Mechanical sensitivity of Group III and IV afferents from posterior articular nerve in normal and inflamed cat knee. Journal of Neurophysiology 55:635–43. [aSCG]Google Scholar
Grillner, S. (1972) The role of muscle stiffness in meeting the changing postural and locomotor requirements for force development of the ankle extensors. Acta Physiologica Scandinavica 86:92108. [aEB, GMa]Google Scholar
Grillner, S. (1975) Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiological Reviews 55:247304. [VD]Google Scholar
Grillner, S. (1981) Control of locomotion in bipeds, tetrapods and fish. In: Handbook physiology – the nervous system, vol. 2, Motor control, ed. Brookhart, J. M. & Mountcastle, V. B.. American Physiological Society. Waverly. [GMa]Google Scholar
Gritti, I. & Schieppati, M. (1989) Short-latency inhibition of soleus motoneurones by impulses in la afferents from the gastrocnemius muscle in humans. Journal of Physiology (London) 416:469–84. [MS]Google Scholar
Grobstein, P. (1986) Review of the brain machine. Journal of the American Medical Association 255:2677–78. [PG]Google Scholar
Grobstein, P. (1987) The nervous system/behavior interface: Levels of organization and levels of approach. Commentary on target article by J.-P. Ewert. Behavioral and Brain Sciences 10:380–81. [PG]Google Scholar
Grobstein, P. (1988a) On beyond neuronal specificity: Problems in going from cells to networks and from networks to behavior. In: Advances in neural and behavioral development, vol. 3, ed. Shinkman, P. G.. Ablex. [PG]Google Scholar
Grobstein, P. (1988b) Between the retinotectal projection and directed movement: Topography of a sensorimotor interface. Brain Behavior and Evolution 31:3448. [PG]Google Scholar
Grobstein, P. (1988c) From the head to the heart: Some thoughts on similarities between brain function and morphogenesis, and on their significance for research methodology and biological theory. Experientia 44:961–71. [PG]Google Scholar
Grobstein, P. (1989) Organization in the sensorimotor interface: A case study with increased resolution. In: Visuomotor coordination: Amphibians, comparisons, models and robots, ed. Ewert, J.-P. & Arbib, M. A.. Plenum. [PG]Google Scholar
Grobstein, P. (1990) Strategies for analyzing complex organization in the nervous system. I. Lesion experiments, the old rediscovered. In: Computational neuroscience, ed. Schwartz, E.. MIT Press. [PG]Google Scholar
Grobstein, P. (1991) Directed movement in the frog: A closer look at a central representation of spatial location. In: Visual structures and integrated functions, research neural computing, ed. Arbib, M. A. & J.-P., Ewert. Springer-Verlag. [PG]Google Scholar
Grobstein, P. (1992) Directed movement in the frog: Motor choice, spatial representation, free will? In: Neurobiology of motor programme selection: New approaches to mechanisms of behavioral choice, ed. Kien, J., McCrohan, C. & Winlow, B.. Manchester University Press, in press. [PG]Google Scholar
Grobstein, P., Comer, C. & Kostyk, S. K. (1983) Frog prey capture behavior: Between sensory maps and motor output. In: Advances in vertebrate neuroethology. ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum Press. [PG]Google Scholar
Groenewegen, H. J. & Voogd, J. (1977) The parasagittal zonation within the olivocerebellar projection. In. Climbing fiber distribution in the vermis of cat cerebellum. Journal of Comparative Neurology 174:417–88. [aJRB]Google Scholar
Gross, C. G. & Graziano, M. S. A. (1990) Bimodal visual-tactile responses in the macaque putamen. Society for Neuroscience Abstracts 16:110. [MSG]Google Scholar
Grossberg, S. (1988) Neural networks and natural intelligence. MIT Press. [DSL]Google Scholar
Grossberg, S. & Kuperstein, M. (1989) Neural dynamics of adaptive sensorymotor control. Pergamon. [rJFS, PQ]Google Scholar
Guillaumin, S., Dahhaoui, M. & Caston, J. (1991) Cerebellum and memory: An experimental study in the rat using a passive avoidance conditioning test. Physiology & Behavior 49:507–11. [aJRB]Google Scholar
Guitton, D., Munoz, D. P. & Galiana, M. L. (1990) Gaze control in the cat: Studies and modelling of the coupling between orienting eye and head movements in different behavioral tasks. Journal of Neurophysiology 64:509531. [PQ]Google Scholar
Guitton, D., Munoz, D. P. & Pelisson, D. (1991) Spatio-temporal patterns of activity on the motor map of the superior colliculus. In: Brain and space, ed. Paillard, J.. Oxford University Press. [DPC]Google Scholar
Guitton, D. & Voile, M. (1987) Gaze control in humans: Eye-head coordination during orienting movements to targets within and beyond the oculomotor range. Journal of Neurophysiology 58:427–59. [RAA]Google Scholar
Gurfinkel, V. S. & Latash, M. L. (1979) Segmental postural mechanisms and reversal of muscle reflexes. Agressologie 20B:145–46. [VD]Google Scholar
Gurfinkel, V. S., Levik, Y. S., Popov, K. E., Smetanin, B. N. & Shlikov, V. Y. (1988) Body scheme in the control of postural activity. In: Stance and motion: Facts and concepts, ed. Gurfinkel, V. S.. Plenum. [aSCG]Google Scholar
Gurfinkel, V. S., Lipshits, M. I., Mori, S. & Popov, K. E. (1976) Postural reactions to the controlled sinusoidal displacement of the supporting platform. Agressologie 17B:7176. [VD]Google Scholar
Guthrie, B. L., Porter, J. D. & Sparks, D. L. (1983) Corollary discharge provides accurate eye position information to the oculomotor system. Science 221:1193–95. [aSCG]Google Scholar
Gutman, S. R. & Gottlieb, G. L. (1990) Nonlinear “inner time” in reaching movement trajectory formation. Abstracts of 1st World Congress of Biomechanics. [SRG]Google Scholar
Gutman, S. R., Gottlieb, G. L. & Corcos, D. M. (in press). Exponential model of a reaching movement trajectory with non-linear time. Comments on Theoretical Biology. [SRG]Google Scholar
Haaland, K. Y. & Harrington, D. L. (1990) Complex movement behavior: Toward understanding cortical and subcortical interactions in regulating control processes. In: Cerebral control of speech and limb movements, ed. Hammond, G. R.. North-Holland. [JJS]Google Scholar
Hagbarth, K. (1952) Excitatory and inhibitory skin areas for flexor and extensor motoneurones. Acta Physiolgica Scandinavica 94:158. [aDAM]Google Scholar
Hagbarth, K., Kunesch, E. J., Nordin, M., Schmidt, R. & Wallin, E. U. (1986) Gamma loop contributing to maximal voluntary contractions in man. Journal of Physiology (London) 380:575–91. [aSCG]Google Scholar
Hagbarth, K., Wallin, G., Burke, D. & Lofstedt, L. (1975) Effects of the Jendrassik manoeuvre on muscle spindle activity in man. Journal of Neurology, Neurosurgery, and Psychiatry 38:1143–53. [rSCG, JP]Google Scholar
Hahm, J.-O., Langdon, R. B. & Sur, M. (1991) Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors. Nature (London) 351:568–70. [aGEA]Google Scholar
Hahne, M., Illert, M. & Wietelmann, D. (1988) Recurrent inhibition in the cat distal forelimb. Brain Research 456:188–92. [TMH]CrossRefGoogle ScholarPubMed
Haines, D. E., Patrick, G. W. & Satrulee, P. (1982) Organization of cerebellar corticonuclear fiber systems. In: The cerebellum: New vistas, ed. Palay, S. L. & V., Chan-Palay. Springer-Verlag. [aJRB]Google Scholar
Hake, H. W. & Garner, W. R. (1951) The effect of presenting various numbers of discrete steps on scale reading accuracy. Journal of Experimental Psychology 42:358–66. [FJC]Google Scholar
Hall, L. A. & McCloskey, D. I. (1983) Detections of movements imposed on finger, elbow and shoulder joints. Journal of Physiology (London) 335:519–33. [aSCG]Google Scholar
Hallett, M., Berardelli, A., Matheson, J., Rothwell, J. & Marsden, C. D. (1991) Physiological analysis of simple rapid movements in patients with cerebellar deficits. Journal of Neurology, Neurosurgery and Psychiatry 54:124–33. [MH]Google Scholar
Hallet, M. & Khoshbin, S. (1980) A physiological mechanism of bradykinesia. Brain 103:301–14. [DSB]Google Scholar
Hallett, M., Shahani, B. T. & Young, R. R. (1975) EMG analysis of patients with cerebellar deficits. Journal of Neurology, Neurosurgery, and Psychiatry 38:1163–69. [MH]Google Scholar
Hamada, I., DeLong, M. R. & Mano, N.-I. (1990) Activity of identified wristrelated pallidal neurons during step and ramp wrist movements in the monkey. Journal of Neurophysiology 64:18921906. [aGEA]Google Scholar
Hamm, T. M. (1990) Recurrent inhibition to and from motoneurons innervating the flexor digitoram and flexor hallucis longus muscles of the cat. Journal of Neurophysiology 63:395403. [TMH]Google Scholar
Hannaford, B. & Stark, L. (1985) Roles of the elements of the tri-phasic control signal. Experimental Neurology 90:619–34. [NL]Google Scholar
Hannaford, B. & Stark, L. (1987) Late agonist activation burst (PC) required for optimal head movement: A simulation study. Biological Cybernetics 57:321–30. [NL]Google Scholar
Hansen, P. D., Woollacott, M. H. & Debu, B. (1988) Postural responses to changing task conditions. Experimental Brain Research 73:627–36. [VD]Google Scholar
Harris-Warrick, R. M. (1988) Chemical modulation of central pattern generators. In: Neural control of rhythmic movements in vertebrates, ed. Cohen, A. H., Rossignol, S. & Grillner, S.. Wiley. [CAP]Google Scholar
Harrison, P. J. & Jankowska, E. (1985a) Sources of input to interneurones mediating group I non-reciprocal inhibition of motoneurones in the cat. Journal of Physiology 361:379401. [aDAM]Google Scholar
Harrison, P. J. & Jankowska, E. (1985b) Organization of input to the interneurones mediating group I nonreciprocal inhibition of motoneurones in the cat. Journal of Physiology 361:403–18. [aDAM]Google Scholar
Harrison, P., Jankowska, E. & Zytnicki, D. (1986) Lamina VII interneurones interposed in crossed reflex pathways in the cat. Journal of Physiology 371:147–66. [aDAM]Google Scholar
Harvey, R. J., Porter, R. & Rawson, J. A. (1977) The natural discharges of Purkinje cells in paravermal regions of lobules V and VI of the monkey's cerebellum. Journal of Physiology (London) 271:515–36. [JMB]Google Scholar
Hasan, Z. (1986) Optimized movement trajectories and joint stiffness in unperturbed, inertially loaded movements. Biological Cybernetics 53:373–82. [SRG, GLG, ZH, MLL, NL]Google Scholar
Hasan, Z. (1991) Biomechanics and the study of multijoint movements. In: Motor control: Concepts and issues, ed. Humphrey, D. R. & H.-J., Freund. Wiley. [aGEA]Google Scholar
Hasan, Z. & Enoka, R. M. (1985) Isometric torque-angle relationship and movement-related activity of human elbow flexors: Implications for the equilibrium-point hypothesis. Experimental Brain Research 59:441–50. [AGF, ZH]Google Scholar
Hasan, Z. & Stuart, D. G. (1988) Animal solutions to problems of movement control: The role of proprioceptors. Annual Review of Neuroscience 11:199223. [ZH]Google Scholar
Hawkes, R. & Gravel, C. (1991) The modular cerebellum. Progress in Neurobiology 36:309–27. [aJRB]Google Scholar
Hawkes, R. & Leclerc, N. (1987) Antigenic map of the rat cerebellar cortex: The distribution of parasagittal bands as revealed by monoclonal anti-Purkinje cell antibody mabQ113. Journal of Comparative Neurology 256:2941. [NHB]Google Scholar
Haykin, S. (1986) Adaptive filter theory. Prentice-Hall. [PDN]Google Scholar
He, J., Levine, W. S. & Loeb, G. E. (1991) Feedback gains for correcting small perturbations to standing posture. IEEE Transactions on Automatic Control 36:322–32. [GEL]Google Scholar
Head, H. & Holmes, G. (1912) Sensory disturbances from cerebral lesions. Brain 34:102254. [PM]Google Scholar
Hecht-Nielsen, R. (1989) Theory of the back-propagation neural network. Proceedings of the International Joint Conference on Neural Networks, Washington D.C., June. [HB]Google Scholar
Heiligenberg, W. F. (1991) Neural nets in electric fish. MIT Press. [MF]Google Scholar
Heilman, K. M., Watson, R. T. & Valenstein, E. (1985) Neglect and related disorders. In: Clinical neuropsychology, ed. Heilman, K. M. & Valenstein, E.. Oxford University Press. [aJFS]Google Scholar
Heister, G., Schroeder-Heister, P. & Ehrenstein, W. H. (1990) Spatial coding and spatio-anatomical mapping: Evidence for a hierarchical model of spatial stimulus-response compatibility. In: Stimulus-response compatibility: An integrated perspective, ed. Proctor, R. W. & Reeve, T. G., North-Holland. [RWP]Google Scholar
Helms Tillery, S. I., Flanders, M. & Soechting, J. F. (1991) A coordinate system for the synthesis of visual and kinesthetic information. Journal of Neuroscience 11:770–78. [MF]Google Scholar
Hershberger, W. & Misceo, G. (1983) Conditioned weight illusion: Reafference learning without a correlation store. Perception and Psychophysics 33:391–98. [HER]Google Scholar
Heuer, H. (1991) Invariant relative timing in motor-program theory. In: The development of timing control and temporal organization in coordinated action, ed. Fagard, J. & Wolff, P. H.. North-Holland. [HH]Google Scholar
Hikosaka, K. E., Iwai, E., Saito, H. & Tanaka, K. (1988) Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. Journal of Neurophysiology 60:1615–37. [BS]Google Scholar
Hildreth, E. C. & Hollerbach, J. M. (1987) Artificial intelligence: Computational approach to vision and motor control. In: Handbook of physiology. The nervous system. High functions of the brain, vol. 5, ed. V. B. Mountcastle, F. Plum & S. R. Geiger. American Physiological Society. [aGEA]Google Scholar
Hill, A. V. (1938) The heat of shortening and the dynamic constants of muscles. Proceedings of the Royal Society of London B126:136s–95. [SVA, AGF]Google Scholar
Hillyard, S. A., Munte, T. F. & Neville, H. J. (1985) Visuospatial attention, orienting and brain physiology. In: Attention and performance, ed. Posner, M. I. & Martin, O. S.. Erlbaum. [aJFS]Google Scholar
Hinton, G. (1984) Parallel computations for controlling an arm. Journal of Motor Behavior 16:171–94. [aGEA]Google Scholar
Hinton, G. (1989) Connectionist learning procedures. Artificial Intelligence 40:185234. [HB]Google Scholar
Hinton, G. (1990) Special issue on connectionist symbol processing. Artificial Intelligence 46:1257. [JER]Google Scholar
Hinton, G. & Anderson, J. A. (1981) Parallel models of associative memory. Erlbaum. [aEEF]Google Scholar
Hinton, G. E., McClelland, J. L. & Rumelhart, D. E. (1986) Distributed representations. In: Parallel distributed processing: Explorations in the microstructure of cognition, ed. Rumelhart, D. E., McClelland, J. L., & The PDP Research Group. MIT Press. [aGEA]Google Scholar
Hocherman, S. & Wise, S. P. (1991) Effects of hand movement path on motor cortical activity in awake, behaving rhesus monkeys. Experimental Brain Research 83:285302. [JFK]Google Scholar
Hoffer, J. A. & Andreassen, S. (1981) Regulation of soleus muscle stiffness in premammillary cats: Intrinsic and reflex components. Journal of Neurophysiology 45:267–85. [aEB, MLL, NL]CrossRefGoogle ScholarPubMed
Hoffer, J. A., Caputi, A. A., Pose, I. E. & Griffiths, R. I. (1989) Roles of muscle activity and load on the relationship between muscle spindle length and whole muscle length in the freely walking cat. Progress in Neurobiology 80:7585. [aSCG]Google Scholar
Hoffman, W. C. (1978) The Lie transformation group approach to visual neuropsychology. In: Formal theories of visual perception, ed. Leeuwenberg, E. L. J. & Buffart, H.. Wiley. [TLC]Google Scholar
Hogan, N. (1982) Control and coordination of voluntary arm movements. Proceedings of the 1982 American Control Conference 1:552–58. [aEB]Google Scholar
Hogan, N. (1984) An organising principle for a class of voluntary movements. Journal of Neuroscience 4:2745–54. [aEB, SVA, AGF, GLG, SRG, NL]CrossRefGoogle ScholarPubMed
Hogan, N. (1985a) The mechanics of multi-joint posture and movement. Biological Cybernetics 52:315–31. [aGEA, arEB, AAF]CrossRefGoogle ScholarPubMed
Hogan, N. (1985b) Impedance control: An approach to manipulation. Part I: Theory. Part II: Implementation. Part III: Application. ASME Journal of Dynamic Systems, Measurement and Control 107:124. [aEB]Google Scholar
Hogan, N. (1988a) Planning and execution of multi-joint movements. Canadian Journal of Physiology and Pharmacology 66:508–17. [aEB, JDe]CrossRefGoogle Scholar
Hogan, N. (1988b) On the stability of manipulators performing contact tasks. IEEE Journal of Robotics and Automation 4:677–86. [aEB]Google Scholar
Hogan, N., Bizzi, E., Mussa-Ivaldi, F. A. & Flash, T. (1987) Controlling multijoint motor behavior. Exercise and Sports Sciences Reviews 15:153–90. [aGEA, aEB]Google Scholar
Hollerbach, J. M. & Atkeson, C. G. (1987) Deducing planning variables from experimental arm trajectories: Pitfalls and possibilities. Biological Cybernetics 56:279–92. [aEB]CrossRefGoogle ScholarPubMed
Hollerbach, J. M. & Flash, T. (1982) Dynamic interactions between limb segments during planar arm movement. Biological Cybernetics 44:6777. [aGEA]Google Scholar
Holmes, G. (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40:461535. [aJRB, MH, RFT]Google Scholar
Holmes, G. (1918) Disturbances of visual orientation. British Journal of Ophthalmology 2:449–68, 506518. [DPC, JWG]Google Scholar
Holmes, G. & Horrax, G. (1919) Disturbances of spatial orientation and visual attention. Archives of Neurological Psychiatry 1:385407. [JWG]Google Scholar
Holmqvist, B. & Lundberg, A. (1961) Differential supraspinal control of synaptic actions evoked by volleys in the flexion reflex afferents in alpha motoneurones. Acta Physiologica Scandinavica 54(suppl.):551. [aDAM]Google Scholar
Hongo, T., Kudo, N., Oguni, E. & Yoshida, K. (1990) Spatial patterns of reflex evoked by pressure stimulation of the foot pads in cats. Journal of Physiology 420:471–87. [aDAM]Google Scholar
Hongo, T., Kudo, N., Sasaki, S., Yamashita, M., Yoshida, K., Ishizuka, N. et al. , (1987) Trajectory of group Ia and Ib fibers from the hind-limb muscles at: the L3 and L4 segments of the spinal cord of the cat. Journal of Comparative Neurology 262:159–94. [aDAM]Google Scholar
Hongo, T., Lundberg, A., Phillips, C. G. & Thompson, R. F. (1984) The pattern of monosynaptic la connections to hindlimb motor nuclei in the baboon: A comparison with the cat. Proceedings of the Royal Society Series B 221:264–89. [aSCG]Google Scholar
Hopcroft, J. E., Joseph, D. & Whitesides, S. (1985) On the movement of robot arms in 2-dimensional bounded regions. Society for Industrial and Applied Mathematics Journal of Computing 14(2):315–33. [CIC]Google Scholar
Horak, F. (1990) Comparison of cerebellar and vestibular loss on scaling of postural responses. In: Disorders of posture and gait, ed. Brandt, T., Paulus, W., Bless, W., Dieterich, M., Krafczyk, S. & Straube, A.. Thieme Verlag. [FBH]Google Scholar
Horak, F. & Anderson, M. E. (1984) Influence of globus pallidus on arm movement in monkeys. I. Effects of kainic acid lesions. Journal of Neurophysiology 52:290304. [FBH, DSL]Google Scholar
Horak, F. & Anderson, M. E. (1984b) Influence of globus pallidus on arm movements, 2. Effects of stimulation. Journal of Neurophysiology 52:305–22. [DSL]Google Scholar
Horak, F., Nashner, L. & Diener, H. (1986) Abnormal scaling of posture responses in cerebellar patients. Society of Neuroscience Abstracts 12:1419s. [FBH]Google Scholar
Horak, F. & Nashner, L. M. (1986) Central programming of postural movements: Adaptation to altered support-surface configurations. Journal of Neurophysiology 55:1369–81. [ADK]Google Scholar
Horak, F., Nutt, J. & Nashner, L. (1992) Postural inflexibility in Parkinsonian patients. Journal of Neurological Science, in press. [FBH]Google Scholar
Horcholle-Bossavit, G., Jami, L., Petit, J., Vejsada, R. & Zytnicki, D. (1988) Effects of muscle shortening on the responses of cat tendon organs to unfused contractions. Journal of Neurophysiology 59:1510–23. [aSCG]Google Scholar
Horcholle-Bossavit, G., Jami, L., Petit, J., Vejsada, R. & Zytnicki, D. (1990) Ensemble discharge from Golgi tendon organs of the cat peroneus tertius muscle. Journal of Neurophysiology 64:813–21. [aSCG]Google Scholar
Hore, J. & Flament, D. (1986) Evidenced that a disordered servo-like mechanism contributes to tremor in movements during cerebellar dysfunction. Journal of Neurophysiology 56:123–36. [aJRB]Google Scholar
Hore, J. & Flament, D. (1988) Changes in motor cortex neural discharge associated with the development of cerebellar limb ataxia. Journal of Neurophysiology 60:12851302. [aJRB]Google Scholar
Hore, J., Preston, J. P., Durkovic, R. G. & Cheney, P. D. (1976) Responses of cortical neurons (areas 3a and 4) to ramp stretch of hindlimb muscles in the baboon. Journal of Neurophysiology 39:484500. [aSCG]Google Scholar
Hore, J. & Vilis, T. (1984) Loss of set in muscle responses to limb perturbations during cerebellar dysfunction. Journal of Neurophysiology 51:1137–48. [aJRB, FBH]Google Scholar
Hore, J. & Vilis, T. (1985) A cerebellar-dependent efference copy mechanism for generating appropriate muscle responses to limb perturbations. In: Cerebellar function, ed. Bloedel, J. R., Dichgans, J. & Precht, W.. Springer-Verlag. [aJRB]Google Scholar
Hore, J., Wild, B. & Diener, H. C. (1991) Cerebellar dysmetria at the elbow, wrist and fingers. Journal of Neurophysiology 65:563–71. [MH]Google Scholar
Hörner, M., Illert, M. & Kümmel, H. (1991) Absence of recurrent axon collaterals in motoneurones to the extrinsic digit extensor muscles of the cat forelimb. Neuroscience Letters 122:183–86. [TMH, MS]Google Scholar
Houk, J. C. (1976) An assessment of stretch reflex function. Progress in Brain Research 44:303–14. [MLL]CrossRefGoogle ScholarPubMed
Houk, J. C. (1979) Regulation of stiffness by skeletomotor reflexes. Annual Review of Physiology 41:99114. [aDAM, TRN]Google Scholar
Houk, J. C., Crago, P. E. & Rymer, W. Z. (1981) Function of the dynamic response in stiffness regulation – a predictive mechanism provided by nonlinear feedback. In: Muscle receptors and movement, ed. Taylor, A. & Prochazka, A.. Macmillan. [TRN]Google Scholar
Houk, J. C. & Gibson, A. R. (1978) Sensorimotor processing through the cerebellum. In: New concepts in cerebellar neurobiology, ed. King, J. S.. Liss. [JMB]Google Scholar
Houk, J. C. & Rymer, W. Z. (1981) Neural control of muscle length and tension. In: Handbook of physiology. Section 1: The nervous system, vol. 2, Motor control, ed. Brookhart, J. M., Mountcastle, V. B., Brooks, V. B. & Geiger, S. R.. American Physiological Society. [aGEA]Google Scholar
Houk, J. C., Singh, S. P., Fisher, C. & Barto, A. G. (1991) An adaptive sensorimotor network inspired by the anatomy and physiology of the cerebellum. In: Neural networks for control, ed. Miller, W. T., Sutton, R. S. & Werbos, P. J.. MIT Press. [aGEA]Google Scholar
Hounsgaard, J., Hultborn, H. & Kiehn, O. (1986) Transmitter-controlled properties of alpha motoneurones causing long-lasting motor discharge to brief excitatory inputs. Progress in Brain Research 64:3949. [aDAM, TRN, CAP]Google Scholar
Hoy, M. & Zernicke, R. F. (1985) Modulation of limb dynamics in the swing phase of locomotion. Journal of Biomechanics 18:4960. [CAP]CrossRefGoogle ScholarPubMed
Hoy, M. G., Zernicke, R. F. & Smith, J. L. (1985) Contrasting roles of inertial and muscle movements at knee and ankle during paw-shake response. Journal of Neurophysiology 54:1282–94. [CAP]Google Scholar
Hubel, D. H. & Wiesel, T. N. (1977) Ferrier lecture: Functional architecture of Macaque monkey visual cortex. Proceedings of the Royal Society of London B198:159. [TLC]Google Scholar
Hughlings Jackson, J. (1931) Selected writings of John Hughlings Jackson, ed. Taylor, J.. Hoder & Stoughton. [aSCG, AL]Google Scholar
Hugon, M. & Paillard, J. (1959) Depression durable du reflexe de Hoffman apres un etirement passif du muscle. Journal de Physiologie (Paris) 47:193–96. [JP]Google Scholar
Hulliger, M., Diiürüller, N., Prochazka, A. & Trend, P. (1989) Flexible fusimotor control of muscle spindle feedback during a variety of natural movements. Progress in Brain Research 80:87101. [aSCG]Google Scholar
Hulliger, M., Nordh, E., Thelin, A.-E. & Vallbo, Å B. (1979) The responses of afferent fibres from the glabrous skin of the hand during voluntary finger movements in man. Journal of Physiology (London) 291:233–49. [aSCG]Google Scholar
Hulliger, M., Nordh, E. & Vallbo, Å B. (1982) The absence of position response in spindle afferents units from human finger muscles during accurate position holding. Journal of Physiology (London) 322:167–79. [aSCG, AGF]Google Scholar
Hulliger, M., Nordh, E. & Vallbo, Å B. (1985) Discharge in muscle spindle afferents related to direction of slow precision movements in man. Journal of Physiology (London) 362:437–53. [aSCG]Google Scholar
Hultborn, H. & Illert, M. (1991) How is motor behaviour reflected in the organization of spinal systems? Motor Control: Concepts and issues, ed. Humphrey, D. R. & Freund, H. J.. John Wiley. [rDAM]Google Scholar
Hultborn, H., Illert, M. & Santini, M. (1976a) Convergence on interneurones mediating the reciprocal la inhibition of motoneurons I. Disynaptic la inhibition of la inhibitory interneurones. Acta Physiologica Scandinavica 96:193201. [DBul]Google Scholar
Hultborn, H., Illert, M. & Santini, M. (1976b) Convergence on interneurones mediating the reciprocal la inhibition of motoneurones. Acta Physiologica Scandinavica 96:368–91. [TRN]Google Scholar
Hultborn, H., Jankowska, E. & Lindström, S. (1971a) Recurrent inhibition of interneurones monosynaptically activated from group la afferents. Journal of Physiology (London) 215:613–36. [aDAM, DBul]Google Scholar
Hultborn, H., Jankowska, E. & Lindström, S. (1971b) Relative contribution from different nerves to recurrent depression of la IPSPs in motoneurones. Journal of Physiology (London) 215:637–64. [TMH]Google Scholar
Hultborn, H., Lindström, S. & Wigström, H. (1979) On the function of recurrent inhibition in the spinal cord. Experimental Brain Research 37:399403. [TMH]Google Scholar
Hultborn, H., Meunier, S., Pierrot-Deseilligny, E. & Shindo, M. (1986) Changes in polysynaptic Ia excitation to quadriceps motoneurones during voluntary contraction in man. Experimental Brain Research 63:436–38. [aSCG]Google Scholar
Hultborn, H., Meunier, S., Pierrot-Deseilligny, E. & Shindo, M. (1987) Changes in presynaptic inhibition of la fibres at the onset of voluntary contraction in man. Journal of Physiology (London) 389:757–72. [aSCG, aDAM]Google Scholar
Humphrey, D. R. (1986) Representation of movement and muscles within the primate precentral motor cortex: Historical and current perspectives. Federation Proceedings 45:2687–99. [RL]Google Scholar
Humphrey, D. R. & Freund, F.-J. (1991) Motor control: Concepts and issues. Wiley. [JT]Google Scholar
Humphrey, D. R. & Reed, D. J. (1983) Separate cortical systems for the control of joint movement and joint stiffness: Reciprocal activation and coactivation of antagonist muscles. In: Motor control mechanisms in health and disease. Advances in Neurology 39, ed. Desmedt, J.. Raven Press. [aEB, DBul]Google Scholar
Humphrey, D. R., Schmidt, E. M. & Thompson, W. D. (1970) Predicting measures of motor performance from multiple spike trains. Science 170:758–62. [aEEF]Google Scholar
Husain, M. & Stein, J. F. (1988) Rezso Balint and his most celebrated case. Archives of Neurology 45:8993. [aJFS]Google Scholar
Hutchins, K. D., Martino, A. M. & Strick, P. L. (1988) Corticospinal projections from the medial wall of the hemisphere. Experimental Brain Research 715:667–72. [aGEA]Google Scholar
Hutton, R. S., Kaiya, K., Suzuki, S. & Watanabe, S. (1987) Post-contraction errors in human force production are reduced by muscle stretch. Journal of Physiology (London) 393:247–59. [aSCG]Google Scholar
Hyvarinen, J. (1981) Regional distribution of functions in parietal associative area 7 of the monkey. Brain Research 206:287303. [MSG]Google Scholar
Hyvarinen, J. (1982) The parietal cortex of monkey and man. Springer. [aJFS]Google Scholar
Hyvarinen, J. & Poranen, A. (1974) Function of parietal association area 7 as revealed from cellular discharges in alert monkeys. Brain 97:673–92. [aJFS, MSG]Google Scholar
Iles, J. F. (1986) Reciprocal inhibition during agonist and antagonist contraction. Experimental Brain Research 62:212–14. [aSCG]Google Scholar
Iles, J. F. & Pisini, J. V. (1986) Modulation of spinal reciprocal inhibition during postural sway in man. Journal of Physiology (London) 382:71P. [VD]Google Scholar
Iles, J. F. & Roberts, R. C. (1987) Inhibition of monosynaptic reflexes in the human lower limb. Journal of Physiology (London) 385:6987. [aSCG]Google Scholar
Iles, J. F., Stokes, M. & Young, A. (1984) Reflex actions of knee joint receptors on quadriceps in man. Journal of Physiology (London) 360:48P. [aSCG]Google Scholar
Illert, M., Jankowska, E., Lundberg, A. & Odutola, A. (1981) Integration in descending motor pathways controlling the forelimb in the cat. 7. Effects from the reticular formation on C3-C4 propriospinal neurones. Experimental Brain Research 42:269–81. [DBur]Google Scholar
Illert, M., Lundberg, A. & Tanaka, R. (1977) Integration in descending motor pathways controlling the foreiimb in the cat. 3. Convergence on propriospinal neurones transmitting disynaptic excitation from the corticospinal tract and other descending tracts. Experimental Brain Research 29:323–46. [DBur, AL]Google Scholar
Illert, M., Lundberg, A., Padel, Y. & Tanaka, R. (1978) Integration in descending motor pathways controlling the forelimb in the cat. 5. Properties of and monosynaptic excitatory convergence on C3-C4 propriospinal neurones. Experimental Brain Research 33:101130. [AL]Google Scholar
Ingle, D. (1968) Visual releasers of prey-catching behavior in frogs and toads. Brain, Behavior and Evolution 1:500–18. [DI]Google Scholar
Ingle, D. (1982) The organization of visuomotor behaviors in vertebrates. In: The analysis of visual behavior, ed. Ingle, D., Goodale, M. & Mansfield, R.. MIT Press. [DI]Google Scholar
Ingle, D. (1983) Brain mechanisms of localization in frogs and toads. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. & Ingle, K.. Plenum Press. [DI]Google Scholar
Ingle, D. (1991a) Functions of subcortical visual systems in vertebrates and the evolution of higher visual mechanisms. In: Evolution of the eye and visual system, ed. Gregory, R. & J., Cronly-Dillon. Macmillan Press. [DI]Google Scholar
Ingle, D. (1991b) The striatum and spatial memory: From frog to man. In: Visual structures and integrated functions, ed. Arbib, M. A. & J.-P., Ewert. Springer-Verlag. [DI]Google Scholar
Ingle, D. & Cook, J. (1977) The effect of viewing distance upon size preference of frogs for prey. Vision Research 17:1009–14. [DI]Google Scholar
Ingle, D. & Hoff, K. V. (1990) Visually elicited evasive behavior in frogs. BioScience 40:284–91. [DI]Google Scholar
Ingle, D., Jakobson, L. S., Lassonde, M. C. & Sauerwein, H. C. (1990) Deficits in interfield memory transfer in cases of callosal agenesis. Society for Neuroscience Abstracts 16:926. [DI]Google Scholar
Inhoff, A. W., Diener, H. C., Rafal, R. D. & Ivry, R. (1989) The role of cerebellar structures in the execution of serial movements. Brain 112:565–81. [aJRB]Google Scholar
Inhoff, A. W. & Wang, J. (1992) Encoding of text, manual movement planning, and eye-hand coordination during copytyping. Journal of Experimental Psychology: Human Perception and Performance 18:437–48. [AMG]Google Scholar
Ioffe, M. E. (1973) Pyramidal influences in establishment of new motor coordinations in dogs. Physiology and Behavior 11:145–53. [MEI]Google Scholar
Ioffe, M. E. (1991) Mechanisms of motor learning. Nauka. [MEI]Google Scholar
Ioffe, M. E., Ivanova, N. G., Frolov, A. A., Birjukova, E. V. & Kiseljova, N. V. (1988) On the role of motor cortex in the learned rearrangement of postural coordinations. In: Stance and motion, facts and concepts, ed. Gurfinkel, V. S., Ioffe, M. E., Massion, J. & Roll, J. P.. Plenum. [MEI]Google Scholar
Iriki, A., Keller, A., Pavlides, C. & Asanuma, H. (1990) Long-lasting facilitation of pyramidal tract input to spinal interneurons. Neuroreport. 1:157160 [rDAM]Google Scholar
Iriki, A., Pavlides, C., Keller, A. & Asanuma, H. (1989) Long-term potentiation in the motor cortex. Science 245:1385–87. [aGEA]Google Scholar
Iriki, A., Pavlides, C., Keller, A. & Asanuma, H. (1991) Long-term potentiation of thalamic input to the motor cortex induced by coactivation of thalamocortical and corticocortical afferents. Journal of Neurophysiology 65:1435–41. [aGEA]Google Scholar
Ito, M. (1974) The control mechanisms of cerebellar motor system. In: The neuroscience third study program, ed. Schmitt, F. O. & Worden, R. G.. MIT Press. [RFT]Google Scholar
Ito, M. (1982) The role of the cerebellum during motor learning in the vestibuloocular reflex: Different mechanisms in different species. Trends in Neuroscience 5:416. [aJRB]Google Scholar
Ito, M. (1984) The cerebellum and neural control. Raven Press. [arJRB, JMB, NHB, PFCG, cJFS, RFT]Google Scholar
Ito, M. (1989) Long-term depression. Annual Review of Neuroscience 12:85102. [PFCG, MI, cJFS]Google Scholar
Ito, M. (1990) A new physiological concept on cerebellum. Revue Neurologique (Paris) 146:564–69. [MH]Google Scholar
Ivkovich, D., Lavond, D. G., Logan, C. G. & Thompson, R. F. (1990) Measurements of reflexive reactions to different unconditioned stimulus intensities over the course of classical conditioning. Society for Neuroscience Abstracts 16(1):271. [RFT]Google Scholar
Ivkovich, D., Logan, C. G. & Thompson, R. F. (1991) Accessory abducens lesions produce performance deficits without permanently affecting conditioned responses. Society for Neuroscience Abstracts 17(1):869. [RFT]Google Scholar
Ivry, R. B. & Baldo, J. V. (1992) Is the cerebellum involved in learning and cognition? Current Opinion in Neurobiology, in press. [RFT]Google Scholar
Ivry, R. B. & Keele, S. W. (1989) Timing functions of the cerebellum. Journal of Cognitive Neuroscience 1:136–52. [aJRB]Google Scholar
Ivry, R. B., Keele, S. W. & Diener, H. C. (1988) Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Experimental Brain Research 73:167–80. [aJRB, FBH]Google Scholar
Iwata, A., Thoma, T., Matsuo, H. & Suzumura, N. (1990) A large scale neural network “CombNet” and Its application to Chinese character recognition. In: Proceedings of the International Neural Network Conference INNC, Paris, vol. I. Kluwer Academic. [HB]Google Scholar
Jacobs, K. M. & Donoghue, J. P. (1991) Reshaping the cortical motor map by unmasking latent intracortical connections. Science 251:944–47. [aGEA]CrossRefGoogle ScholarPubMed
Jakobson, L. S., Archibald, Y. M., Carey, D. P. & Goodale, M. A. (1991) A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. Neuropsychologia 29:803–9. [DPC, MAG]Google Scholar
Jami, L. (1988) Propriétés fonctionnelles des organes tendineux de Golgi. Archives Internationales de Physiologic et de Biochimie 96:A36378. [aSCG]Google Scholar
Jankowska, E. (1992) Interneuronal relay in spinal pathways from proprioceptors. Progress in Neurobiology 38:335–78. [aDAM]Google Scholar
Jankowska, E., Johanisson, T. & Lipski, J. (1981a) Common interneurones in reflex pathways from group Ia and Ib afferents of ankle extensors in the cat. Journal of Physiology 310:381402. [aDAM, CAP]Google Scholar
Jankowska, E., Jukes, M. G. M., Lund, S. & Lundberg, A. (1967a) The effect of DOPA on the spinal cord: V. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiologica Scandinavica 70:369–88. [aDAM]Google Scholar
Jankowska, E., Jukes, M. G. M., Lund, S. & Lundberg, A. (1967b) The effect of DOPA on the spinal cord. VI. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiologica Scandinavica 70:389402. [aDAM]Google Scholar
Jankowska, E. & Lundberg, A. (1981) Interneurones in the spinal cord. Trends in Neurosciences 4:230–33. [aSCG, rEEF]Google Scholar
Jankowska, E. & McCrea, D. A. (1983) Shared reflex pathways from Ib tendon organ afferents and la muscle spindle afferents in the cat. Journal of Physiology 338:99111. [aDAM, CAP]Google Scholar
Jankowska, E., McCrea, D. & Mackel, R. (1981b) Oligosynaptic excitation of motoneurones by impulses in group Ia muscle spindle afferents in the cat. Journal of Physiology 316:411–25. [aDAM]Google Scholar
Jankowska, E., McCrea, D. & Mackel, R. (1981c) Pattern of “non-reciprocal” inhibition of motoneurones by impulses in group Ia muscle spindle afferents in the cat. Journal of Physiology 316:393409. [aDAM]Google Scholar
Jankowska, E., Padel, Y. & Tanaka, R. (1976a) Disynaptic inhibition of spinal motoneurones from the motor cortex in the monkey. Journal of Physiology 258:467–87. [aDAM]Google Scholar
Jankowska, E., Rastad, J. & Westman, J. (1976b) Intracellular application of horseradish peroxidase and its light and electron microscopical appearance in spinocervical tract cells. Brain Research 105:557–62. [aDAM]Google Scholar
Jansen, J. & Brodal, A. (1940) Experimental studies on the intrinsic fibers of the cerebellum. II. The cortico-nuclear projections. Journal of Comparative Neurology 73:267321. [aJRB]Google Scholar
Jasmin, L. & Courville, J. (1987) Distribution of external cuneate nucleus afferents to the cerebellum II. Topographical distribution and zonal pattern. An experimental study with radioactive tracers in the cat. Journal of Comparative Neurology 161:497514. [AMS]Google Scholar
Jeannerod, M. (1988) The neural and behavioural organisation of goal directed movements. Oxford University Press. [aJFS]Google Scholar
Jeannerod, M., Michel, F. & Prablanc, C. (1984) The control of hand movements in a case of hemianaesthesia following a parietal lesion. Brain 107:899920. [aSCG]Google Scholar
Jenner, J. R. & Stephens, J. A. (1982) Cutaneous reflex responses and their central nervous pathways studied in man. Journal of Physiology (London) 333:405–19. [aSCG]Google Scholar
Johansson, R. S. (1991) How is grasping modified by somatosensory input? In: Motor control: Concepts and issues, ed. Humphrey, D. R. & H.-J., Freund. Wiley. [AMG]Google Scholar
Johansson, R. S., Hager, C. & Bäckström, L. (1992a) Somatosensory control of precision grip during unpredictable pulling loads: III. Impairments during digital anesthesia. Experimental Brain Research, in press. [AMG]Google Scholar
Johansson, R. S., Häger, C. & Riso, R. (1992b) Somatosensory control of precision grip during unpredictable pulling loads: II. Changes in load force raste. Experimental Brain Research, in press. [AMG]Google Scholar
Johansson, R. S., Riso, R., Häger, C. & Bäckstrom, L. (1992c) Somatosensory control of precision grip during unpredictable pulling loads: I. Changes in load force amplitude. Experimental Brain Research, in press. [AMG]Google Scholar
Johansson, R. S. & Westling, G. (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research 56:550–64. [aSCG, AMG]Google Scholar
Johansson, R. S. & Westling, G. (1987) Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Experimental Brain Research 66:141–54. [aSCG]Google Scholar
Johansson, R. S. & Westling, G. (1988a) Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Experimental Brain Research 71:5971. [aSCG, AMG]Google Scholar
Johansson, R. S. & Westling, G. (1988b) Programmed and reflex actions to rapid load changes during precision grip. Experimental Brain Research 71:7286. [aSCG, FBH]Google Scholar
Johansson, R. S. & Westling, G. (1990) Tactile afferent signals in the control of precision grip. In: Attention and performance, vol. 13, ed. Jeannerod, M.. Erlbaum. [aSCG, AMG]Google Scholar
Johansson, R. S. & Westling, G. (1991) Afferent signals during manipulative tasks in humans. In: Information processing in the somatosensory system, ed. Franzen, O., & Westman, P.. Macmillan. [AMG]Google Scholar
John, K. T., Goodwin, A. W. & Darian-Smith, I. (1989) Tactile discrimination of thickness. Experimental Brain Research 78:6268. [aSCG]Google Scholar
Johnston, R. M. & Bekoff, A. (1989) Differential modulation of double bursting muscles in the chick. Neuroscience Abstracts 15:1044. [CAP]Google Scholar
Jones, E. G., Coulter, J. D., Burton, H. & Porter, R. (1977) Cells of origin and terminal distribution of corticostriatal fibers arising in the sensorymotor cortex of monkeys. Journal of Comparative Neurology 173:5380. [aGEA]Google Scholar
Jones, E. G. & Powell, T. P. S. (1969) Connections of the somatic sensory cortex of the rhesus monkey. I. Ipsilateral cortical connections. Brain 92:477502. [aJFS]Google Scholar
Jones, E.G. & Powell, T. P. S. (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793820. [BS]Google Scholar
Jones, L. A. (1986) Perception of force and weight: Theory and research. Psychological Bulletin 100:2942. [HER]Google Scholar
Jones, L. A. (1988) Motor illusions: What do they reveal about proprioception? Psychological Bulletin 103:7286. [aSCG]Google Scholar
Jones, L. A. & Hunter, I. W. (1983) Perceived force in fatiguing isometric contractions. Perception and Psychophysics 33:369–74. [aSCG]Google Scholar
Jordan, M. I. (1990) Motor learning and the degrees of freedom problem. In: Attention and performance XIII. Motor representation and control, ed. Jeannerod, M.. Erlbaum. [aGEA, rEB]Google Scholar
Jordan, M. I. & Rumelhart, D. E. (1991) Internal world models and supervised learning. In: Machine learning: Proceedings of the eighth international workshop, ed. Birnbaum, L. & Collins, G.. Kaufmann. [PM]Google Scholar
Judd, J. S. (1988) On the complexity of loading shallow neural networks. Journal of Complexity 4:177–92. [HB]Google Scholar
Jurgens, R., Becker, W. & Korahuber, H. H. (1981) Natural and druginduced variations of velocity and duration of human saccadic eye movements: Evidence for control of the neural pule generator by local feedback. Biological Cybernetics 39:8796. [PQ]Google Scholar
Kaas, J. H., Krubitzer, L. A., Chino, Y. M., Langston, A. L., Polley, E. H. & Blair, N. (1990) Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science 248:229–31. [aGEA]Google Scholar
Kalaska, J. F. (1991a) Parietal cortex area 5: A neuronal representation of movement kinematics for kinaesthetic perception and motor control? In: Brain and space, ed. Paillard, J.. Oxford University Press. [JFK]Google Scholar
Kalaska, J. F. (1991b) Reaching movements to visual targets: Neuronal representations of sensori-motor transformations. Seminars in the Neurosciences 3:6780. [JFK]Google Scholar
Kalaska, J. F., Caminiti, R. & Georgopoulos, A. P. (1983) Cortical mechanisms related to the direction of two-dimensional arm movements: Relations in parietal area 5 and comparison with motor cortex. Experimental Brain Research 51:247–60. [aEB, aEEF]Google Scholar
Kalaska, J. F., Cohen, D. A. D., Hyde, M. L. & Prud'homme, M. (1989) A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. Journal of Neuroscience 9:20802102. [aGEA, aEEF, MH, JFK]Google Scholar
Kalaska, J. F., Cohen, D. A. D., Prud'homme, M. & Hyde, M. L. (1990) Parietal area 5 neuronal activity encodes movement kinematics, not movement dynamics. Experimental Brain Research 80:351–64. [JFK, PM]Google Scholar
Kalaska, J. F. & Crammond, D. J. (1992) Cerebral cortical mechanisms of reaching movements. Science 255:1517–23. [JFK]Google Scholar
Kanda, K. & Desmedt, J. E. (1983) Cutaneous facilitation of large motor units and motor control of human fingers in precision grip. In: Motor control mechanisms in health and disease, ed. Desmedt, J. E.. Raven Press. [aSCG]Google Scholar
Kanda, K. & Sato, H. (1983) Reflex responses of human thigh muscles to nonnoxious sural stimulation during stepping. Brain Research 288:378–80. [aSCG]Google Scholar
Kandel, E. R., Schwartz, J. H. & Jessell, T. M., eds. (1991) Principles of neural science. Elsevier. [CIC]Google Scholar
Kapur, D. & Mundy, J. L., eds. (1989) Geometric reasoning. MIT. [CIC]Google Scholar
Karanjia, P. N. & Ferguson, J. H. (1983) Passive joint position sense after total hip replacement surgery. Annals of Neurology 13:654–57. [aSCG]Google Scholar
Karnath, H. O., Schenkel, P. & Fischer, B. (1991) Trunk-orientation as the determining factor of “contralateral” deficit in neglect syndrome and as the physical anchor of our internal representation of body orientation in space. Brain, in press. [RAA]Google Scholar
Karylo, D. D. & Skavenslci, A. A. (1991) Eye movements elicited by electrical stimulation of area PG in the monkey. Journal of Neurophysiology 65(6):1243–52. [APo]Google Scholar
Kasser, R. J. & Cheney, P. D. (1985) Characteristics of corticomotoneuronal postspike facilitation and reciprocal suppression of EMG activity in the monkey. Journal of Neurophysiology 53:959–78. [aGEA, rEEF]Google Scholar
Katz, P. S., Eigg, M. H. & Harris-Warrick, R. M.(1989) Serotonergic/cholinergic muscle receptor cells in the crab stomatogastric nervous system. 1. Identification and characterization of the gastropyloric receptor cells. Journal of Neurophysiology 62:558–70. [CAP]Google Scholar
Katz, P. S. & Harris-Warrick, R. M. (1989) Serotonergic/cholinergic muscle receptor cells in the crab stomatogastric nervous system. 2. Rapid nicotinic and prolonged modulatory effects on neurons in the stomatogastric ganglion. Journal of Neurophysiology 62:571–81. [CAP]Google Scholar
Katz, P. S. & Harris-Warrick, R. M. (1990) Actions of identified neuromodulatory neurons in a simple motor system. Trends in Neuroscience 13:367–73. [CAP]Google Scholar
Katz, R., Meunier, S. & Pierrot-Deseilligny, E. (1988) Changes in presynaptic inhibition of la fibres in man while standing. Brain 111:417–37. [aSCG]Google Scholar
Kawato, M. (1989) Adaptation and learning in control of voluntary movement by the central nervous system. Advanced Robotics 3:229–49. [ADK]Google Scholar
Kawato, M. (1990) Computational schemes and neural network models for formation and control of multijoint arm trajectory. In: Neural networks for control, ed. Miller, W. T., Sutton, R. S. & Werbos, P. J.. MIT Press. [aGEA]Google Scholar
Kawato, M., Furukawa, K. & Suzuki, R. (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biological Cybernetics 57:169185. [rEB]Google Scholar
Kay, B. A., Saltzman, E. L., Kelso, J. A. S. & Schoner, G. (1987) Space-time behavior of single and bimanual rhythmical movements: Data and limit cycle model. Journal of Experimental Psychology: Human Perception and Performance 13(2): 178–92. [GMa]Google Scholar
Keating, J. G. & Thach, W. T. (1991) The cerebellar cortical area required for adaptation of monkey's “jump” task is lateral, localized and small. Society for Neuroscience Abstracts 17:1381. [MH]Google Scholar
Keele, S. W. (1968) Movement control in skilled motor performance. Psychological Bulletin 70:387403. [aGEA, JBJS, JJS]Google Scholar
Keele, S. W. (1981) Behavioral analysis of movement. In: Handbook of physiology, sect.l. The nervous system, vol. 2. Motor control, part 2, ed. Brookhart, J. M., Mountcastle, V. B., Brooks, V. B. & Geiger, S. R.. American Physiological Society. [aGEA]Google Scholar
Keele, S. W. & Ivry, R. (1990) Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis. Annals of the New York Academy of Sciences 608:179211. [MH]Google Scholar
Keele, S. W. & Summers, J. J. (1976) The structure of motor programs. In: Motor control: Issues and trends, ed. Stelmach, G. E.. Academic Press. [JJS]Google Scholar
Keirstead, S. A. & Rose, P. K. (1988) Monosynaptic projections of single muscle spindle afferents to neck motoneurons in the cat. Journal of Neuroscience 8:3945–50. [GEL]Google Scholar
Keller, A., Arissian, K. & Asanuma, H. (1990) Formation of new synapses in the cat motor cortex following lesions of the deep cerebellar nuclei. Experimental Brain Research 80:2333. [aGEA]Google Scholar
Kelly, T. M., Rubia, F. J., Kolb, F., McAlduff, J. D. & Bloedel, J. R. (1990a) Comparison of simple and complex spike activity in identified sagittal zones of the cat cerebellum during perturbation of the locomotor cycle using a multiunit recording technique. Society for Neuroscience Abstracts 16:637. [aJRB]Google Scholar
Kelly, T. M., Zuo, C.-C. & Bloedel, J. R. (1990b) Classical conditioning of the eyeblink reflex in the decerebrate-decerebellate rabbit. Behavioral and Brain Research 38:718. [arJRB, RFT]Google Scholar
Kelso, J. A. S. (1981) Contrasting perspectives on order and regulation in movement. In: Attention and performance IX, ed. Long, J. & Baddeley, A.. Erlbaum. [JJS]Google Scholar
Kennedy, P. R. (1990) Corticospinal, rubrospinal and rubro-olivary projections: A unifying hypothesis. Trends in Neuroscience 13:474–79. [GJvIS]Google Scholar
Khatib, O. (1987) A unified approach for motion and force control of robot manipulators: The operational space formulation. Journal of Robotics and Automation RA-3(1):4353. [CIC]Google Scholar
Khatib, O. & LeMaitre, L.-F. (1978) Dynamic control of manipulators operating in a complex environment. Proceedings of the Third International CISM-IFToMM Symposium, Udine, Italy, 267–82. [rEB]Google Scholar
Kiendl, H., Krabs, M. & Fritsch, M. (1991) Rule-based modelling of dynamical systems. In: Analysis and control of industrial processes, ed. Popovich, D.. Braunschweig: Langelddecke. [HH]Google Scholar
Kievit, J. & Kuypers, H. G. J. M. (1977) Organization of the thalamo-cortical connexions to the frontal lobe in the rhesus monkey. Experimental Brain Research 29:299322. [aGEA]Google Scholar
Kilbreath, S. L. & Gandevia, S. C. (1992) Is voluntary control of human thumb muscles special? Proceedings of the Australian Neuroscience Society 3:76. [rSCG]Google Scholar
Kim, R., Nakano, K., Jayaraman, A. & Carpenter, M. B. (1976) Projections of the globus pallidus and adjacent structures: An autoradiographic study in the monkey. Journal of Comparative Neurology 169:263–90. [aGEA]Google Scholar
Kimura, M. (1986) The role of primate putamen neurons in the association of sensory stimuli with movement. Neuroscience Research 3:436–43. [aGEA]Google Scholar
Kimura, M. (1990) Behaviorally contingent property of movement-related activity of the primate putamen. Journal of Neurophysiohgy 63(6): 1277–96. [CIC]Google Scholar
Kirkwood, P. A. & Sears, T. A. (1991) Cross-correlation analyses of motoneuron inputs in a coordinated motor act. In: Neuronal coperativity, ed. Kruger, J.. Springer-Verlag. [PAK]Google Scholar
Kirsch, R. F. & Rymer, W. Z. (1987) Neural compensation for muscular fatigue: Evidence for significant force regulation in man. Journal of Neurophysiohgy 57:18931910. [DBul]Google Scholar
Kitai, S. T. (1981) Electrophysiology of the corpus striatum and brain stem integrating systems. In: Handbook of physiology: The nervous system. Motor control, sect. 1, vol. 2, pt. 2, ed. J. M. Brookhart, V. B. Mountcastle, V. B. Brooks & S. R. Geiger. American Physiological Society. [aGEA]Google Scholar
Kleinschmidt, A., Bear, M. F. & Singer, W. (1987) Blockade of “NMDA”. receptors disrupts experience-dependent plasticity of kitten striate cortex. Science 238:355–58. [aGEA]Google Scholar
Knapp, J. D., Taub, E. & Berman, A. J. (1963) Movements in monkeys with deafferented forelimbs. Experimental Neurology 7:305–15. [aSCG]Google Scholar
Knibestöl, M. (1975) Stimulus response functions of slowly adapting mechanoreceptors in the human glabrous skin area. Journal of Physiology (London) 243:6380. [aSCG]Google Scholar
Koch, C. & Segev, I. (1989) Methods in neuronal modeling: From synapses to networks. MIT Press. [rGEA, DJ]Google Scholar
Koditschek, D. E. (1987) Exact robot navigation by means of potential functions: Some topological considerations. In: Proceedings of the 1987 IEEE International Conference on Robotics and Automation 3. Institute of Electrical and Electronics Engineers Computer Society Press. [CIC]Google Scholar
Koditschek, D. E. (1989) Robot planning and control via potential functions. In: The robotics review, ed. Khatib, O., Craig, J. J. & T., Lozano-Perez. MIT Press. [rEB]Google Scholar
Kohonen, T. (1982) Self-organized formation of topologically correct feature maps. Biological Cybernetics 43:5969. [aEEF, PM]Google Scholar
Kornhuber, H. H. & Deecke, L. (1965) Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Archiv 284:117. [MEI]Google Scholar
Koshland, G. F., Gerilovsky, L. & Hasan, Z. (1991) Activity of wrist muscles elicited during imposed or voluntary movements about the elbow joint. Journal of Motor Behavior 23:91100. [ZH]Google Scholar
Koshland, G. F. & Smith, J. L. (1989) Mutable and immutable features of paw-shake responses after hindlimb deafferentiation in the cat. Journal of Neurophysiohgy 62:162–73. [aSCG]Google Scholar
Kotlyar, B. I., Mayorov, V. I., Timofeyeva, N. O. & Shul'govsky, V. V. (1983) Neuronal organization of conditioned behavior. Nauka. [MEI]Google Scholar
Krieger, C., Shinoda, Y. & Smith, A. M. (1985) Labeling of cerebellar mossy fiber afferents with intraaxonal horseradish peroxidase. Experimental Brain Research 59:414–17. [AMS]Google Scholar
Krogh, B. H. (1984) A generalized potential field approach to obstacle avoidance control. In: Robotics research: The next five years and beyond, ed. Society of Manufacturing Engineers. [CIC]Google Scholar
Krommenhoek, K. P., Van Opstal, A. J., Gielen, C. C. A. M. & Van Gisbergen, J. A. M. (1992) Remapping of neural activity in the motor colliculus: A neural network study, submitted. [JAMVG]Google Scholar
Krubitzer, L. A. & Kaas, J. H. (1990) Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns. Visual Neuroscience 5:165204. [RE]Google Scholar
Kugler, P. N. & Turvey, M. T. (1987) Information, natural law and the selfassembly of rhythmic movement. Erlbaum. [JJS]Google Scholar
Kunesch, E., Binkofski, F. & Freund, H.-J. (1989) Invariant temporal characteristics of manipulative hand movements. Experimental Brain Research 78:539–46. [aSCG]Google Scholar
Kunzle, H. (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Research 88:195209. [aGEA]Google Scholar
Kunzle, H. (1977) Projections from the primary somatosensory cortex to basal ganglia and thalmus in the monkey. Experimental Brain Research 30:481–92. [aGEA]Google Scholar
Kunzle, H. (1978) An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain, Behavior and Evolution 15:185234. [aGEA, MSG]Google Scholar
Kuo, A. D. & Zajac, F. E. (1992) An analysis of the effect of muscle strength on the coordination of standing posture. Journal of Biomechanics, in press. [ADK]Google Scholar
Kuo, B. C. (1987) Automatic control systems (fifth ed.). Prentice-Hall. [GCA]Google Scholar
Kuperstein, M. (1988) Neural model of adaptive eye-hand coordination for single postures. Science 239:1308–11. [aGEA, aEEF]Google Scholar
Kuperstein, M. (1991) INFANT neural controller for adaptive sensory-motor coordination. Neural Networks 4:131–47. [PM]Google Scholar
Kupfermann, I., Deodhar, D., Teyke, T., Rosen, S. C., Nagahama, T. & Weiss, K. R. (1992) Acta Biologica Hungarica 43:315–28. [IK]Google Scholar
Kupfermann, I. & Weiss, K. R. (1978) The command neuron concept. Behavioral and Brain Sciences 1:339. [IK]Google Scholar
Kurata, K. & Tanji, J. (1985) Contrasting neuronal activity in supplementary and precentral motor cortex of monkeys. II. Responses to movement triggering vs. nontriggering sensory signals. Journal of Neurophysiohgy 53:142–52. [aGEA]Google Scholar
Kurata, K. & Wise, S. P. (1988) Premotor cortex of rhesus monkeys: Setrelated activity during two conditional motor tasks. Experimental Brain Research 69:327–43. [aGEA]Google Scholar
Kurylo, D. D. & Skavenski, A. A. (1991) Eye movements elicited by electrical stimulation of area PG in the monkey. Journal of Neurophysiohgy 65:1243–53. [JWG]Google Scholar
Kwan, H. C. (1988) Network relaxation as behavioral action. Research in Biological and Computational Vision, Departments of Computer Science and Physiology, University of Toronto. Technical Report No. RBCVTR-88–26. [DSB]Google Scholar
Kwan, H. C., Yeap, T. H., Jiang, B. C. & Borrett, D. S. (1990) Neural network control of simple limb movements. Canadian Journal of Physiology and Pharmacology 68:126–30. [aGEA, DSB]Google Scholar
LaBella, L., Kehler, J. & McCrea, D. (1989) Differential synaptic input to the motor nuclei of triceps surae from the caudal and lateral sural nerves. Journal of Neurophysiohgy 61:291301. [aDAM]Google Scholar
LaBella, L. & McCrea, D. (1990) Evidence for restricted central convergence of cutaneous afferents upon a short-latency excitatory pathway to medial gastrocnemius motoneurons. Journal of Neurophysiohgy 64:403–12. [aDAM]Google Scholar
Lacquaniti, F., Borghese, N. A. & Carrozzo, M. (1991) Transient reversal of the stretch reflex in human arm muscles. Journal of Neurophysiohgy 66:939–54. [FL]Google Scholar
Lacquaniti, F., Borghese, N. A. & Carrozzo, M. (1992) Internal models of limb geometry in the control of hand compliance. Journal of Neuroscience 12:1750–62. [FL]Google Scholar
Lacquaniti, F. & Soechting, J. F. (1986) EMG responses to load perturbations of the upper limb: Effect of dynamic coupling between shoulder and elbow motion. Experimental Brain Research 61:482–96. [ZH]Google Scholar
Lal, R. & Friedlander, M. J. (1989) Gating of retinal transmission by afferent eye position and movement signals. Science 243:9396. [APo]Google Scholar
Laming, D. (1986) Sensory analysis. Academic Press. [HER]Google Scholar
Lan, N. & Crago, P. E. (1991) Optimal control of muscle stiffness for FNS induced arm movements. Proceedings of IEEE/EMBS International Conference 13(2):920s–21. [NL]Google Scholar
Lanman, J., Bizzi, E. & Allum, J. (1978) The coordination of eye and head movement during smooth pursuit. Brain Research 153:3953. [aEB]Google Scholar
Laporte, Y. & Lloyd, D. P. C. (1952) Nature and significance of the reflex connections established by large afferent fibers of muscular origin. American Journal of Physiology 169:609–21. [DBul]Google Scholar
Lashley, K. S. (1951) The problem of serial order in behavior. In: Cerebral mechanisms in behavior, ed. Jeffress, L. A.. Wiley. [AMG]Google Scholar
Latash, M. L. & Gottlieb, G. L. (1990) Compliant characteristics single joint: Preservation of equifinality with phasic reaction. Biological Cybernetics 62:331–36. [SRG, MLL]Google Scholar
Latash, M. L. & Gottlieb, G. L. (1991a) An equilibrium-point model for fast single-joint movement. I. Emergence of strategy-dependent EMG patterns. Journal of Motor Behavior 23:163–78. [GLG]Google Scholar
Latash, M. L. & Gottlieb, G. L. (1991b) An equilibrium-point model for fast single-joint movement. II. Similarity of single-joint isometric and isotonic descending commands. Journal of Motor Behavior 23:179–91. [GLG]Google Scholar
Latash, M. L. & Gottlieb, G. L. (1991c) Reconstruction of elbow joint complaint characteristics during fast and slow voluntary movement. Neuroscience 43:697712. [SVA, GLG, SRG, ZH, MLL, NL, JBJS]Google Scholar
Lauritis, V. P. & Robison, D. A. (1986) The vestibulo-ocular reiex during human saccadic eye movements. Journal of Physiology (London) 373:209–33. [RAA]Google Scholar
Lavond, D. G., Kanzawa, S. A., Esquenazi, V., Clark, R. E. & Zhang, A. A. (1990) Effects of cooling interpositus during acquisition of classical conditioning. Society for Neuroscience Abstracts 16:270. [rJRB, RFT]Google Scholar
Lawrence, D. G. & Kuypers, H. G. J. M. (1968) The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brainstem pathways. Brain 91:36. [rEEF, MEI, AL]Google Scholar
Leclerc, N., Dore, L., Parent, A. & Hawkes, R. (1990) The compartmentalization of the monkey and rat cerebellar cortex: Zebrin I and cytochrome oxidase. Brain Research 506:7078. [aJRB]Google Scholar
Lee, R. G., Murphy, J. T. & Tatton, W. G. (1983) Long-latency myotatic reflexes in man: Mechanisms, functional significance, and changes in patients with Parkinson's disease or hemiplegia. In: Motor control mechanisms in health and disease, ed. Desmedt, J. E.. Raven Press. [aSCG]Google Scholar
Lee, D. N. & Thomson, J. A. (1982) Vision in action: The control of locomotion. In: Analysis of visual behavior, ed. Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.. MIT Press. [DPC]Google Scholar
Lehky, S. R. & Sejnowski, T. J. (1988) Network model of shape-from-shading: Neural function arises from both receptive and projective fields. Nature 333:452–54. [HB, GS]Google Scholar
Leiner, H. C., Leiner, A. L. & Dow, R. S. (1986) Does the cerebellum contribute to mental skills? Behavioral Neuroscience 100:443–54. [aJRB]Google Scholar
Leiner, H. C., Leiner, A. L. & Dow, R. S. (1989) Reappraising the cerebellum. What does the hindbrain contribute to mental skills? Behavioral Neuroscience 103:9981008. [cJFS]Google Scholar
Leinonen, L., Hyvarinen, J., Nyman, G. & Linnankoski, I. (1979) Functional properties of neurons in lateral part of associative area 7 in awake monkey. Experimental Brain Research 34:203–15. [MSG, JFK]Google Scholar
Leinonen, L. & Nyman, G. (1979) II. Functional properties of cells in anterolateral part of area 7 Associative face area of awake monkeys. Experimental Brain Research 34:321–33. [MSG]Google Scholar
Lemon, R. N. (1981) Variety of functional organization within the monkey motor cortex. Journal of Physiology (London) 311:521–40. [cSCG]Google Scholar
Lemon, R. N. (1990) Mapping the output functions of the motor cortex. In: Signal and Sense: Local and global order in perceptual maps. eds. Edelman, G., Gall, E., & Cowan, W. W.. 12:315–56. Wiley. [RL]Google Scholar
Lemon, R. N., Bennett, K. M. B. & Werner, W. (1991) The cortico-motor substrate for skilled movements of the primate hand. In: Tutorials on motor neuroscience, vol. 62, ed. Stelmach, G. E. & Requin, J.. Kluwer. [RL]Google Scholar
Lemon, R. N., Hanby, J. A. & Porter, R. (1976) Relationship between the activity of precentral neurones during active and passive movements in conscious monkeys. Proceedings of the Royal Society London B 194:341–73. [cSCG]Google Scholar
Lemon, R. N. & Mantel, G. W. H. (1989) The influence of changes in discharge frequency of corticospinal neurones on hand muscles in the monkey. Journal of Physiology 413:351–78. [PAK, RL]Google Scholar
Lemon, R. N., Mantel, G. W. H. & Muir, R. B. (1986) Corticospinal facilitation of hand muscles during voluntary movement in the conscious monkey. Journal of Physiology (London) 381:497527. [aGEA, aEEF]Google Scholar
Lestienne, F. & Gurfinkel, V. S. (1988) In: Vestibulospinal control of posture and locomotion, ed. O. Pompeiano & J. Allum. Progress in Brain Research 76:307–13. [aJRB]Google Scholar
Lestienne, F., Polit, A. & Bizzi, E. (1981) Functional organization of the motor process underlying the transition from movement to posture. Brain Research 230:121–31. [MH]Google Scholar
Levine, D. S. (1991) Introduction to neural and cognitive modeling. Erlbaum. [DSL]Google Scholar
Levine, M. S. & Lackner, J. R. (1979) Some sensory and motor factors influencing the control and appreciation of eye and limb position. Experimental Brain Research 36:275–83. [aSCG]Google Scholar
Libet, B. (1985) Unconscious cerebral initiative and the role of conscious will in voluntary action. Behavioral and Brain Sciences 8:529–66. [aSCG]Google Scholar
Libet, B., Gleason, C. A., Wright, E. W. & Pearl, D. K. (1983) Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain 106:623–42. [aSCG]Google Scholar
Libet, B., Wright, E. W., Finestin, B. & Pearl, D. K. (1979) Subjective referral of timing for a conscious sensory experience. A functional role for the somatosensory specific projection system in man. Brain 102:193224. [aSCG]Google Scholar
Lichtman, J. W., Jhaveri, S. & Frank, E. (1984) Anatomical basis of specific connections between sensory axons and motor neurons in the brachial spinal cord of the bullfrog. Journal of Neuroscience 4:1754–63. [GEL]Google Scholar
Liddell, E. G. T. & Sherrington, C. S. (1924) Reflexes in response to stretch (myotatic reflexes). Proceedings of the Royal Society 96B:212–42. [TRN]Google Scholar
Liles, S. L. (1983) Activity of neurons in the putamen associated with wrist movements in the monkey. Brain Research 263:156–61. [aGEA]Google Scholar
Liles, S. L. (1985) Activity of neurons in putamen during active and passive movements of wrist. Journal of Neurophysiology 53:217–36. [aGEA]Google Scholar
Liles, S. L. & Updyke, B. (1985) Projection of the digit and wrist area of precentral gyrus to the putamen: Relation between topography and physiological properties of neurons in the putamen. Brain Research 339:245–55. [aGEA]Google Scholar
Lindsay, A. D. & Binder, M. D. (1991) Distribution of effective synaptic currents underlying recurrent inhibition in cat triceps surae motoneurons. Journal of Neurophysiology 65:168–77. [TMH]Google Scholar
Linsker, R. (1990) Perceptual neural organization: Some approaches based on network models and information theory. Annual Review of Neuroscience 13:257–81. [acGEA]Google Scholar
Lisberger, S. G. (1988a) The neural basis for learning of simple motor skills. Science 242:728–35. [PFCG, FBH]Google Scholar
Lisberger, S. G. (1988b) The neural basis for motor learning in the vestibulo-ocular reflex in monkeys. Trends in Neuroscience 11:147–52. [arJRB, cJFS, PFCG]Google Scholar
Lisberger, S. G., Broussard, D. M. & Bronte-Stewart, H. M. (1990) Properties of pathways that mediate motor learning in the vestibuloocular reflex of monkeys. Cold Spring Harbor Symposia on Quantitative Biology 55:813–22. [rJRB]Google Scholar
Lisberger, S. G. & Fuchs, A. F. (1978a) Role of primate flocculus during rapid behavioral modification of vestibulo-ocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. Journal of Neurophysiology 41:733–63. [aJRB]Google Scholar
Lisberger, S. G. & Fuchs, A. F. (1978b) Role of primate flocculus during rapid behavioral modification of vestibulo-ocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. Journal of Neurophysiology 41:764–77. [aJRB]Google Scholar
Lisberger, S. G. & Pavelko, T. A. (1988) Brain stem neurons in modified pathways for motor learning in the primate vestibulo-ocular reflex. Science 242:728–30. [rJRB]Google Scholar
Litvan, I., Grafman, J., Massaquoi, S., Stewart, M., Sirigu, A. & Hallett, M. (1991) Cognitive planning deficit in patients with cerebellar degeneration. Neurology 41 (suppl. 1):225. [MH]Google Scholar
Llewellyn, M., Yang, J. & Prochazka, A. (1990) Human h-reflexes are smaller in difficult beam walking than in normal treadmill walking. Experimental Brain Research 187:321–33. [APr]Google Scholar
Llinas, R. (1990) Grass lecture in neuroscience. Conference presented at the University of Montreal. [AB]Google Scholar
Llinas, R. & Muhlethaler, M. (1988) Electxophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. Journal of Physiology 404:241–58. [aJRB]Google Scholar
Llinas, R. & Sasaki, K. (1989) The functional organization of the olivocerebellar system as examined by multiple Purkinje cell recordings. European Journal of Neuroscience 1:587602. [aJRB]Google Scholar
Lloyd, D. P. C. (1943) Conduction and synaptic transmission of the reflex response to stretch in spinal cats. Journal of Neurophysiology 6:317–26. [DBul]Google Scholar
Lloyd, D. P. C. (1946) Integrative pattern of excitation and inhibition in two-neuron reflex arcs. Journal of Neurophysiology 9:439–44. [TRN]Google Scholar
Lockery, S. R., Fang, Y. & Sejnowski, T. J. (1990) A dynamical neural network model of sensorimotor transformations in the leech. Neural Computation 2:274–82. [rEEF]Google Scholar
Loeb, E. P., Giszter, S. F., Bizzi, E. & Borghesani, P. R. (1992) Effects of dorsal root cut on the forces evoked by spinal microstimulation in the spinalized frog. Somatosensory & Motor Research, submitted. [rEB]Google Scholar
Loeb, G. E. (1983) Finding common ground between robotics and physiology (letter to the editor). Trends in Neuroscience 6:203–4. [aGEA]Google Scholar
Loeb, G. E. (1984) The control and responses of mammalian muscle spindles during normally executed motor tasks. Exercise Sport Sciences Reviews 12:157204. [aSCG]Google Scholar
Loeb, G. E. (1987) Hard lessons in motor control from the mammalian spinal cord. Trends in Neuroscience 10:108–12. [aDAM]Google Scholar
Loeb, G. E., Bak, M. J. & Duysens, J. (1977) Long-term unit recording from somatosensory neurons in the spinal ganglia of the freely walking cat. Science 197:1192–94. [aSCG]Google Scholar
Loeb, G. E., He, J. & Levine, W. S. (1989) Spinal cord circuits: Are they mirrors of musculoskeletal mechanics? Journal of Motor behavior 21:473–91, [GEL, CAP]Google Scholar
Loeb, G. E., Hoffer, J. A. & Marks, W. G. (1985) Activity of spindle afferents from cat anterior thigh muscles. 3. Effects of external stimuli. Journal of Neurophysiology 54:578–91. [CAP]Google Scholar
Loeb, G. E. & Levine, W. S. (1990) Linking musculoskeletal mechanics to sensorimotor neurophysiology. In: Multiple muscle systems: Biomechanics and movement organization, ed. Winters, J. M. & Woo, S. L.-Y.. Springer-Verlag. [TMH]Google Scholar
Logan, C. G. (1991) Cerebellar cortical involvement in excitatory and inhibitory classical conditioning. Doctoral Dissertation, Stanford University. [RFT]Google Scholar
Long, C. & Brown, M. E. (1962) Electromyographic kinesiology of the hand: Part III. Lumbricalis and flexor digitorum profundus to the long finger. Archives of Physical Medicine & Rehabilitation 43:450–60. [aSCG]Google Scholar
Lou, J.-S. & Bloedel, J. R. (1986) The responses of simultaneously recorded Purkinje cells to perturbations of the step cycle in the walking ferret: A study using a new analytical method – the real time postsynaptic response (RTPR). Brain Research 365:340–44. [arJRB]Google Scholar
Lou, J.-S. & Bloedel, J. R. (1988) A new conditioning paradigm: Conditioned limb movement in locomoting decerebrate ferrets. Neuroscience Letters 84:185–90. [aJRB]Google Scholar
Lou, J.-S. & Bloedel, J. R. (1992) Responses of sagittally-aligned Purkinje cells during perturbed locomotion. I. Synchronous activation of climbing fiber inputs. Journal of Neurophysiology, in press. [rJRB]Google Scholar
Low, P. A. (1984) Quantitation of muscle contraction strength. In: Peripheral neuropathy, ed. Dyck, P. J., Thomas, P. K., Lambert, E. H. & Bunge, R.. Saunders. [PRC]Google Scholar
Lozano-Perez, T. (1981) Automatic planning of manipulator transfer movements. IEEE Transactions on Systems, Man, and Cybernetics, SMC-11(10):681–98. [CIC]Google Scholar
Lund, S. & Broberg, C. (1983) Effects of different head positions on postural sway in man induced by a reproducible vestibular error signal. Acta Physiologica Scandinavica 117:307–9. [VD]Google Scholar
Lundberg, A. (1979a) Multisensory control of spinal reflex pathways. Progress in Brain Research 50:1128. [aDAM]Google Scholar
Lundberg, A. (1979b) Integration in a propriospinal motor centre controlling the forelimb in the cat. In: Integration in the nervous system, ed. Asanuma, H. & Wilson, V. J.. Tokyo: Igaku-shoin. [aDAM]Google Scholar
Lundberg, A. (1982) Inhibitory control from the brain stem of transmission from primary afferents to motoneurons, primary afferent terminals and ascending pathways. In: Brain stem control of spinal mechanisms, ed. Sjölund, B. & Björklund, A.. Elsevier. [arDAM]Google Scholar
Lundberg, A. & Malmgren, K. (1988) The dynamic sensitivity of Ib inhibition. Acta Physiologica Scandinavica 133:123–24. [aDAM, TRN]Google Scholar
Lundberg, A., Malmgren, K. & Schomburg, E. D. (1977) Cutaneous facilitation of transmission in reflex pathways from Ib afferents to motoneurones. Journal of Physiology (London) 265:763–80. [aDAM, aSCG]Google Scholar
Lundberg, A., Malmgren, K. & Schomburg, E. D. (1987a) Reflex pathways from group II muscle afferents. 2. Functional characteristics of reflex pathways to alpha-motoneurones. Experimental Brain Research 65:282–93. [aDAM]Google Scholar
Lundberg, A., Malmgren, K. & Schomburg, E. D. (1987b) Reflex pathways from group II muscle afferents. 3. Secondary spindle afferents and the FRA: A new hypothesis. Experimental Brain Research 65:294306. [aDAM, AL]Google Scholar
Lundberg, A. & Voorhoeve, P. E. (1961) Pyramidal activation of interneurones of various spinal reflex arcs in the cat. Experientia 17:46. [AL]Google Scholar
Luria, A. R. & Homskaya, E. D. (1964) Disturbance in the regulative role of speech with frontal lobe lesions. In: The Frontal granular cortex and behavior, ed. Warren, J. M. & Akert, K.. McGraw Hill. [JMF]Google Scholar
Lynch, J. C. (1980) The functional organization of posterior parietal association cortex. Behavioral and Brain Sciences 3:485534. [aJFS]Google Scholar
Lynch, J. C., Mountcastle, V. B., Talbot, W. H. & Yin, T. C. T. (1977) Parietal lobe mechanisms for directed visual attention. Journal of Neurophysiology 40:362–89. [aJFS]Google Scholar
Lynch, J. C. & McClaren, J. W. (1989) Deficits of visual attention and saccadic eye movements after lesions of parieto-occipital cortex in monkeys. Journal of Neurophysiology 61:7490. [aJFS, JWG]Google Scholar
Macefield, G. & Burke, D. (1990) Long-lasting depression of central synaptic transmission following prolonged high-frequency stimulation of cutaneous afferents: A mechanism for post-vibratory hypaesthesia. Eledroencephalography and Clinical Neurophysiology 78:150–58. [aSCG]Google Scholar
Macefield, G., Gandevia, S. C., Bigland-Ritchie, B., Gorman, R. & Burke, D. (1991) The discharge rate of human motoneurones innervating ankle dorsiflexors in the absence of muscle afferent feedback. Journal of Physiology 438:219P. [rSCG]Google Scholar
Macefield, G., Gandevia, S. C. & Burke, D. (1990) Perceptual responses to microstimulation of single afferents innervating joints, muscles and skin of the human hand. Journal of Physiology (London) 429:113–29. [aSCG]Google Scholar
Mackay, R. P. (1954) Toward a neurology of behavior. Neurology 4:894901. [JMF]Google Scholar
MacKay, W. A. (1982) The motor system controls what it senses. A commentary on What muscle variable(s) does the nervous system control in limb movements? by R. B. Stein. Behavioral and Brain Sciences 5:535–77. [PRB]Google Scholar
MacKay, W. A. (1988a) Cerebellar nuclear activity in relation to simple movements. Experimental Brain Research 71:4758. [WAM]Google Scholar
MacKay, W. A. (1988b) Unit activity in the cerebellar nuclei related to arm reaching movements. Brain Research 442:240–54. [aJRB]Google Scholar
MacKay, W. A. & Crammond, D. J. (1987) Neuronal correlates in posterior parietal lobe of the expectation of events. Behavioral Brain Research 24:167–79. [JFK]Google Scholar
MacKay, W. A. & Murphy, J. T. (1979) Cerebellar modulation of reflex gain. Progress in Neurobiology 13:361417. [aJRB, aSCG, cJFS]Google Scholar
MacKay, W. A. & Riehle, A. (1992) Planning a reach: Spatial analysis by area 7a neurons. In: Tutorials in motor behavior 2, ed. Stelmach, G. & Requin, J.. Elsevier. [WAM]Google Scholar
Mackey, M. C. & Glass, L. (1977) Oscillation and chaos in physiological control systems. Science 197:287–89. [DSB]Google Scholar
Mackey, M. C. & Milton, J. G. (1990) Feedback, delays and the origin of blood cell dynamics. Comments in Theoretical Biology 1(5): 299327. [AB]Google Scholar
Macpherson, J. M. (1988) Strategies that simplify the control of quadrupedal stance. II. Electromyographic activity. Journal of Neurophysiology 60:218–31. [aDAM, MLL, GMc, CAP]Google Scholar
Maes, P. (1991a) Learning behavior networks from experience. Proceedings of the first European Conference on Artificial Life. MIT Press. [SG]Google Scholar
Maes, P. (1991b) A bottom-up mechanism for behavior selection in an artificial creature. In: From animals to animats, ed. Meyer, J. A. & Wilson, S.. MIT Press. [SG]2Google Scholar
Magnussen, M., Enbom, H., Johansson, R. & Wiklund, J. (1990) Significance of pressor input from the human feet in lateral postural control. Acta Otolaryngology 110:321–27. [JDu]Google Scholar
Mahowald, M. & Douglas, R. (1991) A silicon neuron. Nature (London) 354:515–18. [rGEA]Google Scholar
Mai, N., Bolsinger, P., Avarello, M., Diener, H.-C. & Dichgans, J. (1988) Control of isometric finger force in patients with cerebellar disease. Brain 111:973–98. [aJRB]Google Scholar
Malamud, J. G. & Nichols, T. R. (1992) Short-range stiffness is high in slowtwitch muscle. Biophysical Journal 61:A294. [TRN]Google Scholar
Maimgren, K. & Pierrot-Deseilligny, E. (1988a) Evidence for nonmonosynaptic Ia excitation of human wrist flexor motoneurones, possibly via propriospinal neurones. Journal of Physiology (London) 405:747–64. [DBur, AL]Google Scholar
Maimgren, K. & Pierrot-Deseilligny, E. (1988b) Inhibition of neurones transmitting non-monosynaptic la excitation to human wrist flexor motoneurones. Journal of Physiology (London) 405:765–83. [aSCG, AL]Google Scholar
Mano, N.-I., Kanazawa, I. & Yamamoto, K.-I. (1986) Complex spike activity of cerebellar Purkinje cells related to wrist-tracking movement in monkey. Journal of Neurophysiology 56:137–58. [aJRB]Google Scholar
Manor, R. S., Heilbronn, Y. D., Sherf, I. & Ben-Sira, I. (1988) Loss of accommodation produced by peristriate lesion in man? Journal of Clinical Neuro-ophthalmology 8(1):19s–23. [JWG]Google Scholar
Mantel, G. W. H. & Lemon, R. N. (1987) Cross-correlation reveals facilitation of single motor units in thenar muscles by single corticospinal neurones in the concious monkey. Neuroscience Letters 77:113–18. [PAK]Google Scholar
Mao, C. C., Ashby, P., Wang, M. & McCrea, D. (1984) Synaptic connections from large muscle afferents to the motoneurones of various leg muscles in man. Experimental Brain Research 56:341–50. [aSCG]Google Scholar
Marani, E. (1981) Enzyme histochemistry. In: Methods in neurobiology, vol. I, ed. Lahue, R.. Plenum Press. [NHB]Google Scholar
Marani, E. & Voogd, J. (1977) An acetylcholinesterase band-pattern in the molecular layer of the cat cerebellum. Journal of Anatomy 124:335–45. [NHB]Google Scholar
Marchetti-Gauthier, E., Meziane, H., Devigne, C. & Soumireu-Mourat, B. (1990) Effects of bilateral lesions of the cerebellar interpositus nucleus on the conditioned forelimb flexion reflex in mice. Neuroscience Letters 120:3437. [rJRB]Google Scholar
Marple-Horvat, D. & Stein, J. F. (1987) Cerebellar neuronal activity related to arm movements in trained rhesus monkeys. Journal of Physiology (London) 394:351–66. [aJRB]Google Scholar
Marr, D. (1969) A theory of cerebellar cortex. Journal of Physiology 202:437–70. [VB, PFCG, RFT]Google Scholar
Marr, D. (1982) Vision. Freeman. [rGEA, HH, GS, IT]Google Scholar
Marr, D. C. & Poggio, T. (1977) From understanding computation to understanding neural circuitry. Neuroscience Research Progress Bulletin 15:470–88. [PDN]Google Scholar
Marsden, C. D. (1982) The mysterious motor function of the basal ganglia: The Robert Wartenburg lecture. Neurology 32:514–39. [aGEA]Google Scholar
Marsden, C. D. (1984) Which motor disorder in Parkinson's disease indicates the true motor function of the basal ganglia? In: Functions of the basal ganglia, ed. Evered, D. & M., O'Connor. Pitman. [JJS]Google Scholar
Marsden, C. D. (1987) What do the basal ganglia tell premotor cortical areas? Ciba Foundation Symposium 132:282300. [RI]Google Scholar
Marsden, C. D., Obeso, J. A. & Rothwell, J. C. (1983) The function of the antagonistic muscle during fast limb movements in man. Journal of Physiology (London) 335:113. [NL]Google Scholar
Marsden, C. D., Rothwell, J. C. & Day, B. L. (1983) Long-latency automatic responses to muscle stretch in man: Origin and function. In: Motor control mechanisms in health and disease, ed. Desmedt, J. E.. Raven Press. [aSCG]Google Scholar
Marshall, K. & Xiong, H. (1991) Modulation of amino acid rieurotransmitter actions by other neurotransmitters: Some examples. Canadian Journal of Physiology and Pharmacology 69:1115–22. [aDAM]Google Scholar
Martin, J. H. & Ghez, C. (1985) Task-related coding of stimulus and response in cat motor cortex. Experimental Brain Research 57:427–42. [aEEF]Google Scholar
Martin, L. & Müller, G. E. (1899) Zur Analyse der Unterschiedsempfindlichkeit. Barth. [AMG]Google Scholar
Martino, A. M. & Strick, P. L. (1987) Corticospinal projections originate from the arcuate premotor area. Brain Research 404:307–12. [aGEA]Google Scholar
Massaquoi, S. G. & Hallett, M. (1991) The kinematics of the decomposition of two joint arm movement initiation in normals and patients with cerebellar ataxia. Society for Neuroscience Abstracts 17:1381. [MH]Google Scholar
Massone, L. & Bizzi, E. (1989) A neural network model for limb trajectory formation. Biological Cybernetics 61:417–25. [aGEA, AAF]Google Scholar
Matelli, M., Luppino, G., Fogassi, L. & Rizzolatti, G. (1989) Thalamic input to inferior area 6 and area 4 in the macaque monkey. Journal of Comparative Neurology 280:468–88. [aGEA]Google Scholar
Matheson, J., Hallett, M., Berardelli, A., Weinhaus, R. & Inzucchi, S. (1985) Failure to confirm a correlation between electromyogram and final position. Human Neurobiology 4:257–60. [MH]Google Scholar
Matthews, P. B. C. (1959) The dependence of tension upon extension in the stretch reflex of the soleus of the decerebrate cat. Journal of Physiology 47:521–46. [MLL]Google Scholar
Matthews, P. B. C. (1972) Mammalian muscle receptors and their central actions. Williams & Wilkins. [aEB, aSCG, RBS]Google Scholar
Matthews, P. B. C. (1982) Where does Sherrington's “muscular sense” originate? Muscles, joints, corollary discharges? Annual Review of Neuroscience 5:189218. [aSCG]Google Scholar
Matthews, P. B. C. (1984) Evidence from the use of vibration that the human long-latency stretch reflex depends upon spindle secondary afferent. Journal of Physiology (London) 348:383415. [aSCG]Google Scholar
Matthews, P. B. C. (1988) Proprioceptors and their contribution to somatosensory mapping: Complex messages require complex processing. Canadian Journal of Physiology and Pharmacology 66:403–38. [aSCG]Google Scholar
Matthews, P. B. C. (1989) Long-latency stretch reflexes of two intrinsic muscles of the human hand analysed by cooling the arm. Journal of Physiology (London) 419:519–38. [aSCG]Google Scholar
Matthews, P. B. C. (1991) The human stretch reflex and the motor cortex. Trends in Neurosciences 14:8791. [aSCG]Google Scholar
Matthews, P. B. C. & Stein, R. B. (1969) The sensitivity of muscle spindle afferents to small sinusoidal changes of length. Journal of Physiology (London) 200:723–43. [aEB]Google Scholar
Mauk, M. D. & Thompson, R. F. (1987) Retention of classically conditioned eyelid responses following acute decerebration. Brain Research 403:8995. [rJRB, RFT]Google Scholar
Maunsell, J. H. R. & Newsome, W. T. (1987) Visual processing in monkey extrastriate cortex. Annual Review of Neuroscience 10:363401. [cGEA]Google Scholar
Mayorov, V. I., Savchenko, E. I. & Kotlyar, B. I. (1977) Transformation of tactile afferent stimulus into motor command in the motor cortex in the cat. Neurofisiologia 9:115–23. [MEI]Google Scholar
Mays, L. E. & Sparks, D. L. (1980) Dissociation of visual and saccade-related responses in superior colliculus neurons. Journal of Neurophysiology 43:207–32. [aDAR, aJFS, JWG]Google Scholar
Mazzini, L. & Schieppati, M. (1992) Activation of the neck muscles from the ipsi- or contralateral hemisphere during voluntary head movements in humans. A reaction time study. Electroencephalography and Clinical Neurophysiology, in press. [MS]Google Scholar
McCloskey, D. I. (1973) Differences between the senses of movement and position shown by the effects of loading and vibration of muscles in man. Brain Research 61:119–31. [aSCG]Google Scholar
McCloskey, D. I. (1978) Kinesthetic sensibility. Physiological Reviews 58:763820. [aSCG]Google Scholar
McCloskey, D. I. (1981) Corollary discharges: Motor commands and perception. In: Handbook of physiology. The nervous system, vol. 3, Motor control, ed. Brooks, V. B.. American Physiological Society. [aSCG]Google Scholar
McCloskey, D. I., Colebatch, J. G., Potter, E. K. & Burke, D. (1983a) Judgments about onset of rapid voluntary movements in man. Journal of Neurophysiology 49:851–63. [aSCG]Google Scholar
McCloskey, D. I., Cross, M. J., Honner, R. & Potter, E. K. (1983b) Sensory effects of pulling or vibrating exposed tendons in man. Brain 106:2137. [arSCG]Google Scholar
McCloskey, D. I., Ebeling, P. & Goodwin, G. M. (1974) Estimation of weights and tensions and apparent involvement of a “sense of effort.” Experimental Neurology 42:220–32. [aSCG]Google Scholar
McCollum, G. (1992) Reciprocal inhibition, synergies and movements, submitted. [GMc]Google Scholar
McCormick, D. A. & Thompson, R. F. (1984) Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response. Journal of Neuroscience 4:2811–22. [aJRB]Google Scholar
McCrea, D. A. (1986) Spinal cord circuitry and motor reflexes. In: Exercise and sports medicine, ed. Pandolf, K.. Macmillan. [aDAM, TRN]Google Scholar
McCrea, D. A., Pratt, C. A. & Jordan, L. M. (1980) Renshaw cell activity and recurrent effects on motoneurons during fictive locomotion. Journal of Neurophysiology 44:475–88. [aDAM, CAP]Google Scholar
McCurdy, M. L. & Hamm, T. M. (1991) Strength of recurrent inhibitory postsynaptic potentials between closely spaced homonymous and heteronymous motoneurons in the cat. Society for Neuroscience Abstracts 17:644. [TMH]Google Scholar
McCurdy, M. L. & Hamm, T. M. (1992) Recurrent collaterals of motoneurons projecting to distal muscles in the cat hindlimb. Journal of Neurophysiology 67:1359–67. [TMH]Google Scholar
McDevitt, C. J., Ebner, T. J. & Bloedel, J. R. (1987a) Changes in the responses of cerebellar nuclear neurons associated with the climbing fiber response of Purkinje cells. Brain Research 425:1424. [rJRB]Google Scholar
McDevitt, C. J., Ebner, T. J. & Bloedel, J. R. (1987b) Relationships between simultaneously recorded Purkinje cells and nuclear neurons. Brain Research 425:113. [rJRB]Google Scholar
McIntyre, J. (1988) Reflexes and the equilibrium point control model. Society for Neuroscience Abstracts 14:951. [arEB, TRN]Google Scholar
McIntyre, J. (1990) Utilizing elastic system properties for the control of posture and movement. Doctoral Dissertation, Department of Brain and Cognitive Sciences, MIT. [arEB, AGF, GLG]Google Scholar
McIntyre, J. & Bizzi, E. (1992) Servo models for the biological control of movement. Journal of Motor Behavior, in press. [aEB]Google Scholar
McIntyre, A. K., Proske, U. & Rawson, J. A. (1984) Cortical projection of afferent information from tendon organs in the cat. Journal of Physiology (London) 354:395406. [aSCG]Google Scholar
McIntyre, A. K., Proske, U. & Rawson, J. A. (1985) Pathway to the cerebral cortex for impulses from tendon organs in the cat's hindlimb. Journal of Physiology (London) 369:115–26. [aSCG]Google Scholar
McIntyre, A. K., Proske, U. & Rawson, J. A. (1989) Corticofugal action on transmission of group I input from the hindlimb to the pericruciate cortex in the cat. Journal of Physiology (London) 416:1930. [aSCG]Google Scholar
McIntyre, A. K., Proske, U. & Tracey, D. J. (1978) Afferent fibres from muscle receptors in the posterior nerve of the cat's knee joint. Experimental Brain Research 33:415–24. [aSCG]Google Scholar
McKeon, B. & Burke, D. (1983) Muscle spindle discharge in response to contraction of single motor units. Journal of Neurophysiology 49:291302. [aSCG]Google Scholar
McKeon, B., Hogan, N. & Bizzi, E. (1984) Effect of temporary path constraint during planar arm movement. Society for Neuroscience Abstracts 10:337. [aEB, GEL]Google Scholar
Mel, B. W. (1991) A connectionist model may shed light on neural mechanisms for visually guided reaching. Journal of Cognitive Neuroscience 3:273–92. [aGEA]Google Scholar
Menetrey, D., de Pommery, J. & Besson, J. M. (1984) Electrophysiological characteristics of lumbar spinal cord neurons backfired from lateral reticular nucleus in the rat. Journal of Neurophysiology 52:595612. [JDu]Google Scholar
Merton, P. A. (1953) Speculations on the servo control of movement. In: The spinal cord, ed. Wolstenholme, G. E. W.. Churchill. [aEB, aSCG, rEB, GCA, AGF, GLG, TRN]Google Scholar
Merton, P. A. (1964) Human position sense and sense of effort. In: Homeostasis and feedback mechanisms. Symposia of the Society for Experimental Biology #18. Academic Press. [PRB]Google Scholar
Mesulam, H.-M. (1981) A cortical network for directed attention and unilateral neglect. Annals of Neurology 10:309–25. [aJFS]Google Scholar
Mesulam, H.-M. (1985) Patterns in behavioral neuroanatomy: Association areas, the limbic system, and hemispheric specialization. In: Principles of behavioral neurology, ed. Mesulam, M.-M.. Davis. [BS]Google Scholar
Mesulam, H.-M. (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology 28:597613. [BS]Google Scholar
Meunier, S. & Morin, C. (1989) Changes in presynaptic inhibition of la fibres to soleus motoneurones during voluntary dorsiflexion of the foot. Experimental Brain Research 76:510–18. [aSCG]Google Scholar
Meunier, S., Penicaud, A., Pierrot-Deseilligny, E. & Rossi, A. (1990) Monosynaptic Ia excitation and recurrent inhibition from quadriceps to ankle flexors and extensors in man. Journal of Physiology (London) 423:661–75. [aSCG]Google Scholar
Meunier, S. & Pierrot-Deseilligny, E. (1989) Gating of the afferent volley of the monosynaptic stretch reflex during movement in man. Journal of Physiology (London) 419:753–63. [aSCG]Google Scholar
Mewes, K. (1988) Characteristics of rubromotoneuronal cells and their role in the control of the hand in primates. Doctoral Dissertation, University of Kansas. [aEEF]Google Scholar
Meyer, D. E., Yantis, S., Osman, A. M. & Smith, J. E. K. (1985) Temporal properties of human information processing: Tests of discrete versus continuous models. Cognitive Psychology 17:445518. [DJ]Google Scholar
Meyer-Lohmann, J., Riebold, W. & Robrecht, D. (1974) Mechanical influence of the extrafusal muscle on the static behaviour of de-efferented primary muscle spindle endings in the cat. Pflügers Archives 352:267–78. [aSCG]Google Scholar
Miles, F. A., Braitman, D. J. & Dow, B. M. (1980) Long-term adaptive changes in primate vestibulo-ocular reflex. IV. Electrophysiological observations in flocculus of adapted monkeys. Journal of Neurophysiology 43:1477–93. [rJRB, cJFS]Google Scholar
Millar, J. (1973) Joint afferent fibres responding to muscle stretch, vibration and contraction. Brain Research 63:380–83. [aSCG]Google Scholar
Miller, G. A. (1956) The magic number seven, plus or minus two: Some limits on our capacity for processing information. The Psychological Review 63:8197. [FJC]Google Scholar
Milne, R. J., Aniss, A. M., Kay, N. E. & Gandevia, S. C. (1988) Reduction in perceived intensity of cutaneous stimuli during movement: A quantitative study. Experimental Brain Research 70:569–76. [aSCG]Google Scholar
Milner, A. D. & Goodale, M. A. (in press) Visual pathways to perception and action. In: The visually responsive neuron: From basic neurophysiology to behavior, ed. T. P. Hicks, S. Molotchnikoff & T. Ono. Elsevier. [DPC, MAG]Google Scholar
Milner, T. E. (1986) Judgment and control of velocity in rapid voluntary movements. Experimental Brain Research 62:99110. [aSCG]Google Scholar
Mink, J. W. & Thach, W. T. (1991a) Basal ganglia motor control. II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters. Journal of Neurophysiology 65:301329. [DSB]Google Scholar
Mink, J. W. & Thach, W. T. (1991b) Basal ganglia motor control, III. Pallidal ablation: Normal reaction time, muscle co-contraction and slow movement. Journal of Neurophysiology 65:330–51. [GMa]Google Scholar
Minsky, M. (1986) The society of mind. Simon and Schuster. [SG]Google Scholar
Mitchell, S. J., Richardson, R. T., Baker, F. H. & DeLong, M. R. (1987) The primate globus pallidus: Neuronal activity related to direction of movement. Experimental Brain Research 68:491505.Google Scholar
Miyamoto, H., Kawato, M., Setoyama, T. & Suzuki, R. (1988) Feedbackerror-learning neural network for trajectory control of a robotic manipulator. Neural Networks 1:251–65. [aGEA]Google Scholar
Moberg, E. (1983) The role of cutaneous afferents in position sense, kinesthesia, and motor function of the hand. Brain 106:119. [JDu]Google Scholar
Monoud, P., Mayer, E. & Hauert, C. A. (1979) Preparation of actions to lift objects of varying weight and texture in the adult. Journal of Human Movement Studies 5:209–15. [HER]Google Scholar
Moore, G. P., Segundo, J. P., Perkel, D. H. & Levitan, H. (1970) Statistical signs of synaptic interaction in neurons. Biophysical Journal 10:876900. [PAK]Google Scholar
Moorhead, I. R., Haig, N. D. & Clement, R. A. (1989) An investigation of trained neural networks from a neurophysioiogical perspective. Perception 18:793803. [RE]Google Scholar
Morasso, P. (1981) Spatial control of arm movements. Experimental Brain Research 42:223–27. [aEB]Google Scholar
Morasso, P. & Mussa-Ivaldi, F. A. (1982) Trajectory formation and handwriting: A computational model. Biological Cybernetics 45:131–42. [rEB]Google Scholar
Morasso, P. & Sanguineti, V. (1991) Neurocomputing concepts in motor control. In: Brain and space, ed. Paillard, J.. Oxford University Press. [PM]Google Scholar
Morasso, P. & Sanguineti, V. (1992) Neurocomputing aspects in modelling cursive handwriting. Acta Psychologica, in press. [PM]Google Scholar
Morel, A. & Bullier, J. (1990) Anatomical segregation of two cortical visual pathways in the macaque monkey. Visual Neuroscience 4:555–78. [RE]Google Scholar
Morgan, D. L., Prochazka, A. & Proske, U. (1984) Can fusimotor activity potentiate the responses of muscle spindles to a tendon tap? Neuroscience Letters 50:209–15. [aSCG]Google Scholar
Morgan, M. J. (1977) Molyneux's question. Cambridge University Press. [aJFS]Google Scholar
Mori, S. (1987) Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats. Progress in Neurobiology 28:161–95. [GMa]Google Scholar
Morin, C., Katz, R., Mazières, L. & Pierrot-Deseilligny, E. (1982) Comparison of soleus H reflex facilitation at the onset of soleus contractions produced voluntarily and during the stance phase of human gait. Neuroscience Letters 33:4754. [aSCG]Google Scholar
Morin, R. E. & Grant, D. A. (1955) Learning and performance of a keypressing task as a function of the degree of spatial stimulus-response correspondence. Journal of Experimental Psychology 49:3947. [RWP]Google Scholar
Moritani, R. & DeVries, H. A. (1978) Reexamination of the relationship between the surface integrated electromyogram and force of isometric contraction. American Journal of Physical Medicine 57:263–77. [MH]Google Scholar
Motter, B. C. & Mountcastle, V. B. (1981) The functional properties of the light sensitive neurons of the posterior parietal cortex studied in waking monkeys: Foveal sparing and opponent vector organization. Journal of Neuroscience 1:326. [aJFS]Google Scholar
Mountcastle, V. B., Andersen, R. A. & Motter, B. C. (1981) The influence of attentive fixation upon the excitability of the light sensitivity neurones of the posterior parietal cortex. Journal of Neuroscience 1:1218–35. [aJFS, JFK]Google Scholar
Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H. & Acuna, C. (1975) Posterior parietal association cortex of the monkey: Command functions for operations within extrapersonal space. Journal of Neurophysiology 38:871908. [aEEF, aJFS]Google Scholar
Mountcastle, V. B. & Steinmetz, M. A. (1990) The parietal visual system and some aspects of visuospatial perception. In: From neuron to action: An appraisal of fundamental and clinical research, ed. Deecke, L., Eccles, J. C. & Mountcastle, V. B.. Springer-Verlag. [DPC]Google Scholar
Muakkassa, K. F. & Strick, P. L. (1979) Frontal lobe inputs to primate motor cortex: Evidence for four somatotopically organized ‘premotor’ areas. Brain Research 177:176–82. [JMF]Google Scholar
Mugnaini, E. (1972) The histology and cytology of the cerebellar cortex. In: The comparative anatomy and histology of the cerebellum. The human cerebellum, cerebellar connections and cerebellar cortex, ed. Larsell, O. & Jansen, J.. University of Minnesota Press. [aJRB]Google Scholar
Muir, R. B. & Lemon, R. N. (1983) Corticospinal neurons with a special role in precision grip. Brain Research 261:312–16. [aEEF, cSCG, AL]Google Scholar
Murdoch, B. Jr., (1982) A theory for the storage and retrieval of item and associative information. Psychological Review 89:609–26. [BB]Google Scholar
Mushiake, H., Inase, M. & Tanji, J. (1990) Selective coding of motor sequence in the supplementary motor area of the monkey cerebral cortex. Experimental Brain Research 82:208210. [aGEA]Google Scholar
Mushiake, H., Inase, M. & Tanji, J. (1991) Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements. Journal of Neurophysiology 66:705–18. [rEEF, JT]Google Scholar
Mussa-Ivaldi, F. A. (1988) Do neurons in the motor cortex encode movement direction? An alternative hypothesis. Neuroscience Letters 91:106111. [aEB, aEEF]Google Scholar
Mussa-Ivaldi, F. A., Bizzi, E. & Giszter, S. F. (1991a) Transforming plans into actions by tuning passive behavior: A field-approximation approach. In: Proceedings of the 1991 IEEE International Symposium on Intelligent Control. IEEE Control Systems Society. [CIC, SG]Google Scholar
Mussa-Ivaldi, F. A., Giszter, S. F. & Bizzi, E. (1990) Motor-space coding in the central nervous system. Cold Spring Harbor Symposia on Quantitative Biology 55:827–35. [arEB, SG]Google Scholar
Mussa-Ivaldi, F. A., Giszter, S. F. & Bizzi, E. (1991b) A field approximation approach to the execution of motor plans. Fifth International Conference on Advanced Robotics, Pisa, Italy. [SG]Google Scholar
Mussa-Ivaldi, F. A. & Hogan, N. (1991) Integrable solutions of kinematic redundancy via impedance control. International Journal of Robotics Research 10:481–91. [rEB]Google Scholar
Mussa-Ivaldi, F. A., Hogan, N. & Bizzi, E. (1985) Neural, mechanical and geometric factors subserving arm posture in humans. Journal of Neuroscience 5:2732–43. [aGEA, arEB, ZH, GEL]Google Scholar
Mussa-Ivaldi, F. A., Hogan, N. & Bizzi, E. (1987) The role of geometrical constraints in the control of multi-joint posture and movement. Society for Neuroscience Abstracts 13:347. [arEB, GEL]Google Scholar
Mussa-Ivaldi, F. A., Morasso, P. & Zaccaria, R. (1988) Kinematic networks. A distributed model for representing and regularizing motor redundancy. Biological Cybernetics 60:116. [aGEA, rEB]Google Scholar
Nagaoka, M. & Tanaka, R. (1981) Contribution of kinesthesia on human visuomotor elbow tracking movements. Neuroscience Letters 26:245–49. [aSCG]Google Scholar
Nambu, A., Yoshida, S. & Jinnai, K. (1990) Discharge patterns of pallidal neurons with input from various cortical areas during movement in the monkey. Brain Research 519:183–91. [aGEA]Google Scholar
Nardone, A., Di Francesco, G. & Schieppati, M. (1986) Reflex excitability of the soleus muscle in standing man, at rest or prior to a voluntary triceps contraction. Neuroscience Letters 26:S165. [MS]Google Scholar
Nardone, A., Romano, C. & Schieppati, M. (1989) Selective recruitment of high threshold human motor units during voluntary isotonic lengthening of active muscles in humans. Journal of Physiology (London) 409:451–71. [MS]Google Scholar
Nardone, A. & Schieppati, M. (1988) Postural adjustments associated with voluntary contraction of leg muscles in standing man. Experimental Brain Research 69:469–80. [MS]Google Scholar
Nashner, L. M. (1976) Adapting reflexes controlling the human posture. Experimental Brain Research 26:5972. [VD]Google Scholar
Nashner, L. M. & Grimm, R. J. (1978) Analysis of multiloop dyscontrols in standing cerebellar patients, ed. J. E. Desmedt. Karger. Progress in Clinical Neurophysiology 4:300319. [aJRB, FBH]Google Scholar
Nashner, L. M. & Wolfson, P. (1974) Influence of head position and proprioceptive cues on short latency postural reflexes evoked by galvanic stimulation of the human labyrinth. Brain Research 67:255–68. [VD]Google Scholar
Nathan, P. W. & Sears, T. A. (1960) Effects of posterior root section on the activity of some muscles in man. Journal of Neurology, Neurosurgery, and Psychiatry 23:1022. [aSCG]Google Scholar
Neilson, P. D. (1991) The problem of redundancy in movement control: The adaptive model theory approach. Workshop, Curtin University of Technology, Perth. [PDN]Google Scholar
Neilson, P. D., Neilson, M. D. & O'Dwyer, N. J. (1988a) Internal models and intermittency: A theoretical account of human tracking behavior. Biological Cybernetics 58:101112. [PDN]Google Scholar
Neilson, P. D., Neilson, M. D. & O'Dwyer, N. J. (1988b) Redundant degrees of freedom in speech control: A problem or a virtue? In: Proceedings of the Second Australian Conference on Speech Science and Technology, ed. Wagner, M.. Australian Speech Science and Technology Association. [PDN]Google Scholar
Neilson, P. D., Neilson, M. D. & O'Dwyer, N. J. (1992a) Adaptive model theory: Application to disorders of motor control. In: Approaches to the study of motor control and learning. Advances in psychology 84, ed. Summers, J. J.. North-Holland. [PDN]Google Scholar
Neilson, P. D., Neilson, M. D. & O'Dwyer, N. J. (1992b) What limits high speed tracking performance? Human Movement Science, in press. [PDN]Google Scholar
Neilson, P. D., Q'Dwyer, N. J. & Neilson, M. D. (1988) Stochastic prediction in pursuit tracking: An experimental test of adaptive model theory. Biological Cybernetics 58:113–22. [PDN]Google Scholar
Neisser, U. (1976) Cognition and reality: Principles and implications of cognitive psychology. Freeman. [JMF]Google Scholar
Nelson, W. L. (1983) Physical principles for economies of skilled movements. Biological Cybernetics 46:135–47. [aGEA]Google Scholar
Newell, K. M., Carlton, L. G. & Hancock, P. A. (1984) Kinetic analysis of response variability. Psychological Bulletin 96:133–51. [aSCG]Google Scholar
Newman, W. S. & Hogan, N. (1986) High speed robot control and obstacle avoidance using dynamic potential functions. Technical Report TR-86-042, North American Philips. [CIC]Google Scholar
Newsome, W. T. & Pare, E. B. (1988) A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience 8:2201–11. [RE]Google Scholar
Newsome, W. T., Wurtz, R. H., Dursteler, M. R. & Mikami, A. (1985) Deficits in visual motion processing following visual ibotenic acid lesions of the middle temporal visual area of the macaque monkey. Journal of Neuroscience 5:825–40. [RE]Google Scholar
Nichols, T. R. (1973) Reflex and non-reflex stiffness of soleus muscle in the cat. In: Control of posture and locomotion, ed. Stein, R. B., Pearson, K. G., Smith, R. S. & Bedford, J. B.. Plenum Press. [TRN]Google Scholar
Nichols, T. R. (1987a) Coordination of muscular action in cat hindlimb by proprioceptive spinal pathways. Neurosurgery: State of the Art Reviews 4:303–14. [TRN]Google Scholar
Nichols, T. R. (1987b) The regulation of muscle stiffness, implications for the control of limb stiffness. Medicine and Sport Science 26:3647. [NL]Google Scholar
Nichols, T. R. (1989) The organization of heterogenic reflexes among muscles crossing the ankle joint in the decerebrate cat. Journal of Physiology 410:463–77. [MLL, TRN, CAP]Google Scholar
Nichols, T. R. & Bonasera, S. J. (1990) Heterogenic reflex organization which mirrors specialized activation patterns of flexor digitorum longus and flexor hallucis longus muscles in the cat. Society for Neuroscience Abstracts 16:887. [TRN]Google Scholar
Nichols, T. R. & Houk, J. C. (1976) Improvement in linearity and regulation of stiffness that results from actions of stretch reflex. Journal of Neurophysiology 39:119–42. [NL, TRN]Google Scholar
Nichols, T. R. & Koffler-Smulevitz, D. (1991) A mechanical analysis of heterogenic inhibition between soleus muscle and the pretibial flexors in the cat. Journal of Neurophysiology 66:1139–55. [TRN]Google Scholar
Nichols, T. R. & Steeves, J. D. (1986) Resetting of resultant stiffness in ankle flexor and extensor muscles in the decerebrate cat. Experimental Brain Research 62:401–10. [MLL]Google Scholar
Nicoletti, R. & Umilta, C. (1989) Splitting visual space with attention. Journal of Experimental Psychology: Human Perception and Performance 15:164–69. [RWP]Google Scholar
Nielsen, J. & Pierrot-Deseilligny, E. (1991) Pattern of cutaneous inhibition of the propriospinal-like excitation to human upper limb motoneurones. Journal of Physiology (London) 434:169–82. [aSCG, DBur]Google Scholar
Niemi, P. & Naatanen, R. (1981) Foreperiod effect and simple reaction time. Psychological Bulletin 89:133–62. [DJ]Google Scholar
Niki, H. & Watanabe, M. (1976) Prefrontal unit activity and delayed response: Relation to cue location versus direction of response. Brain Research 105:7988. [aEEF, aJFS]Google Scholar
Noga, B., Bras, H. & Jankowska, E. (1992) Transmission from group II muscle afferents is depressed by stimulation of locus coeruleus/subcoeruleus, Kolliker-Fuse and raphe nuclei in the cat. Experimental Brain Research 88:502–16. [aDAM]Google Scholar
Noga, B., Shefchyk, S. & Jordan, L., (1987) The role of Renshaw cells in locomotion: Antagonism of their excitation from motor axon collaterals with intravenous mecamylamine. Journal of Neurophysiology 66:99105. [rDAM]Google Scholar
Nordholm, A. F., Lavond, D. A. & Thompson, R. F. (1991) Are eyeblink responses to tone in the decerebrate, decerebellate rabbit conditioned responses? Behavioural and Brain Research 44:2734. [rJRB, PFCG, RFT]Google Scholar
Nudo, R. J., Jenkins, W. M. & Merzenich, M. M. (1990) Repetitive microstimulation alters the cortical representation of movements in adult cats. Somatosensory and Motor Research 7:463–83. [aGEA]Google Scholar
Nutt, J., Horak, F. & Frank, J. (1992) Scaling of postural responses to Parkinson's disease. In: Posture and gait: Control mechanisms, ed. Woollacott, M. & Horak, F.. University of Oregon Press. [FBH]Google Scholar
Ochoa, J. L. & Torebjörk, H. E. (1983) Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. Journal of Physiology (London) 342:633–54. [aSCG]Google Scholar
O'Donovan, M. J., Pinter, M. J., Dum, R. P. & Burke, R. E. (1982) Actions of FDL and FHL muscles in intact cats: Functional dissociation between anatomical synergists. Journal of Neurophysiology 47(6): 1126–43. [TMH]Google Scholar
Ogle, K. (1962) The optical space sense. In: The eye, vol. 4, ed. Davson, H.. Academic Press. [aJFS]Google Scholar
Ohtsuka, K., Maekawa, H., Takeda, M. Uede, N. & Chiba, S. (1988) Accommodation and convergence insufficiency with left middle cerebral artery occlusion. American Journal of Ophthalmology 106:6064. [JWG]Google Scholar
Ojala, J. M., Matikainen, E. & Groop, L. (1985) Body sway in diabetic neuropathy. Journal of Neurology 232:188. [PRC]Google Scholar
O'Keefe, J. & Nadel, L. (1978) The hippocampus as a cognitive map. Oxford University Press. [aJFS]Google Scholar
Optican, L. M. & Robinson, D. A. (1980) Cerebellar dependent adaptive control of the primate saccadic system. Journal of Neurophysiology 44:1058–76. [aJRB]Google Scholar
Oscarsson, O. (1979) Functional units of the cerebellum-sagittal zones and microzones. Trends in Neuroscience 2:143–45. [aJRB]Google Scholar
Ostry, D. J., Feldman, A. G. & Flanagan, J. R. (1991) Kinematics and control of frog hindlimb movements. Journal of Neurophysiology 65:547–62. [SG]Google Scholar
Ostry, D. J., Flanagan, J. R., Feldman, A. G. & Munhall, K. G. (1992) Human jaw movement kinematics and control. In: Tutorials in motor behavior. II, ed. Stelmach, G. E. & Requin, J.. North-Holland. [DJO]Google Scholar
Ott, E., Grebogi, C. & Yorke, J. A. (1990) Controlling chaos. Physical Review Letters 64:1196–99. [TLC]Google Scholar
Ottes, F. P., Van Gisbergen, J. A. M. & Eggermont, J. J. (1986) Visuomotor fields of the superior colliculus: A quantitative model. Vision Research 26:857–73. [JAMVG]Google Scholar
Pailhous, J. & Bonnard, M. (1992) Steady-state fluctuations of human walking. Behavioral Brain Research 47:181–90. [GMa]Google Scholar
Paillard, J. (1955) Reflexes et regulations d'origine proprioceptive chez l'Homme. Etude neurophysiologique et psychophysiologique. Arnette. [JP]Google Scholar
Paillard, J. (1959) Functional organization of afferent innervation studied in man by monosynaptic testing. American Journal of Physical Medicine 38:239–47. [JP]Google Scholar
Paillard, J. (1988) Posture and locomotion: Old problems and new concepts. In: Posture and gait. Development, adaptation and modulation, ed. Ambiard, B., Berthoz, A. & Clarac, F.. Elsevier. [JP]Google Scholar
Paillard, J. (1991) Brain and space. Oxford University Press. [JP]Google Scholar
Paillard, J. (1991) Motor and representational framing of space. In: The brain and space, ed. Paillard, J.. Oxford University Press. [aJFS]Google Scholar
Paillard, J. & Brouchon, M. (1968) Active and passive movements in the calibration of position sense. In: The neuropsychology of spatially oriented behaviour, ed. Freedman, S. J.. Dorsey Press. [aSCG]Google Scholar
Paillard, J. & Brouchon, M. (1974) A proprioceptive contribution to the spatial encoding of position cues for ballistic movements. Brain Research 71:273–84. [JP]Google Scholar
Palmer, S. S. & Fetz, E. E. (1985) Discharge properties of primate forearm motor units during isometric muscle activity. Journal of Neurophysiology 54:1178–93. [aEEF]Google Scholar
Pandya, D. N. & Kuypers, H. G. J. M. (1969) Cortico-cortical connections in the rhesus monkey. Brain Research 13:1336. [aJFS]Google Scholar
Pandya, D. N. & Seltzer, B. (1982) Intrinsic connections and architectonics of the posterior parietal cortex in the rhesus monkey. Journal of Comparative Neurology 204:196210. [aJFS, BS]Google Scholar
Pandya, D. N. & Vignolo, L. A. (1971) Intra- and interhemispheric projections of the precentral, premotor and arcuate areas in the rhesus monkey. Brain Research 26:217–33. [JMF]Google Scholar
Parent, A., Bouchard, C. & Smith, Y. (1984) The striatopallidal and striatonigral projections: Two distinct fiber systems in primate. Brain Research 303:385–90. [aGEA]Google Scholar
Parent, A. & De Bellefeuille, L. (1982) Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by fluorescence retrograde labeling method. Brain Research 245:201–13. [aGEA]Google Scholar
Paul, R. P. (1981) Robot manipulators: Mathematics, programming and control. MIT Press. [aGEA]Google Scholar
Paul, R. P. (1987) Problems and research issues associated with the hybrid control of force and displacement. Proceedings of the IEEE Conference on Robotics and Automation. IEEE Computer Society Press. [aEB]Google Scholar
Paulin, M., Nelson, M. & Bower, J. M. (1989) Dynamics of compensatory eye movement control: An optimal estimation analysis of the vestibulo-ocular reflex. International Journal of Neural Systems 1:2329. [JMB]Google Scholar
Pavlova, O. G. (1979) Alimentary instrumental reflex to electrical stimulation of lateral and ventro-medial hypothalamus. Doctoral Dissertation, Institute of Higher Nervous Activity & Neurophysiology. [MEI]Google Scholar
Pearson, K. G. (1985) Are there central pattern generators for walking and flight in insects? In: Feedback and neural control in invertebrates and vertebrates, ed. Barnes, W. J. P. & Gladden, M. H.. Groom Helm. [CAP]Google Scholar
Pearson, K. G. & Duysens, G. (1976) Function of segmental reflexes in the control of stepping in cockroaches and cats. In: Neural control of locomotion, ed. Herman, K. M., Grillner, S., Stein, P. S. G. & Stuart, G.. Plenum Press. [MBB]Google Scholar
Peck, D., Buxton, D. F. & Nitz, A. (1984) A comparison of spindle concentrations in large and small muscles acting in parallel combinations. Journal of Morphology 180:243–52. [aSCG]Google Scholar
Pellionisz, A. (1985) Tensorial brain theory in cerebellar modelling. In: Cerebellar functions, ed Bloedel, J. R., Dichgans, J. & Precht, W.. Springer Verlag. [aJRB, VB]Google Scholar
Pellionisz, A. (1988) Tensorial aspects of the multidimensional massively parallel sensorimotor function of neuronal networks. Progress in Brain Research 76:341–54. [aGEA]Google Scholar
Pellionisz, A. (1989) Tensor network model of the cerebellum and its olivary system. In: The olivo-cerebellar system in motor control, ed. Strata, P.. Proceedings of the ENA-IBRO Symposium, Torino, Italy. Springer Verlag. [aJRB]Google Scholar
Pellionisz, A. (1991) The geometry of brain function: Tensor network theory. Cambridge University Press, in press. [aJRB]Google Scholar
Pellionisz, A. & Llinás, R. (1979) Brain modeling by tensor network theory and computer simulation. The cerebellum: Distributed processor for predictive coordination. Neuroscience 4:323–48. [aJRB, PDN]Google Scholar
Pellionisz, A. & Llinás, R. (1980) Tensor approach to the geometry of brain function: Cerebellar coordination via metric tensor. Neuroscience 5:1125–36. [aJRB, aDAR, TLC, PDN]Google Scholar
Pellionisz, A. & Llinás, R. (1982) Space-time representation in the brain. The cerebellum as a predictive space-time metric tensor. Neuroscience 7:2949–70. [aJRB, PDN]Google Scholar
Pellionisz, A. & Llinás, R. (1985) Tensor network theory of the metaorganization of functional geometries in the central nervous system. Neuroscience 16:245–73. [aJRB, PDN]Google Scholar
Pellionisz, A. & Peterson, B. W. (1988) A tensorial model of neck motor activation. In: Control of head movement, ed. Peterson, B. W. & Richmond, F.. Oxford University Press. [aJRB]Google Scholar
Péllison, D., Prablanc, C., Goodale, M. A. & Jeannerod, M. (1986) Visual control of reaching movements without vision of the limb. II. Evidence of fast unconscious process correcting the trajectory of the hand to the final position of a double-step stimulus. Experimental Brain Research 339:136–40. [SVA]Google Scholar
Penfield, W. & Boldrey, E. H. (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389443. [aEEF]Google Scholar
Perenin, M.-T. & Vighetto, A. (1988) Optic ataxia: A specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain 111:643674. [MAG]Google Scholar
Perret, C. & Cabelguen, J. M. (1976) Central and reflex participation in the timing of locomotor activations of a bifunctional muscle, the semitendinosus, in the cat. Brain Research 106:390–95. [aDAM]Google Scholar
Perret, C. & Cabelguen, J. M. (1980) Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles. Brain Research 187:333–52. [aDAM]Google Scholar
Petit, J., Filippi, G. M., Emonet-Denand, F., Hunt, C. C. & Laporte, Y. (1990) Changes in muscle stiffness produced by motor units of different types in peroneus longus muscle in the cat. Journal of Neurophysiology 63:190–97. [TRN]Google Scholar
Pew, R. W. (1984) A distributed processing view of human motor control. In: Cognition and motor processes, ed. Prinz, W. & Sanders, F.. Springer-Verlag. [JJS]Google Scholar
Pew, R. W. (1989) Human perceptual-motor performance. In: Human information processing: Tutorials in performance and cognition, ed. Kantowitz, B. H.. Erlbaum. [aGEA]Google Scholar
Pfeiffer, F., Weidemann, H.-J. & Danowski, P. (1991) Dynamics of the walking stick insect. Proceedings of the 1990 IEEE International Conference on Robotics and Automation, Cincinnati, vol. 3. IEEE Computer Society Press. [JDe]Google Scholar
Philips, C. G. (1985) Movements of the hand. Liverpool University Press. [aSCG]Google Scholar
Phillips, C. G. & Porter, R. (1977) Corticospinal neurones. Their role in movement. Academic Press. [aSCG, MEI]Google Scholar
Piaget, J. (1963) The origin of intelligence in children. Norton. [PM]Google Scholar
Piatnitsky, E. S. (1988) Decomposition principle in mechanical system control. Doklady AN SSSR vol. 300 2:300303. [AAF]Google Scholar
Pierrot-Deseilligny, E., Bergego, C. & Katz, R. (1982) Reversal in cutaneous control of Ib pathways during human voluntary contraction. Brain Research 233:400403. [aSCG]Google Scholar
Pierrot-Deseilligny, E., Bergego, C., Katz, R. & Morin, C. (1981b) Cutaneous depression of Ib reflex pathways to motoneurones in man. Experimental Brain Research 42:351–61. [aSCG]Google Scholar
Pierrot-Deseilligny, E., Morin, C., Bergego, C. & Tankov, N. (1981a) Pattern of group I fibre projections from ankle flexor and extensor muscles in man. Experimental Brain Research 42:337–50. [aSCG]Google Scholar
Pinto-Hamuy, T. & Linck, P. (1965) Effect of frontal lesions on performance of sequential tasks by monkeys. Experimental Neurology 12:96107. [DSL]Google Scholar
Pinz, A. & Bischof, H. (1990) Constructing a neural network for the interpretation of the species of trees in aerial photographs. In: Proceedings of the 10th International Conference on Pattern Recognition. IEEE Computer Society Press. [HB]Google Scholar
Pirart, J. (1978) Diabetes Mellitus and its degenerative complications: A prospective study of 4,400 patients observed between 1947 and 1973. Diabetes Care 1:168–88 & 252–63. [PRC]Google Scholar
Poggio, T. (1990) A theory of how the brain might work. In: Cold Spring Harbor Symposia on Quantitative Biology 55:899910. [RAA]Google Scholar
Polit, A. & Bizzi, E. (1978) Processes controlling arm movements in monkeys. Science 201:1235–37. [aEB]Google Scholar
Polit, A. & Bizzi, E. (1979) Characteristics of motor programs underlying arm movements. Journal of Neurophysiology 42:183–94. [aSCG]Google Scholar
Popov, K. E., Smetanin, B. N., Gurfinkel, V. S., Kudovina, M. P. & Shlykov, V. U. (1986) Spatial perception and vestibulomotor responses in man. Neurophysiology (Kiev) 18:779–87. [MBB, AP]Google Scholar
Porter, R. (1970) Early facilitation at corticomotoneuronal synapses. Journal of Physiology 207:733–45. [RL]Google Scholar
Posner, M. I. (1986) Chronometric explorations of mind. Oxford University Press. [aJFS]Google Scholar
Posner, M. I. & Rothbart, M. K. (1992) Attentional mechanisms and conscious experience. In: The neuropsychology of consciousness, ed. Milner, A. D. & M.D., Rugg. Academic Press. [DPC]Google Scholar
Pouget, A., Fisher, S. A. & Sejnowski, S. J. (in press) Hierarchical transformation of space in the visual system. In: Advances in neural information processing systems, vol. 4. Kaufmann. [APo]Google Scholar
Poulton, E. C. (1981) Human manual control. In: Handbook of physiology. Section 1: The nervous system, vol. 2, Motor control, part 2, ed. Brookhart, J. M., Mountcastle, V. B., Brooks, V. B. & Geiger, S. R.. American Physiological Society. [aGEA]Google Scholar
Pratt, C. A., Chanaud, C. M. & Loeb, G. E. (1991) Functional complex muscles of the cat hindlimb. 4. Intramuscular distribution of movement command signals and cutaneous reflexes in broad, bifunctional thigh muscles. Experimental Brain Research 85:281–99. [JDu, CAP]Google Scholar
Pratt, C. A. & Jordan, L. M. (1987) la inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion. Journal of Neurophysiology 57:5671. [CAP]Google Scholar
Pratt, C.A. & Loeb, G. E. (1991) Functionally complex muscles of the cat hindlimb. 1. Patterns of activation across sartorius. Experimental Brain Research 85:243–56. [CAP]Google Scholar
Precht, W. & Yoshida, M. (1971) Blockage of caudate-evoked inhibition of neurons in the substantia nigra by picrotoxin. Brain Research 32:229–33. [aGEA]Google Scholar
Prem, E., Mackinger, M., Dorffner, G., Porenta, G. & Sochor, H. (1992) Concept support as a method for programming neural networks with symbolic knowledge. European Conference on Artificial Intelligence ECAI92, Vienna, in press. [HB]Google Scholar
Pribram, K. H. (1971) Languages of the brain. Prentice-Hall. [BB, MEI]Google Scholar
Pribram, K. H., Nuwer, M. & Baron, R. (1974) The holographic hypothesis of memory structure in brain function and perception. In: Contemporary developments in mathematical psychology 2, ed. Krantz, D., Atkinson, R. C., Luce, R. & Suppes, P.. Freeman. [aEEF, BB]Google Scholar
Proakis, J. G. & Manolakis, D. G. (1989) Introduction to digital signal processing. Macmillian. [PDN]Google Scholar
Prochazka, A. (1986) Proprioception during voluntary movement. Canadian Journal of Physiology and Pharmacology 64:499504. [aSCG]Google Scholar
Prochazka, A. (1989) Sensorimotor gain control: A basic strategy of motor systems? Progress in Neurobiology 33:281307. [aSCG]Google Scholar
Prochazka, A., Hulliger, M., Trend, P., Llewellyn, M. & Durmuller, N. (1989) Muscle afferent contribution to control of paw shakes in normal cats. Journal of Neurophysiology 61:550–62. [CAP]Google Scholar
Prochazka, A., Hulliger, M., Zangger, P. & Appenteng, K. (1985) “Fusimotor set”; New evidence for a-independent control of γ-motoneurones during movement in the awake cat. Brain Research 339:136–40. [aSCG]Google Scholar
Prochazka, A., Stephens, J. A. & Wand, P. (1979) Muscle spindle discharge in normal and obstructed movements. Journal of Physiology 287:5766. [aSCG]Google Scholar
Prochazka, A., Trend, P., Hulliger, M. & Vincent, S. (1989) Ensemble proprioceptive activity in the cat step cycle: Towards a representative look-up chart. In: Afferent control of posture and locomotion, ed. Allum, J. H. J. & Hulliger, M.. Elsevier. [APr]Google Scholar
Prochazka, A. & Wand, P. (1980) Tendon organ discharge during voluntary movements in cats. Journal of Physiology 303:385–90. [aSCG]Google Scholar
Prochazka, A., Westerman, R. A. & Ziccone, S. P. (1976) Discharges of single hindlimb afferents in the freely moving cat. Journal of Neurophysiology 39:10901104. [aSCG]Google Scholar
Prochazka, A., Westerman, R. A. & Ziccone, S. P. (1977) la afferent activity during a variety of voluntary movement in the cat. Journal of Physiology 268:423–48. [CAP]Google Scholar
Proctor, R. W., Lu, C.-H. & Van Zandt, T. (in press) Enhancement of the Simon effect by response precuing. Acta Psychologica. [RWP]Google Scholar
Proctor, R. W. & Reeve, T. G. (1985) Compatibility effects in the assignment of symbolic stimuli to discrete finger responses. Journal of Experimental Psychology: Human Perception and Performance 11:623–39. [RWP]Google Scholar
Proctor, R. W. & Reeve, T. G. eds. (1990) Stimulus-response compatibility: An integrated perspective. North-Holland. [RWP]Google Scholar
Proctor, R. W., Reeve, T. G. & Weeks, D. J. (1990) A triphasic approach to the acquisition of response-selection skill. In: The psychology of learning and motivation, ed. Bower, G. H.. Academic Press. [RWP]Google Scholar
Proske, U. (1981) The Golgi tendon organ. Properties of the receptor and reflex action of impulses arising from tendon organs. International Review of Physiology 25:127–71. [aSCG]Google Scholar
Proske, U., Schaible, H.-G. & Schmidt, R. F. (1988) Joint receptors and kinaesthesia. Experimental Brain Research 72:219–24. [aSCG]Google Scholar
Pylyshyn, Z. W. (1989) The role of location indexes in spatial perception: A sketch of the FINST spatial-index model. Cognition 32:6597. [rJFS]Google Scholar
Rack, P. M. H. (1981) Limitations of somatosensory feedback in control of posture and movements. In: Handbook of physiology: The nervous system, vol 2, ed. Brooks, V. B.., American Physiological Society. [AMG]Google Scholar
Rack, P. M. H. & Westbury, D. R. (1969) The effects of length and stimulus rate on tension in the isometric cat soleus muscle. Journal of Physiology (London) 204:443–60. [aEB]Google Scholar
Rack, P. M. H. & Westbury, D. R. (1974) The short range stiffness of active mammalian muscle and its effect on mechanical properties. Journal of Physiology (London) 240:331–50. [aEB]Google Scholar
Rafols, J. A. & Fox, C. A. (1976) The neurons in the primate subthalamic nucleus: A Golgi and electron microscopic study. Journal of Comparative Neurology 168:75112. [aGEA]Google Scholar
Rakic, P. (1986) Mechanisms of ocular dominance segregation of the lateral geniculate nucleus. Competitive elimination hypothesis. Trends in Neuroscience 9:1115. [aGEA]Google Scholar
Rail, W. (1969) Time constants and electrotonic length of membrane cylinders and neurons. Biophysical Journal 9:14831508. [DJ]Google Scholar
Ramos, C. F. & Stark, L. (1987) Simulation studies of descending and reflex control of fast movements. Journal of Motor behavior 19(1):3861. [NL]Google Scholar
Rapoport, S. (1979) Reflex connections of motoneurons of muscles involved in head movements in the cat. Journal of Physiology (London) 289:311–27. [GEL]Google Scholar
Rasnow, B., Assad, C., Nelson, M. & Bower, J. M. (1989) Simulation and measurement of the electric fields generated by weakly electric fish. In: Advances in neural information processing systems, ed. D. Touretzk Kaufman. [JMB]Google Scholar
Ratcliff, G. (1991) Brain and space: Some deductions from the clinical evidence. In: Brain and space, ed. Paillard, J.. Oxford University Press. [WAM]Google Scholar
Ratcliff, G. & Davies-Jones, G. A. (1972) Defective visual localization in focal brain wounds. Brain 95:4660. [DPC]Google Scholar
Rauschecker, J. P. (1991) Mechanisms of visual plasticity: Hebb synapses, NMDA receptors, and beyond. Physiological Reviews 71:587615. [aGEA]Google Scholar
Renshaw, B. (1941) Influence of discharge of motoneurones upon excitation of neighboring motoneurons. Journal of Neurophysiology 4:167–83. [DBul, NHB, TMH]Google Scholar
Renshaw, B. (1946) Central effects of centripetal impulses in axons of spinal ventral roots. Journal of Neurophysiology 9:191204. [DBul]Google Scholar
Ribot, E., Roll, J. P. & Vedel, J.-P. (1986) Efferent discharges recorded from single skeletomotor and fusimotor fibres in man. Journal of Physiology (London) 375:251–68. [arSCG, JP]Google Scholar
Richmond, B. J. & Optican, L. M. (1987) Temporal encoding of twodimensional patterns by single units in primate inferior temporal cortex. II. Quantification of response waveform. Journal of Neurophysiology 57:147–61. [IT]Google Scholar
Richmond, B. J. & Optican, L. M. (1990) Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. II. Information transmission. Journal of Neurophysiology 64:370–80. [IT]Google Scholar
Richmond, B. J., Optican, L. M., Podell, M. & Spitzer, H. (1987) Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. Journal of Neurophysiology 57:132–46. [IT]Google Scholar
Richmond, B. J., Optican, L. M. & Spitzer, H. (1990) Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. Journal of Neurophysiology 64:351–69. [IT]Google Scholar
Richmond, F. J. R. & Loeb, G. E. (1992) Electromyographic studies of neck muscles in the intact cat: II. Reflexes evoked by muscle nerve stimulation. Experimental Brain Research 88:5966. [GEL]Google Scholar
Richmond, F. J. R. & Stuart, D. G. (1985) Distribution of sensory receptors in the flexor carpi radialis muscle of the cat. Journal of Morphology 183:113. [aSCG]Google Scholar
Ridgway, E. B., Gordon, A. M. & Martyn, D. A. (1983) Hysteresis in the force-calcium relationship in muscle. Science 219:1075–77. [MH]Google Scholar
Riehle, A. (1991) Visually induced signal-locked neuronal activity changes in precentral motor areas of the monkey: Hierarchical progression of signal processing. Brain Research 540:131–37. [WAM]Google Scholar
Riehle, A. & Requin, J. (1989) Monkey primary motor and premotor cortex: Single-cell activity related to prior information about direction and extent of an intended movement. Journal of Neurophysiology 6:534–49. [aGEA]Google Scholar
Ritchie, L. (1976) Effects of cerebellar lesions on saccadic eye movements. Journal of Neurophysiology 39:1246–56. [aJRB]Google Scholar
Ritter, H. J., Martinetz, T. M. & Schulten, K. J. (1989) Topology-conserving maps for learning visuo-motor-coordination. Neural Networks 2:159–68. [aGEA, PM]Google Scholar
Rizzolatti, G. & Berti, A. (1990) Neglect as a neural representation deficit. Revue Neurologique 146:626–34. [MSG]Google Scholar
Rizzolatti, G. & Gentilucci, M. (1988) Motor and visual-motor functions of the premotor cortex. In: Neurobiology of neocortex, ed. Rakic, P. & Singer, W.. Wiley. [JT]Google Scholar
Rizzolatti, G., Gentilucci, M. & Matelli, M. (1985) Selective spatial attention: One center, one circuit, or many circuits? In: Attention and performance XI, ed. Posner, M. I. & Marin, O. S. M.. Erlbaum. [DPC]Google Scholar
Rizzolatti, G., Matelli, M. & Pavesi, G. (1983) Deficits in attention and movement following the removal of postarcuate (area 6) and prearcuate (area 8) cortex in macaque monkeys. Brain 106:655–73. [MSG]Google Scholar
Rizzolatti, G., Scandolara, C., Matelli, M. & Gentilucci, M. (1981a) Afferent properties of periarcuate neurons in macaque monkeys. I. Somato-sensory responses. Behavioral Brain Research 2:125–46. [MSG]Google Scholar
Rizzolatti, G., Scandolara, C., Matelli, M. & Gentilucci, M. (1981b) Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behavioral Brain Research 2:147–63. [MSG]Google Scholar
Robertson, L. T. & McCollum, G. (1991) Stimulus classification by ensembles of climbing fiber receptive fields. Trends in Neurosciences 14:248–54. [GMc]Google Scholar
Robinson, C. J. & Burton, H. (1981a) Organization of somatosensory receptive fields in cortical areas 7B, retrosinular, postauditory, and granular insula of Macaca fascicularis. Journal of Comparative Neurology 192:69s–92. [MSG]Google Scholar
Robinson, C. J. & Burton, H. (1980b) Somatic submodality distribution within the second somatosensory area (S11), 7B, retroinsular, postauditory, and granular insular cortical areas of Macaca fascicularis. Journal of Comparative Neurology 192:93s–108. [MSG]Google Scholar
Robinson, D. A. (1973) Models of the saccadic eye movement system. Kyhernetik 14:7783. [aJFS]Google Scholar
Robinson, D. A. (1975) Oculomotor control signals. In: Basic mechanisms of ocular motility and their clinical implications, ed. Lennerstrand, G. & P., Bach-y-Rita. Pergamon Press. [aDAR, JAMVG]Google Scholar
Robinson, D. A. (1976) Adaptive gain control of vestibulo-ocular reflex by the cerebellum. Journal of Neurophysiology 39:954–69. [arJRB]Google Scholar
Robinson, D. A. (1981) The use of control systems analysis in the neurophysiology of eye movements. Annual Review of Neuroscience 4:463503. [aDAR, MF]Google Scholar
Robinson, D. A. (1982) The use of matrices in analyzing the three-dimensional behavior of the vestibulo-ocular reflex. Biological Cybernetics 46:5366. [arDAR, MF]Google Scholar
Robinson, D. A. (1989) Integrating with neurons. Annual Review of Neuroscience 12:3345. [aDAR, MF]Google Scholar
Robinson, D. A. & Fuchs, A. F. (1969) Eye movements evoked by stimulation of the frontal eye fields. Journal of Neurophysiology 32:637–48. [APo]Google Scholar
Roby-Brami, A. & Bussel, B. (1990) Effects of flexor reflex afferent stimulation on the soleus H reflex in patients with a complete spinal cord lesion: Evidence for presynaptic inhibition of la transmission. Experimental Brain Research 81:593601. [arDAM]Google Scholar
Roe, A. W., Pallas, S. L., Hahm, J.-O. & Sur, M. (1990) A map of visual space induced in primary auditory cortex. Science 250:818–20. [aGEA]Google Scholar
Rogers, D. K., Bendrups, A. P. & Lewis, M. M. (1985) Disturbed proprioception following a period of muscle vibration in humans. Neuroscience Letters 57:147–52. [aSCG]Google Scholar
Roland, P. E. (1978) Sensory feedback to the cerebral cortex during voluntary movement in man. Behavioral and Brain Sciences 1:129–71. [aSCG]Google Scholar
Roland, P. E. (1982) Cortical regulation of selective attention in man. A regional cerebral blood flow study. Journal of Neurophysiology 48:1059–78. [aJFS]Google Scholar
Roland, P. E. (1984) Organization of motor control by the normal human brain. Human Neurobiology 2:205–16. [aGEA]Google Scholar
Roland, P. E. & Ladegaard-Pedersen, H. (1977) A quantitative analysis of sensations of tension and of kinaesthesia in man. Evidence for a peripherally originating muscular sense and for a sense of effort. Brain 100:671–92. [aSCG]Google Scholar
Roll, J. P., Gilhodes, J. C. & Tardy-Gervet, M. F. (1980) Effets perceptives et moteurs des vibrations musculaires chez l'homme normal: Mise en evidence d'une reponse des muscles antagonistes. Archives Italiennes de Biologie 118:5171. [MBB, AP]Google Scholar
Roll, J. P. & Vedel, J. P. (1982) Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Experimental Brain Research 47:177–90. [aSCG]Google Scholar
Roll, J. P., Vedel, J. P. & Ribot, E. (1989) Alteration of proprioceptive messages induced by tendon vibration in man: A microneurographic study. Experimental Brain Research 76:213–22. [aSCG]Google Scholar
Roll, J. P., Velay, J. L. & Roll, J. R. (1991) Eye and neck proprioceptive messages contribute to the spatial coding of retinal input in visually oriented activities. Experimental Brain Research 85:423–31. [MBB, AP]Google Scholar
Rolls, E. T. & Treves, A. (1990) The relative advantages of sparse versus distributed encoding for associative neuronal networks in the brain. Network 1:407–21. [rDAR, JER]Google Scholar
Romanò, C. & Schieppati, M. (1987) Reflex excitability of soleus motoneurones during voluntary shortening or lengthening contractions. Journal of Physiology (London) 390:271–84. [MS]Google Scholar
Rosenbaum, D. A. (1980) Human movement initiation: Specification of arm, direction, and extent. Journal of Experimental Psychology (General) 109(4):444s–74. [DJ]Google Scholar
Rosenbaum, D. A. (1985) Motor programming: A review and scheduling theory. In: Motor behavior: Programming, control, and acquisition, ed. Heuer, H., Kleinbeck, U. & K.-H., Schmidt. Springer-Verlag. [aGEA]Google Scholar
Rosenbaum, D. A. (1991) Human motor control. Academic Press. [JJS]Google Scholar
Rosenbaum, D. A. & Saltzman, E. (1984) A motor-program editor. In: Cognition and motor processes, ed. Prinz, W. & Sanders, A. F.. Springer-Verlag. [aGEA]Google Scholar
Rosenberg, C. (1987) Revealing the structure of NETtalk's internal representations. Proceedings of the ninth conference of the cognitive science society. Erlbaum. [rDAR, JER]Google Scholar
Rosenbloom, P. S. & Newell, A. (1987) An integrated computational model of stimulus-response compatibility and practice. In: The psychology of learning and motivation, ed. Bower, G. H.. Academic Press. [RWP]Google Scholar
Ross, H. E. (1981) How important are changes in body weight for mass perception? Acta Astronautica 8:1051s–58. [HER]Google Scholar
Ross, H. E. (1991) Motor skills under varied gravitoinertial force in parabolic flight. Acta Astronautica 23:8591. [HER]Google Scholar
Ross, H. E. & Brodie, E. E. (1987) Weber fractions for weight and mass as a function of stimulus intensity. Quarterly Journal of Experimental Psychology 39A:77s–88. [HER]Google Scholar
Ross, H. E., Rejman, M. H. & Lennie, P. (1972) Adaptation to weight transformation in water. Ergonomics 15:387–97. [HER]Google Scholar
Ross, H. E. & Reschke, M. F. (1982) Mass estimation and discrimination during brief periods of zero gravity. Perception & Psychophysics 31:429–36. [aSCG, HER]Google Scholar
Ross, H. E., Schwartz, E. & Emmerson, P. (1987) The nature of sensorimotor adaptation to altered G levels: Evidence from mass discrimination. Aviation, Space, and Environmental Medicine 58A:148–52. [HER]Google Scholar
Rossi, A. & Grigg, P. (1982) Characteristics of hip joint mechanoreceptors in the cat. Journal of Neurophysiology 47:1029–42. [aSCG]Google Scholar
Rossi, A., Mazzocchio, R. & Scarpini, C. (1988) Changes in la reciprocal inhibition from the peroneal nerve to the soleus alpha-motoneurons with different static body positions in man. Neuroscience Letters 84:283–86. [VD]Google Scholar
Rossignol, S. & Gauthier, L. (1980) Analysis of mechanisms controlling the reversal of crossed spinal reflexes. Brain Research 182:31–4. [aDAM]Google Scholar
Rothwell, J. C. (1987) Control of human voluntary movement. Croom Helm Limited. [JGP]Google Scholar
Rothwell, J. C., Gandevia, S. C. & Burke, D. (1990) Activation of fusimotor neurones by motor cortical stimulation in human subjects. Journal of Physiology (London) 431:743–56. [aSCG]Google Scholar
Rothwell, J. C., Traub, M. M., Day, B. L., Obeso, J. A., Thomas, P. K. & Marsden, C. D. (1982a) Motor performance in a deafferented man. Brain 104:465–91. [PRC]Google Scholar
Rothwell, J. C., Traub, M. M., Day, B. L., Obeso, J. A., Thomas, P. K. & Marsden, C. D. (1982b) Manual motor performance in a deafferented man. Brain 105:515–42. [aSCG]Google Scholar
Rothwell, J. C., Traub, M. M. & Marsden, C. D. (1982c) Automatic and “voluntary” responses compensating for disturbances of human thumb movements. Brain Research 248:3341. [MLL]Google Scholar
Rowat, P. F. & Selverston, A. I. (1991) Learning algorithms for oscillatory networks with gap junctions and membrane currents. Network 2:1741. [rEEF]Google Scholar
Rudomin, P. (1990a) Presynaptic control of synaptic effectiveness of muscle spindle and tendon organ afferents in the mammalian spinal cord. In: The segmental motor system, ed. Binder, M. & Mendell, L.. Oxford University Press. [aDAM]Google Scholar
Rudomin, P. (1990b) Presynaptic inhibition of muscle spindle and tendon organ afferents in the mammalian spinal cord. Trends in Neuroscience 13:499505. [aDAM]Google Scholar
Rudomin, P., Solodkin, M. & Jiminez, I. (1987) Synaptic potentials of primary afferent fibers and motoneurons evoked by single intermediate nucleus intemeurons in the cat spinal cord. Journal of Neurophysiology 57:12881313. [aDAM, PR]Google Scholar
Rueckl, J. G., Cave, K. R. & Kosslyn, S. M. (1989) Why are “what” and “where” processed by separate cortical visual systems? A computational investigation. Journal of Cognitive Neuroscience 1:171–86. [RAA]Google Scholar
Rumelhart, D. E., Hinton, G. E. & McClelland, J. L. (1986a) A general framework for parallel distributed processing. In: Parallel distributed processing: Explorations in the microstructure of cognition, ed. Rumelhart, D. E., McClelland, J. L. & The PDP Research Group. MIT Press. [aGEA]Google Scholar
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986b) Learning internal representations by error propagation. In: Parallel distributed processing: Explorations in the microstructure of cognition, vol. 1: Foundations, ed. Rumelhart, D. E. & McClelland, J. L.. MIT Press. [aEEF, aDAR]Google Scholar
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986c) Learning representations by back-propagating errors. Nature (London) 323:533–36. [aGEA, WAM]Google Scholar
Rumelhart, D. E. & McClelland, J. L. (1986) PDP models and general issues in cognitive science. In: Parallel distributed processing: Explorations in the microstructure of cognition, ed. Rumelhart, D. E., McClelland, J. L. & The PDP Research Group. MIT Press. [aGEA]Google Scholar
Rumelhart, D. E., McClelland, J. L. & The PDP Research Group (1986d) Parallel distributed processing: Explorations in the microstructure of cognition, vols. 1 and 2. MIT Press. [aGEA, aJFS]Google Scholar
Rushton, D. N., Rothwell, J. C. & Craggs, M. D. (1981) Gating of somatosensory evoked potentials during different kinds of movement in man. Brain 104:465–91. [aSCG]Google Scholar
Ryall, R. W. (1970) Renshaw cell mediated inhibition of Renshaw cells: Patterns of excitation and inhibition from impulses in motor axon collaterals. Journal of Neurophysiology 33:257–70. [DBul]Google Scholar
Ryall, R. W. & Piercey, M. (1971) Excitation and inhibition of Renshaw cells by impulses in peripheral afferent nerve fibers. Journal of Neurophysiology 34:242–51. [DBul]Google Scholar
Ryrner, W. Z. (1984) Spinal mechanisms for control of muscle length and tension. In: Handbook of the spinal cord, ed. Davidoff, R. A.. Marcel Dekker. [aDAM]Google Scholar
Rymer, W. Z. & D'Almedia, A. (1980) Joint position sense: The effects of muscle contraction. Brain 103:122. [aSCG]Google Scholar
Sabin, C. & Smith, J. L. (1984) Recovery and perturbation of paw-shake responses in spinal cats. Journal of Neurophysiology 51:680–88. [CAP]Google Scholar
Sakata, H., Shibutani, H. & Kawano, K. (1983) Functional properties of visual tracking neurons in posterior parietal association cortex on the monkey. Journal of Neurophysiology 49:1364–80. [JWG]Google Scholar
Sakata, H., Shibutani, H., Kawano, K. & Harrington, T. L. (1985) Neural mechanisms of space vision in the parietal association cortex of the monkey. Vision Research 25:453–63. [JWG]Google Scholar
Sakitt, B., Lestienne, F. & Zeffiro, T. A. (1983) The information transmitted at final position in visually triggered forearm movements. Biological Cybernetics 46:111–18. [FJC]Google Scholar
Salthouse, T. A. (1984) Effects of age and skill in typing. Journal of Experimental Psychology: General 113:345–71. [AMG]Google Scholar
Saltzman, E. (1979) Levels of sensorimotor representation. Journal of Mathematical Psychology 20:91163. [aGEA]Google Scholar
Saltzman, E. & Kelso, J. A. S. (1987) Skilled actions: A task dynamic approach. Psychological Review 94:84106. [JJS]Google Scholar
Salzman, C. D., Britten, K. H. & Newsome, W. T. (1990) Cortical microstimulation influences perceptual judgements of motion direction. Nature 346:174–77. [RE]Google Scholar
Sanes, J. N. (1990) Motor representations in deafferented humans: A mechanism for disordered movement performance. In: Attention and performance, vol. 13: Motor representation and control, ed. Jeannerod, M.. Erlbaum. [aSCG]Google Scholar
Sanes, J. N., Dimitrov, B. & Hallett, M. (1990) Motor learning in patients with cerebellar dysfunction. Brain 113:103–20. [aJRB, MH]Google Scholar
Sanes, J. N. & Evarts, E. V. (1983a) Effects of perturbations on accuracy of arm movements. Journal of Neuroscience 3:977:86s. [aEB, aSCG, MH]Google Scholar
Sanes, J. N. & Evarts, E. V. (1983b) Regulatory role of proprioceptive input in motor control of phasic or maintained voluntary contractions in man. In: Motor control mechanisms in health and disease, ed. Desmedt, J. E.. Raven Press. [aSCG]Google Scholar
Sanes, J. N., Mauritz, K.-H., Dalakas, M. C. & Evarts, E. V. (1985) Motor control in humans with large fiber sensory neuropathy. Human Neurobiology 4:101114. [aSCG, PRC, ZH]Google Scholar
Sasaki, K., Bower, J. M. & Llinas, R. (1989) Multiple Purkinje cell recording in rodent cerebellar cortex. European Journal of Neuroscience 1:572–86. [aJRB]Google Scholar
Sathian, K. & Devanandan, M. S. (1983) Receptors of the metacarpophalangeal joints: A histological study in the Bonnet monkey and man. Journal of Anatomy 137:601–13. [aSCG]Google Scholar
Sato, Y., Kawasaki, T. & Ikarashi, K. (1983) Afferent projections from the brainstem to the three floccular zones in cats. II. Mossy fiber projections. Brain Research 272:3748. [NHB]Google Scholar
Sato, Y., Yamamoto, F., Shojaku, H. & Kawasaki, T. (1984) Neuronal pathway from floccular caudal zone contributing to vertical eye movements in cats — role of group y nucleus of vestibular nuclei. Brain Research 294:375–80. [NHB]Google Scholar
Schacher, S., Glanzman, D., Barzilai, A., Dash, P., Grant, S. G., Keller, F., Mayford, M. & Kandel, E. R. (1990) Long-term facilitation in aplysia: Persistent phosphorylation and structural changes. Cold Spring Harbor Symposia on Quantitative Biology 55:187202. [MH]Google Scholar
Schade, J. P. & Ford, D. H. (1973) Basic neurology. Elsevier. [JMB]Google Scholar
Schady, W. J. L. & Torebjörk, H. E. (1983) Projected and receptive fields: A comparison of projected areas of sensation evoked by intraneural stimulation of mechanoreceptive units, and their innervation territories. Acta Physiologica Scandinavica 119:267–75. [aSCG]Google Scholar
Schaible, H.-G., & Schmidt, R. F. (1983) Responses of fine medial articular nerve afferents to passive movements of knee joint. Journal of Neurophysiology 49:1118–26. [aSCG]Google Scholar
Schell, G. R. & Strick, P. L. (1984) The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. Journal of Neuroscience 4:539–60. [aGEA]Google Scholar
Schieber, M. (1990) How might the motor cortex individuate movements? Trends in Neuroscience 13:440s–44. [aDAM, GMc]Google Scholar
Schieber, M. A. & Thach, W. T. (1985) Trained slow tracking. II. Bidirectional discharge patterns of cerebellar nuclear, motor cortex, and spindle afferent neurons. Journal of Neurophysiology 55:1228–70. [aJRB, aEEF]Google Scholar
Schieppati, M. & Crenna, P. (1984) From activity to rest: Gating of excitatory autogenetic afferences from the relaxing muscle in man. Experimental Brain Research 56:448–57. [aSCG]Google Scholar
Schieppati, M., Gritti, I. & Romanò, C. (1991) Recurrent and reciprocal inhibition of the human monosynaptic reflex show opposite changes following intravenous administration of acetylcarnitine. Acta Physiologica Scandinavica 142:2732. [MS]Google Scholar
Schieppati, M. & Nardone, A. (1991) Free and supported stance in Parkinson's disease. The effect of posture and ‘postural set’ on leg muscle responses to perturbation, and its relation to the severity of the disease. Brain 114:1227–44. [MS]Google Scholar
Schieppati, M., Nardone, A. & Musazzi, M. (1986) Modulation of the Hoffmann reflex by rapid muscle contraction or release. Human Neurobiology 5:5966. [aSCG]Google Scholar
Schieppati, M., Romanó, C. & Gritti, I. (1990) Convergence of la fibres from synergistic and antagonistic muscles on interneurones inhibitory onto soleus in humans. Journal of Physiology (London) 431:365–77. [MS]Google Scholar
Schieppati, M., Valenza, F. & Rezzonico, M. (1992) Motor unit recruitment in human biceps and brachioradialis muscles during lengthening contractions. European Journal of Neuroscience (suppl. 4) 4283:303. [MS]Google Scholar
Schlag, J. & Schlag-Rey, M. (1987) Evidence for a supplementary eye field. Journal of Neurophysiology 57:179200. [aDAR]Google Scholar
Schmidt, E. M., Jost, R. G. & Davis, K. K. (1975) Reexamination of the force relationship of cortical cell discharge patterns with conditioned wrist movements. Brain Research 83:213–23. [aEEF]Google Scholar
Schmidt, R. A. (1975) A schema theory of discrete motor skill learning. Psychological Reviews 86:225–60. [aGEA]Google Scholar
Schmidt, R. A. & McGown, C. M. (1980) Terminal accuracy of unexpectedly loaded rapid movements: Evidence for a mass-spring mechanism in programming. Journal of Motor Behavior 12:149–61. [JBJS]Google Scholar
Schmidt, R. A., Zelaznik, H. N., Hawkins, B., Frank, J. S. & Quinn, J. T. (1979) Motor-output variability: A theory for the accuracy of rapid motor acts. Psychological Reviews 86:415–51. [aGEA]Google Scholar
Schomburg, E. (1990) Spinal sensorimotor systems and their supraspinal control. Neuroscience Research 7:265340. [JDu]Google Scholar
Schomburg, E. & Steffens, H. (1986) Synaptic responses of lumbar alphamotoneurones to selective stimulation of cutaneous nociceptors and low threshold mechanoreceptors in the spinal cat. Experimental Brain Research 62:335–42. [aDAM]Google Scholar
Schotland, J. L., Lee, W. A. & Rymer, W. Z. (1989) Wiping reflex and flexion withdrawal reflexes display different EMG patterns prior to movement onset in the spinalized frog. Experimental Brain Research 78:649–53. [aEB, SG]Google Scholar
Schouenborg, J. & Sjölund, B. (1983) Activity evoked by A- and C-afferent fibers in rat dorsal horn neurons and its relation to a flexion reflex. Journal of Neurophysiology 50:1108–21. [aDAM]Google Scholar
Schreurs, B. G., Sanchez-Andres, J. V. & Alkon, D. L. (1991) Learningspecific differences in Purkinje-cell dendrites of lobule HVI (Lobulus simplex): Intracellular recording in a rabbit cerebellar slice. Brain Research 548:1822. [MH]Google Scholar
Schroder, K. E., Hopf, A., Lange, H. & Thorner, G. (1975) Morphemetrischstatistche Strukturanalysen des Striatum, Pallidum und Nucleus Subthalamicus beim Menschen. I. Striatum. Journal für Hirnforschung 16:333–50. [aGEA]Google Scholar
Schwartz, A. B., Ebner, T. J. & Bloedel, J. R. (1987) Comparison of responses in dentate and interposed nuclei to perturbations of the locomotor cycle. Experimental Brain Research 67:323–38. [aJRB]Google Scholar
Schwartz, A. B., Kettner, R. E. & Georgopoulos, A. P. (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single-cell discharge and direction of movement. Journal of Neuroscience 8:2913–27. [aGEA, aIRB, cSCG, DSL]Google Scholar
Scott, T. G. (1964) A unique pattern of localization within the cerebellum of the mouse. Journal of Comparative Neurology 122:17. [NHB]Google Scholar
Scudder, C. (1988) A new local feedback model of the saccadic burst generator. Journal of Neurophysiology 59:1455–75. [aDAR]Google Scholar
Seal, J., Hasbroucq, T., Mouret, I., Akamatsu, M. & Kornblum, S. (1991) Possible neural correlates for the mechanism of stimulus-response association in the monkey. In: Tutorials in motor neuroscience, ed. Requin, J. & Stelmach, G. E.. Kluwer. [RWP]Google Scholar
Seal, J., Riehle, A. & Requin, J. (1992) A critical reexamination of the concept of function within the neocortex. Human Movement Science 11:4758. [JJS]Google Scholar
Searle, J. R. (1980) Minds, brains and programs. Behavioral and Brain Sciences 3:417–57. [DJ]Google Scholar
Segraves, M. A. & Goldberg, M. E. (1987) Functional properties of corticotectal neurons in the monkey's frontal eye field. Journal of Neurophysiology 58:13871419. [CLC]Google Scholar
Seif-Naraghi, A. H. & Winters, J. M. (1990) Optimized strategies for scaling goal-directed dynamic limb movements. In: Multiple muscle systems: Biomechanics and movement organization, ed. Winters, J. M. & Woo, S. Y.-L.. Springer-Verlag. [JMW]Google Scholar
Sejnowski, T. J. & Rosenberg, C. R. (1987) Parallel networks that learn to pronounce English text. Complex Systems 1:145–68. [aDAR]Google Scholar
Selemon, L. D. & Goldman-Rakic, P. S. (1985) Longitudinal topography and interdigitation of cortico-striatal projections in the rhesus monkey. Journal of Neuroscience 5:776–94. [aGEA]Google Scholar
Selhorst, J. B., Stark, L., Ochs, A. L. & Hoyt, W. F. (1976) Disorders in cerebellar ocular motor control. Brain 99:497508. [aJRB]Google Scholar
Seltzer, B. & Pandya, D. N. (1978) Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Research 149:124. [BS]Google Scholar
Seltzer, B. & Pandya, D. N. (1984) Further observations on parieto-temporal connections in the rhesus monkey. Experimental Brain Research 55:301312. [BS]Google Scholar
Seltzer, B. & Pandya, D. N. (1989) Frontal lobe connections of the superior temporal sulcus in the rhesus monkey. Journal of Comparative Neurology 281:97113. [BS]Google Scholar
Seltzer, B. & Pandya, D. N. (1991a) Post-Rolandic cortical connections of the superior temporal sulcus in the rhesus monkey. Journal of Comparative Neurology 312:625–40. [BS]Google Scholar
Seltzer, B. & Pandya, D. N. (1991b) Cortical sensory and limbic projections to discrete areas of the superior temporal sulcus in the rhesus monkey. Society for Neuroscience Abstracts 17:1585. [BS]Google Scholar
Selverston, A. I. & Moulins, M. (1985) Oscillatory neural networks. Annual Reviews of Physiology 47:2948. [CAP]Google Scholar
Severin, F., Orlovsky, G. & Shik, M. (1968) Reciprocal influences on work of single motoneurons during controlled locomotion. Bulletin of Experimental Biology and Medicine 66:59. [aDAM]Google Scholar
Shadmehr, R., Mussa-Ivaldi, F. A. & Bizzi, E. (1992) Postural force fields of the human arm and their role in generating multi-joint movements. Journal of Neuroscience, in press. [rEB]Google Scholar
Shambes, G. M., Gibson, J. M. & Welker, W. I. (1978) Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres is revealed by micromapping. Brain Behavior and Evolution 15:94140. [aJRB]Google Scholar
Shapiro, D. C., Zernicke, R. F., Gregor, R. J. & Diestel, J. D. (1981) Evidence for a generalized motor programs using gait pattern analysis. Journal of Motor behavior 22(1):98124. [GMa]Google Scholar
Shefchyk, S. & Jordan, L. (1985) Excitatory and inhibitory postsynaptic potentials in alpha-motoneurons produced during fictive locomotion by stimulation of the mesencephalic locomotor region. Journal of Neurophysiology 53:1345–55. [aDAM]Google Scholar
Shefchyk, S., McCrea, D., Kreillaars, D., Fortier, P. & Jordan, L. (1990) Activity of L4 interneurons during brain stem evoked fictive locomotion in the mesencephalic cat. Experimental Brain Research 80:290–95. [aDAM]Google Scholar
Shen, L. (1989) Neural integration by short term potentiation. Biological Cybernetics 61:319–25. [MF]Google Scholar
Shepard, R. N. & Cooper, L. A. (1982) Mental images and their transformation. MIT. [VB]Google Scholar
Shepherd, G. M., ed. (1990) The synaptic organization of the brain. Oxford University Press. [CIC]Google Scholar
Sherrington, C. S. (1900) The muscular sense. In: Text-book of physiology, vol. 2, ed. Schäfer, E. A.. Young J. Pentland. [aSCG]Google Scholar
Sherrington, C. S. (1906/1947) The integrative action of the nervous system. Yale University Press. [aSCG]Google Scholar
Sherrington, C. S. (1910) Flexion-reflex of the limb, crossed extension reflex, and reflex stepping and standing. Journal of Physiology 40:28121. [aDAM]Google Scholar
Shibutani, H., Sakata, H. & Kawano, K. (1984) Saccade and blinking evoked by microstimulation of the posterior parietalcortex of the monkey. Experimental Brain Research 55:18. [JWG]Google Scholar
Shindo, M., Harayama, H., Kondo, K., Yanagisawa, N. & Tanaka, R. (1984) Changes in reciprocal la inhibition during voluntary contraction in man. Experimental Brain Research 53:400408. [aSCG]Google Scholar
Shinoda, Y., Yamaguchi, T. & Futami, T. (1986) Multiple axon collaterals of single corticospinal axons in the cat spinal cord. Journal of Neurophysiology 55:425–48. [aDAM]Google Scholar
Shinoda, Y., Yokota, J. & Futami, T. (1981) Divergent projection of individual corticospinal axons to motoneurons of multiple muscles in the monkey. Neuroscience Letters 23:712. [aGEA, aDAM]Google Scholar
Simoneau, G. G. (1992) The effects of diabetic distal symmetrical peripheral neuropathy on static posture. Doctoral Dissertation, Penn State University. [PRC]Google Scholar
Simoneau, G. S., Ulbrecht, J. S. & Cavanagh, P. R. (1992) Stability during standing posture in patients with distal symmetrical diabetic neuropathy, in preparation. [PRC]Google Scholar
Singer, I. M. (1982) Differential geometry, fiber bundles and physical theories. Physics Today March 1982:4144. [TLC]Google Scholar
Sinkjaer, T., Toft, E., Andreassen, S. & Hornemann, B. C. (1988) Muscle stiffness in human ankle dorsiflexors: Intrinsic and reflex components. Journal of Neurophysiology 60:1110s–21. [TRN]Google Scholar
Sittig, A. C., Denier van der Gon, J. J., Gielen, C. C. A. M. & Van Wijk, A. J. M. (1985) The attainment of target position during step-tracking movements despite a shift of initial position. Experimental Brain Research 60:407–10. [aSCG]Google Scholar
Skarda, C. A. & Freeman, W. J. (1987) How brains make chaos in order to make sense of the world. Behavioral and Brain Sciences 10:161–95. [PR, IT]Google Scholar
Skoglund, S. (1956) Anatomical and physiological studies of knee joint innervation in the cat. Acta Physiologica Scandinavica 124:1101. [aSCG]Google Scholar
Slosberg, M. (1990) Spinal learning: Central modulation of pain processing and long-term alteration of interneuronal excitability as a result of nociceptive peripheral input. Journal of Manipulative and Physiological Theraputics 13:326336. [rDAM]Google Scholar
Slotine, J.-J. E. (1985) The robust control of robot manipulators. International Journal of Robotics Research 4:4964. [aEB]Google Scholar
Smeets, J. B. J. & Erkelens, C. J. (1991) Dependence of autogenic and heterogenic stretch reflexes on preload activity in the human arm. Journal of Physiology 440:455–65. [JBJS]Google Scholar
Smeets, J. B. J., Erkelens, C. J. & Denier van der Gon, J. J. (1990) Adjustments of fast goal-directed movements in response to an unexpected inertial load. Experimental Brain Research 81:303–12. [JBJS]Google Scholar
Smeets, J. B. J., Erkelens, C. J. & Denier van der Gon, J. J. (1992) Perturbations of fast goal-directed arm movements: Different behaviour of early and late EMG-responses, submitted. [JBJS]Google Scholar
Smetanin, B. N., Popov, K. E., Gurfinkel, V. S. & Shylkov, V. U. (1988) Effect of movement and illusion of movement on human vestibulomotor response. Neurophysiology (Kiev) 20:250–55. [MBB, AP]Google Scholar
Smith, A. M. (1990) Some cerebellar and cortical contributions to reaching and grasping. In: Vision and action: The control of grasping, ed. Goodale, M. A.. Ablex. [DPC]Google Scholar
Smith, J. C., Feldmann, J. L., Schmidt, B. J. (1988) Neural mechanisms generating locomotion studies in mammalian brainstem-spinal cord in vitro. FASEB Journal 2:2283–88. [FBH]Google Scholar
Smith, J. L., Betts, B., Edgerton, V. R. & Zernicke, R. F. (1980) Rapid ankle extension during paw shakes. Selective recruitment of fast ankle extensors. Journal of Neurophysiology 43:612–20. [CAP]Google Scholar
Smith, J. L., Edgerton, V. R., Betts, B. & Collates, T. C. (1977) EMG of slow and fast ankle extensors of cat during posture, locomotion, and jumping. Journal of Neurophysiology 40:503–13. [CAP]Google Scholar
Smith, J. L., Hoy, M. G., Koshland, G. F., Phillips, D. M. & Zernicke, R. F. (1985) Intralimb coordination of the paw-shake response: A novel mixed synergy. Journal of Neurophysiology 54:1271–81. [CAP]Google Scholar
Smith, J. L. & Zernicke, R. F. (1987) Predictions for neural control based on limb dynamics. Trends in Neuroscience 10:123–28. [CAP]Google Scholar
Smith, W. S. & Fetz, E. E. (1989) Effects of synchrony between corticomotoneuronal cells on post-spike facilitation of muscles and motor units. Neuroscience Letters 96:7681. [rEEF, PAK]Google Scholar
Smith, Y. & Parent, A. (1986) Differential connections of caudate nucleus and putamen in the squirrel monkey. (Saimiri sciureus). Neuroscience 18:347–71. [aGEA]Google Scholar
Smolensky, P. (1988) On the proper treatment of connectionism. Behavioral and Brain Sciences 11:174. [GS]Google Scholar
Smolensky, P. (1990) Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artificial Intelligence 46:159216. [GS]Google Scholar
Soechting, J. F. (1982) Does position sense at the elbow reflect a sense of elbow joint angle or one of limb orientation? Brain Research 248:392–95. [aSCG]Google Scholar
Soechting, J. F. (1988) Effect of load perturbations on EMG activity and trajectories of pointing movements. Brain Research 451:390–96. [ZH]Google Scholar
Soechting, J. F. & Flanders, M. (1989) Sensorimotor representations for pointing to targets in three-dimensional space. Journal of Neurophysiology 62:582–94. [aGEA, aSCG, aJFS, FJC]Google Scholar
Soechting, J. F. & Flanders, M. (1992a) Moving in three-dimensional space: Frames of reference, vectors, and coordinate systems. Annual Review of Neuroscience 15:167–91. [MF]Google Scholar
Soechting, J. F. & Flanders, M. (1992b) The organization of sequential typing movements. Journal of Neurophysiology 67:1275–90. [AMG]Google Scholar
Soechting, J. F., Helms Tillery, S. I. & Flanders, M. (1990) Transformation from head-to shoulder-centered representation of target direction in arm movements. Journal of Cognitive Neuroscience 2:3243. [MF]Google Scholar
Soechting, J. F. & Lacquaniti, F. (1988) Quantitative evaluation of the electromyographic responses to multidirectional load perturbations of the human arm. Journal of Neurophysiology 59:12961313. [aSCG]Google Scholar
Solodkin, M., Jiménez, I., Collins, W. F. III, Mendell, L. M. & Rudomin, P. (1991) Interaction of baseline synaptic noise and la EPSPs: Evidence for appreciable negative correlation under physiological conditions. Journal of Neurophysiology 65:927–45. [PR]Google Scholar
Soso, M. J. & Fetz, E. E. (1980) Responses of identified cells in post-central cortex of awake monkeys during comparable active and passive joint movements. Journal of Neurophysiology 43:10901110. [aEEF]Google Scholar
Sparks, D. L. (1991a) Neural encoding of location of targets for saccadic eye movements. In: The brain and space, ed. Paillard, J.. Oxford University press. [aJFS, DPC]Google Scholar
Sparks, D. L. (1991b) The neural control of orienting eye and head movements. In: Motor control: Concepts and issues, ed. Humphrey, D. R. & H.-J., Freund. Wiley. [ZH]Google Scholar
Stauffer, E. K. & Stephens, J. A. (1977) Responses of Golgi tendon organs to ramp-and-hold profiles of contractile force. Journal of Neurophysiology 40:681–91. [aSCG]Google Scholar
Stein, J. F. (1978) Effects of parietal lobe cooling on manipulation in the monkey. In: Active touch, ed. Gordon, G.. Pergamon Press. [aJFS, DPC]Google Scholar
Stein, J. F. (1986) Role of the cerebellum in the visual guidance of movement. Nature 323s:217–21, [GJvIS]Google Scholar
Stein, J. F. (1989a) Physiological differences between left and right. In: Aphasia, ed. Rose, F. C.. Whurr. [aJFS]Google Scholar
Stein, J. F. (1989b) Representation of egocentric space in the posterior parietal cortex. Quarterly Journal of Experimental Physiology 74:583606. [aJFS, DPC]Google Scholar
Stein, J. F. (1991a) Space and the parietal association areas. In: The brain and space, ed. Paillard, J.. Oxford University Press. [aJFS]Google Scholar
Stein, J. F. (1991b) Vision and language. In: Dyslexia, ed. Snowling, M.. Whurr. [aJFS]Google Scholar
Stein, J. F. (1991c) Vision and visual dyslexia. Macmillan. [rJFS]Google Scholar
Stein, J. F. & Glickstein, M. (1992) The role of the cerebellum in the visual guidance of movement. Physiological Review, in press. [cJFS]Google Scholar
Stein, R. B. (1974) The peripheral control of movement. Physiological Reviews 54:215–43. [aEB, RBS]Google Scholar
Stein, R. B. (1982) What muscle variable(s) does the nervous system control in limb movements? Behavioral and Brain Sciences 5:535–77. [JBJS]Google Scholar
Stein, R. B. & Capaday, C. (1988) The modulation of human reflexes during functional motor tasks. Trends in Neuroscience 11:328–32. [RBS]Google Scholar
Steinmetz, J. E., Lavond, D. G. & Thompson, R. F. (1989) Classical conditioning in rabbits using pontine stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus. Synapse 3(3):225–32. [RFT]Google Scholar
Steinmetz, M. A., Motter, B. C., Duffy, J. & Mountcastle, V. B. (1987) Functional properties of parietal visual neurones: Radial organisation of directionalisation within the visual field. Journal of Neuroscience 7:177–91. [aJFS]Google Scholar
Stelmach, G. E. & Diggles, V. A. (1982) Control theories in motor behavior. Acta Psychologica 50:83105. [JGP]Google Scholar
Stelmach, G. E. & Hughes, B. G. (1984) Cognitivism and future theories of action: Some basic issues. In: Cognition and motor processes, ed. Prinz, W. & Sanders, A. F.. Springer-Verlag. [JJS]Google Scholar
Stoffer, T. H. (1991) Attentional focussing and spatial stimulus-response compatibility. Psychological Research 53:127–35. [RWP]Google Scholar
Strata, P. (1987) Inferior olive and motor control. In: The cerebellum and neuronal plasticity, ed. Glickstein, M. & Stein, J.. Plenum Press. [cJFS]Google Scholar
Strick, P. L. (1976) Anatomical analysis of ventrolateral thalamic input to primate motor cortex. Journal of Neurophysiology 39:1020–31. [aGEA]Google Scholar
Strick, P. L. (1983) The influence of motor preparation on the response of cerebellar neurons to limb displacements. Journal of Neuroscience 3:2007–20. [aJRB]Google Scholar
Strong, G. E. & Whitehead, B. A. (1989) A solution to the tag-assignment problem for neural networks. Behavioral and Brain Sciences 12:381433. [MRWD]Google Scholar
Sultan, F. (1992) Vergleichende Untersuchungen uber die Flachenausdehnung der Kleinhirnrinde. Ein Beitrag zu einem Modell der Kleinhirnfunktion. Doctoral Dissertation, University of Tubingen. [VB]Google Scholar
Summers, J. J. (1989) Motor programs. In: Human skills, ed. Holding, D. H.. Wiley. [JJS]Google Scholar
Summers, J. J. (1992) Movement behaviour: A field in crisis? In: Approaches to the study of motor control and learning, ed. Summers, J. J.. North-Holland. [JJS]Google Scholar
Taga, G., Yamaguchi, Y. & Shimizu, H. (1991) Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biological Cybernetics 65:147–59. [GMa]Google Scholar
Taira, M. Mine, S., Georgopoulos, A. P., Murata, A. & Sakata, H. (1990) Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Experimental Brain Research 83:2936. [MAG]Google Scholar
Tanaka, R. (1983) Reciprocal la inhibitory pathway in normal man and in patients with motor disorders. In: Motor control mechanisms in health and disease, ed. Desmedt, J. E.. Raven Press. [aSCG]Google Scholar
Tanji, J. & Evarts, E. V. (1976) Anticipatory activity in motor cortex neurons in relation to direction of intended movement. Journal of Neurophysiology 39:1062–68. [aGEA, aEEF]Google Scholar
Tanji, J. & Kurata, K. (1985) Contrasting neuronal activity in supplementary and precentral motor cortex of monkeys. I. Responses to instructions determining motor responses to forthcoming modalities. Journal of Neurophysiology 53:129–41, [aGEA]Google Scholar
Tanji, J. & Kurata, K. (1989) Changing concepts of motor areas of the cerebral cortex. Brain & Development 11:374–77. [JT]Google Scholar
Tanji, J., Okano, K. & Sato, K. C. (1988) Neuronal activity in cortical motor areas related to ipsilateral, contralateral and bilateral digit movements of the monkey. Journal of Neurophysiology 60:325–43. [aGEA, cSCG, JT]Google Scholar
Tantisira, B. (1990) An electrophysiological and morphologcal investigation of the axonal parojection and termination of single C3-C4 propriospinal neurones in the cat. Doctoral Dissertation, University of Goteborg. [AL]Google Scholar
Tarassenko, L. & Blake, A. (1991) Analogue computation of collision-free paths. In: Proceedings of the 1991 IEEE International Conference on Robotics and Automation 1, IEEE Computer Society Press. [CIC]Google Scholar
Taylor, A. & Gottlieb, S. (1985) Convergence of several sensory modalities in motor control. In: Feedback and motor control in invertebrates and vertebrates, ed. Barnes, W. J. P. & Gladden, M. H.. Groom Helm. [VD, CAP]Google Scholar
Taylor, J. L. & McCloskey, D. I. (1990a) Ability to detect angular displacements of the fingers made at an imperceptibly slow speed. Brain 113:157–66. [aSCG]Google Scholar
Taylor, J. L. & McCloskey, D. I. (1990b) Triggering of preprogrammed movements as reactions to masked stimuli. Journal of Neurophysiology 63:439–46. [aSCG]Google Scholar
Tehovnik, E. & Lee, K. (1990) Electrical stimulation of the dorsomedial frontal cortex of the rhesus monkey. 17:372.10. [RAA]Google Scholar
Teyke, T., Weiss, K. R. & Kupfermann, I. (1990) Appetitive feeding behavior of aplysia: Behavioral and neural analysis of directed head turning. Journal of Neuroscience 10:3922–34. [IK]Google Scholar
Thach, W. T. (1970) Discharge of cerebellar neurons related to two maintained postures and two prompt movements. I. Nuclear cell output. Journal of Neurophysiology 33:527–36. [aJRB, PFCG]Google Scholar
Thach, W. T. (1978) Correlation of neural discharge with pattern and force of muscular activity, joint position and direction of intended next movement in motor cortex and cerebellum. Journal of Neurophysiology 41:654–76. [aGEA, aJRB, aEEF, cSCG, JFK]Google Scholar
Thach, W. T. (1980) Complex spikes, the inferior olive, and natural behavior. In: The inferior olivary nucleus: Anatomy and physiology, ed. Courville, J., C., de Montigny & Lamarre, Y.. Raven Press. [JMB]Google Scholar
Thach, W. T., Goodkin, H. G. & Keating, J. G. (1992) Cerebellum and the adaptive coordination of movement. Annual Review of Neuroscience 15:403–42. [RFT]Google Scholar
Thickbrook, G. W. & Mastaglia, F. J. (1985) Cerebral events preceding saccades. Electroencephalography and Clinical Neurophysiology 62:277–89. [aJFS]Google Scholar
Thier, P. & Andersen, R. A. (1991) Electrical microstimulation delineates three distinct eye-movement related areas in the posterior parietal cortex of the rhesus monkey. Society for Neuroscience Abstracts 1281. [RAA, APo]Google Scholar
Thilmann, A. F., Schwarz, M., Töpper, R., Fellow, S. J. & Noth, J. (1991) Different mechanisms underlie the long-latency stretch reflex response of active human muscle at different joints. Journal of Physiology (London) 444:631–43. [VD]Google Scholar
Thomas, P. K. & Brown, M. J. (1987) Diabetic polyneuropathy. In: Diabetic neuropathy, ed. Dyck, P. J., Thomas, P. K., Asbury, A. K., Winegrad, A. I. & Porte, D.. W. B. Saunders. [PRC]Google Scholar
Thompson, R. F. (1986) The neurobiology of learning and memory. Science 223:941–47. [aJRB, MH]Google Scholar
Thompson, R. F. (1989) Role of the inferior olive in classical conditioning. In: The olivocerebellar system in motor control, ed. Strata, P.. Springer-Verlag. [rJRB]Google Scholar
Thompson, R. F. (1990) Neural mechanisms of classical conditioning in mammals. Philosophical Transactions. Royal Society London B 329:161–70. [RFT]Google Scholar
Thompson, R. F. & Steinmetz, J. E. (1992) The essential memory trace circuit for a basic form of associative learning. In: Learning and memory: The behavioral and biological substrates, ed. Gormezano, I. & Wasserman, E.. Iowa, in press. [RFT]Google Scholar
Thompson, S., Gregory, J. E. & Proske, U. (1990) Errors in force estimation can be explained by tendon organ desensitization. Experimental Brain Research 79:365–72. [aSCG]Google Scholar
Thompson, W. & Tait, P. G. (1886) Treatise on natural philosophy. Cambridge University Press. [rEB]Google Scholar
Thorner, G., Lange, H. & Hopf, A. (1975) Morphometrisch-statische Strukturanalysen des Striatum, Pallidum und Nucleus Subthalamicus beim Menschen. II. Pallidum. Journal für Hirnforschung 16:401–13. [aGEA]Google Scholar
Toda, H., Takagi, M., Yoshizawa, T. & Bando, T. (1991) Disjunctive eye movement evoked by microstimulation in an extrastriate cortical area of the cat. Neuroscience Research 12:300306. [JWG]Google Scholar
Tolbert, D. L., Bantli, H. & Bloedel, J. R. (1977) The intracerebellar nucleocortical projection in a primate. Experimental Brain Research 30:425–34. [aJRB]Google Scholar
Tomlinson, R. D. & Robinson, D. A. (1984) Signals in vestibular nucleus mediating vertical eye movements in the monkey. Journal of Neurophysiology 51:1121–36. [aDAR]Google Scholar
Topka, H., Massaquoi, S. G., Zeffiro, T. & Hallett, M. (1991) Learning of arm trajectory formation in patients with cerebellar deficits. Society for Neuroscience Abstracts 17:1381. [MH]Google Scholar
Topka, H., Valls-Sole, J., Massaquoi, S. G. & Hallett, M. (1992) Eyeblink conditioning in patients with cerebellar deficits. Movement Disorders, in press. [MH]Google Scholar
Torebjörk, H. E., Vallbo, Å. B. & Ochoa, J. L. (1987) Intraneural microstimulation in man: Its relation to specificity of tactile sensations. Brain 110:1509–29. [aSCG]Google Scholar
Touretzky, D., ed. (1991) Special issue on connectionist approaches to language learning. Machine Learning 7:105252. [JER]Google Scholar
Tracey, D. J. (1979) Characteristics of wrist joint receptors in the cat. Experimental Brain Research 34:165–76. [aSCG]Google Scholar
Trotter, Y., Celebrini, S., Thorpe, S. J. & Imbert, M. (1991) Modulation of stereoscopic processing in primate visual cortex {V}1 by the distance of fixation. Society for Neuroscience Abstracts, 1016. [APo]Google Scholar
Tomlinson, R. D. (1990) Combined eye-head gaze shifts in the primate. III. Contributions to the accuracy of gaze saccades. Journal of Neurophysiology 64:1873s–91. [RAA]Google Scholar
Tsuda, I. (1984) A Hermeneutic process of the brain. Progress of Theoretical Physics (suppl.) 79:241–59. [IT]Google Scholar
Tsuda, I. (1991) Chaotic itinerancy as a dynamical basis of hermeneutics in brain and mind. World Futures 32:167–84. [IT]Google Scholar
Tsuda, I. (1992) Dynamic link of memory-chaotic memory map in nonequilibrium neural networks. Neural Networks 5:313–26. [IT]Google Scholar
Turner, R. S. (1991) Movement and instruction related activity in the globus pallidus of the monkey. Doctoral Dissertation, University of Washington. [aEEF]Google Scholar
Udin, S. B. & Scherer, W. J. (1990) Restoration of the plasticity of binocular maps by NMDA after the critical period in Xenopus. Science 249:669–72. [aGEA]Google Scholar
Ueki, A., Uno, M., Anderson, A. & Yoshida, M. (1977) Monosynaptic inhibition of thalamic neurons produced by stimulation of the substantia nigra. Experientia 33:1480–82. [aGEA]Google Scholar
Umilta, C. & Nicoletti, R. (1990) Spatial stimulus-response compatibility. In: Stimulus-response compatibility: An integrated perspective, ed. Proctor, R. W. & Reeve, T. G.. North-Holland. [RWP]Google Scholar
Ungerleider, L. G. & Mishkin, M. (1982) Two cortical visual systems. In: The analysis of visual behavior, ed. Ingle, D. J., Goodale, M. A., Mansfield, R. J. W.. MIT Press. [aJFS, MAG]Google Scholar
Uno, M., Kozlovskaya, I. B. & Brooks, V. B. (1973) Effects of cooling interposed nuclei on tracking-task performance in monkeys. Journal of Neurophysiology 36:9961003. [aJRB]Google Scholar
Vaccaro, D. D., Agarwal, G. C. & Gottlieb, G. L. (1988) Nonlinear mechanical behavior in striated muscle and its relationship to underlying crossbridge activity. IEEE Transactions on Biomedical Engineering 35:426–34. [GCA]Google Scholar
Vallbo, Å. B. (1971) Muscle spindle response at the onset of isometric voluntary contractions in man. Time difference between fusimotor and skeletomotor effects. Journal of Physiology (London) 318:405–31. [aSCG]Google Scholar
Vallbo, Å. B. (1973a) The significance of intramuscular receptors in load compensation during voluntary contractions in man. In: Control of posture and locomotion, ed. Stein, R. B., Pearson, K. G., Smith, R. S. & Redford, J. B.. Plenum Press. [aEB, TRN]Google Scholar
Vallbo, Å. B. (1973b) Muscle spindle afferent discharge from resting and contracting muscles in normal human subjects. In: New developments in electromyography and clinical neurophysiology, vol. 3: Human reflexes, pathophysiology of motor systems, methodology of human reflexes, ed. J. E. Desmedt. Karger. [aSCG]Google Scholar
Vallbo, Å. B. (1974a) Afferent discharge from human muscle spindles in nocoetracting muscles. Steady state impulse frequency as a function of joint angle. Acta Physiologica Scandinavica 90:303–18. [aSCG]Google Scholar
Vallbo, Å. B. (1974b) Human muscle spindle discharge during isometric voluntary contractions. Amplitude relations between spindle frequency and torque. Acta Physiologica Scandinavica 90:319–36. [aSCG]Google Scholar
Vallbo, Å. B. (1981) Basic patterns of muscle spindle discharge in man. In: Muscle receptors and movement, ed. Taylor, A. & Prochaska, A.. Macmillan. [JP]Google Scholar
Vallbo, Å. B. & Al-Falahe, N. A. (1990) Human muscle spindle response in a motor learning task. Journal of Physiology (London) 421:553–68. [aSCG, APr]Google Scholar
Vallbo, Å. B. & Hagbarth, K.-E. (1968) Activity from skin mechanoreceptors recorded percutaneously in awake human subjects. Experimental Neurology 21:270–89. [aSCG]Google Scholar
Vallbo, Å. B., Hagbarth, K.-E., Torebjörk, E. & Wallin, B. G. (1979) Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiological Reviews 59:919–57. [aSCG]Google Scholar
Vallbo, Å. B., Olsson, K. A. Westberg, K.-G. & Clark, F. J. (1984) Microstimulation of single tactile afferents from the human hand. Sensory attributes related to unit type and properties of receptive fields. Brain 107:727–49. [aSCG]Google Scholar
Van Essen, D. C. (1985) Functional organization of primate visual cortex. In: Cerebral cortex, vol. 3, ed. Peters, A. & Jones, E. G.. Plenum Press. [JMF]Google Scholar
Van Gisbergen, J. A. M. & Robinson, D. A. (1977) Generation of micro- and macrosaccades by burst neurons in the monkey. In: Control and gaze by brain stem neurons, ed. Baker, R. & Berthoz, A.. Elsevier. [AAF]Google Scholar
Van Gisbergen, J.A. M., Van Opstal, A. J. & Tax, A. A. M. (1987) Collicular ensemble coding of saccades based on vector summation. Neuroscience 21:541–55. [JAMVG]Google Scholar
Van Ingen Schenau, G. J. (1989) From rotation to translation: Constraints in multi-joint movements and the unique action of bi-articular muscles. Human Movement Science 8:301337. [CAP, GJvIS]Google Scholar
Van Ingen Schenau, G. J. Boots, P. J. M., de Groot, G., Snackers, R. J. & van Woensel, W. W. L. M. (1992) The constrained control of force and position in multi-joint movements. Neuroscience 46:197207. [GJvIS]Google Scholar
Van Opstal, A. J. & Van Gisbergen, J. A. M. (1989a) A nonlinear model for collicular spatial interactions underlying the metrical properties of electrically elicted saccades. Biological Cybernetics 60:171–83. [JAMVG]Google Scholar
Van Opstal, A. J. & Van Gisbergen, J. A. M. (1989b) Scatter in the metrics of saccades and properties of the collicular motor map. Vision Research 29:1183–96. [JAMVG]Google Scholar
Vartanyan, G. A. & Klementyev, B. I. (1991) Chemical symmetry and asymmetry of the brain. Nauka. [MEI]Google Scholar
Vercher, J.-L. & Gauthier, G. M. (1988) Cerebellar involvement in the coordination control of the oculo-manual tracking system: Effects of cerebellar dentate nucleus lesion. Experimental Brain Research 73:155–56. [aJRB]Google Scholar
Verfaellie, M., Bowers, D. & Heilman, K. M. (1990) Attentional processes in spatial stimulus-response compatibility. In: Stimulus-response compatibility: An integrated perspective, ed. Proctor, R. W. & Reeve, T. G.. North-Holland. [RWP]Google Scholar
Vilis, T. & Hore, J. (1981) Characteristics of saccadic dysmetria in monkeys during reversible lesions of medial cerebellar nuclei. Journal of Neurophysiology 46:828–38. [aJRB]Google Scholar
Volpe, B. T., LeDoux, J. E. & Gazzaniga, M. S. (1979) Spatially oriented movements in the absence of proprioception. Neurology 29:1309–13. [aSCG]Google Scholar
Von Bonin, G. & Bailey, P. (1947) The neocortex of Macaca mulatta. University of Illinois Press. [aJFS]Google Scholar
von Helmholtz, H. (1910) Handbuch der physiologischen Optik. Translation by Southall, J. P. C. (1925) Helmholtz s treatise on physiological optics, vol. 3. Dover Publications. [JWG]Google Scholar
Voogd, J. & Bigare, F. (1980) Topographical distribution of olivary and cortico nuclear fibers in the cerebellum: A review. In: The inferior olivary nucleus: Anatomy and physiology, ed. Courville, J., C., de Montigny & Lamarre, Y.. Raven Press. [aJRB]Google Scholar
Wade, N. J. & Swanston, M. (1991) Visual perception: An introduction. Routledge. [PQ]Google Scholar
Wall, P. D. & McMahon, S. B. (1985) Microneurography and its relation to perceived sensation. A critical review. Pain 21:209–29. [aSCG]Google Scholar
Wang, J.-J., Kim, J. H. & Ebner, T. J. (1987) Climbing fiber afferent modulation during a visually guided, multi-joint arm movement in the monkey. Brain Research 410:323–29. [aJRB]Google Scholar
Wannier, T. M. J., Maier, M. A., Hepp-Ryemond, M.-C. (1991) Contrasting properties of monkey somatosensory and motor cortex neurons activated during the control of force in precision grip. Journal of Neurophysiology 6:572–89. [cSCG]Google Scholar
Wassef, M., Sotelo, C., Thomasset, M., Granholm, A.-C., Leclerc, N., Rafrafi, J. & Hawkes, R. (1990) Expression of compartmentation antigen zebrin I in cerebellar transplants. Journal of Comparative Neurology 294:223–34. [NHB]Google Scholar
Watson, J. D. G., Colebatch, J. G. & McCloskey, D. I. (1984) Effects of externally imposed elastic loads on the ability to estimate position and force. Behavioral Brain Research 13:267–71. [aSCG]Google Scholar
Watson, R. T., Valenstein, E., Day, A. & Heilman, K. (1985) Ablation of area 7 or cortex around the superior temporal sulcus and neglect. Neurology 35(suppl. 1): 179s–80. [BS]Google Scholar
Webster, W. (1977) Hemispheric asymmetry in cats. In: Lateralisation in the nervous system, ed. Harnad, S.. Academic Press. [aJFS]Google Scholar
Weiland, G. & Koch, U. T. (1987) Sensory feedback during active movements of stick insects. Journal of Experimental Biology 133:137–56. [JDe]Google Scholar
Weieer, M. J., Hallett, M. & Funkenstein, H. H. (1983) Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology 33:766–72. [MH]Google Scholar
Weinrich, M. & Wise, S. P. (1982) The premotor cortex of the monkey. Journal of Neuroscience 2:1329–45. [aGEA, aEEF, JFK]Google Scholar
Weiser, M., McElligott, J. R. & Baker, R. (1988) Adaptive gain control of the vestibulo-ocular reflex in goldfish. II. Total cerebellectomy. Society for Neuroscience Abstracts 14:169. [rJRB]Google Scholar
Weiskrantz, L. (1986) Blindsight. Oxford University Press. [PG]Google Scholar
Weissman, B. M., DiScenna, A. O. & Leigh, R. J. (1989) Maturation of the vestibulo-ocular reflex in normal infants during the first two months of life. Neurology 39:534–38. [aDAR]Google Scholar
Weizsacker, V. V. (1950) Der Gestaltkreis. Thieme. [JMF]Google Scholar
Welsh, J. P. & Harvey, J. A. (1989a) Cerebellar lesions and the nictitating membrane reflex: Performance deficits of the conditioned and unconditioned response. Journal of Neuroscience 9:299311. [aJRB, RFT]Google Scholar
Welsh, J. P. & Harvey, J. A. (1989b) Intra-cerebellar lidocaine: Dissociation of learning from performance. Society for Neuroscience Abstracts 15:639s. [aJRB, RFT]Google Scholar
Welsh, J. P. & Harvey, J. A. (1991) Pavlovian conditioning in the rabbit during inactivation of the interpositus nucleus. Journal of Physiology 444:459–80. [rJRB]Google Scholar
Westheimer, G. & McKee, S. P. (1975) Visual acuity in the presence of retinal-image motion. Journal of the Optical Society of America 65:847–50. [JMB]Google Scholar
Westling, G. & Johansson, R. S. (1987) Responses in glabrous skin mechanoreceptors during precision grip in humans. Experimental Brain Research 66:128–40. [aSCG]Google Scholar
Weyand, T. G. & Malpeli, J. G. (1990) Responses of neurons in primary visual cortex are influenced by eye position. Society for Neuroscience Abstracts 1055. [APo]Google Scholar
Wickens, J. R. (1991) Corticostriatal interactions in neuromotor programming. Paper presented at the 9th International Australasian Winter Conference on Brain Research, Queensland, New Zealand. [JJS]Google Scholar
Widrow, B. & Stearns, S. D. (1985) Adaptive signal processing. Prentice-Hall. [PDN]Google Scholar
Wiener, N. (1961) Cybernetics, 2d ed. MIT Press. [ADK]Google Scholar
Wiesendanger, M. & Miles, T. S. (1982) Ascending pathway of low-threshold muscle afferents to the cerebral cortex and its possible role in motor control. Physiological Reviews 62:1234–70. [aSCG]Google Scholar
Wiesendanger, R. & Wiesendanger, M. (1985) The thalamic connections with medial area 6 (supplementary motor cortex) in the monkey (Macaca fascicularis). Experimental Brain Research 59:91104. [aGEA]Google Scholar
Wilkie, D. R. (1954) Facts and theories about muscle. In: Progress in biophysics and biophysical chemistry, vol. 4, ed. Butler, J. A. V. & Randall, J. T.. Academic Press. [GCA]Google Scholar
Williams, R. J. & Zipser, D. (1989) A learning algorithm for continually running fully recurrent neural networks. Neural Computation 1:270–80. [RE]Google Scholar
Willshaw, D. & Dayan, P. (1990) Optimal plasticity for memory matrix neurones: What goes up must come down. Neural Computation 2:8593. [cJFS]Google Scholar
Wilson, C. J. & Groves, P. M. (1980) Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: A study employing intracellular injection of horseradish peroxidase. Journal of Comparative Neurology 194:599615. [aGEA]Google Scholar
Wilson, V. J. & Melvili, J. G. (1979) Mammalian vestibular physiology. Plenum Press. [VD]Google Scholar
Wilson, V. J. & Peterson, B. W. (1981) Vestibulospinal and reticulospinal systems. In: Handbook of physiology. The nervous system. Sect. 1, vol. 2, ch. 14. American Physiology Society. [VD]Google Scholar
Windhorst, U. (1989) Do Renshaw cells tell spinal neurons how to interpret muscle spindle signals? In: Progress in brain research, vol. 80. Afferent control of movement and posture, ed. Allum, J. H. J. & Hulliger, M.. Elsevier. [TMH]Google Scholar
Windhorst, U. (1990) Activation of Renshaw cells. In: Progress in neurobiology, vol. 35. Pergamon Press. [TMH]Google Scholar
Windhorst, U., Hamm, T. M. & Stuart, D. G. (1989) On the function of muscle and reflex partitioning. Behavioral and Brain Sciences 12:629s–81, [aSCG]Google Scholar
Wing, A. & Kristofferson, A. (1973) Response delays and the timing of discrete motor responses. Perception & Psychophysics 14:512. [aJRB]Google Scholar
Winograd, T. & Flores, F. (1986) Understanding computers and cognition: A new foundation for design. Ablex. [IT]Google Scholar
Winters, J. M. (1990) Hill-based muscle models: A systems engineering perspective. In: Multiple muscle systems: Biomechanics and movement organization, ed. Winters, J. M. & Woo, S. L.-Y.. Springer-Verlag. [JMW]Google Scholar
Winters, J. M. & Peles, J. D. (1990) Neck muscle activity and 3-D head kinematics during quasi-static and dynamic tracking movements. In: Multiple muscle systems: Biomechanics and movement organization, ed. Winters, J. M. & Woo, S. L.-Y.. Springer-Verlag. [JMW]Google Scholar
Winters, J. M. & Woo, S. Y.-L., eds. (1990) Multiple muscle systems: Biomechanics and movement organization. Springer-Verlag. [JMW]Google Scholar
Wise, S. P. & Mauritz, K.-H. (1985) Set-related neuronal activity in the premotor cortex of rhesus monkeys: Effects of changes in motor set. Proceedings of the Royal Society of London Series B 223:331s–54. [aGEA]Google Scholar
Wolf, S. L., Lecraw, D. E., Barton, L. A. & Jann, B. B. (1989) Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Experimental Neurology 104:125–32. [aSCG, PRC]Google Scholar
Wolpaw, J. & Carp, J. (1990) Memory traces in spinal cord. Trends in Neuroscience 13:137142. [rDAM]Google Scholar
Wood, L., Ferrell, W. R. & Baxendale, R. H. (1988) Pressures in normal and acutely distended human knee joints and effects on quadriceps maximal voluntary contractions. Quarterly Journal of Experimental Physiology 73:305–14. [aSCG]Google Scholar
Woollacott, M., Bonnet, M. & Yabe, K. (1984) Preparatory process for anticipatory postural adjustments: Modulation of leg muscles reflex pathways during preparation for arm movements in standing man. Experimental Brain Research 55:263–71. [VD]Google Scholar
Woolsey, C. N. (1958) Organization of somatic sensory and motor areas of the cerebral cortex. In: Biological and biochemical bases of behavior, ed. Harlow, H. F. & Woolsey, C. N.. University of Wisconsin Press. [aEEF]Google Scholar
Wurtz, R. H. & Mohler, C. W. (1976) Organisation of monkey superior colliculus: Enhanced visual responses of superficial layer cells. Journal of Neurophysiology 39:745–65. [aJFS]Google Scholar
Xu, Y., Bennett, D. J., Hollerbach, J. M. & Hunter, I. W. (1989) Wrist-airjet system for identification of joint mechanical properties of the unconstrained human arm. Society for Neuroscience Abstracts 15:396. [aEB]Google Scholar
Xu, Y., Bennett, D. J., Hollerbach, J. M. & Hunter, I. W. (1990a) A wrist-mounted airjet for studying human arm joint mechanical properties. Canadian Medical and Biomedical Engineering Society Conference, Winnipeg, Canada. [aEB]Google Scholar
Xu, Y., Bennett, D. J., Hollerbach, J. M. & Hunter, I. W. (1990b) An airjet perturbation device and its use in elbow posture mechanics. IEEE EMBS Conference, in press. [aEB]Google Scholar
Xu, Y., Bennett, D. J., Hollerbach, J. M. & Hunter, I. W. (1991) An airjet actuator system for identification of the human arm joint mechanical properties. IEEE Transactions on Biomedical Engineering 38:1111–22. [aEB]Google Scholar
Yang, J. F., Fung, J., Edamura, M., Blunt, R., Stein, R. B. & Barbeau, H. (1991) H-reflex modulation during walking in spastic paretic patients. Canadian Journal of Neurological Sciences 18:443–52. [RBS]Google Scholar
Yang, J. F. & Stein, R. B. (1990) Phase-dependent reflex reversal in human leg muscles during walking. Journal of Neurophysiology 63:1109–17. [JDu]Google Scholar
Yao, Y. & Freeman, W. J. (1990) Model of biological pattern recognition with spatially chaotic dynamics. Neural Networks 3:153–70. [IT]Google Scholar
Yeo, C. H. (1991a) Cerebellum and classical conditioning of motor responses. Annals of the New York Academy of Sciences 627:292304. [PFCG]Google Scholar
Yeo, C. H. (1991b) Cerebellum and classical conditioning of motor responses. In: Activity driven CNS changes in learning and development, ed. Boland, B., Cullinan, J. & Mayer, K. M.. New York Academy of Sciences. [cJFS, RFT]Google Scholar
Yeo, C. H., Hardiman, M. J. & Glickstein, M. (1985a) Classical conditioning of the nictitating membrane response of the rabbit. II. Lesions of cerebellar cortex. Experimental Brain Research 60:99113. [aJRB]Google Scholar
Yeo, C. H., Hardiman, M. J. & Glickstein, M. (1985b) Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei. Experimental Brain Research 60:8798. [aJRB]Google Scholar
Zee, D. S., Yamazaki, Z., Butler, P. H. & Gucer, G. (1981) Effects of ablation of flocculus and paraflocculus on eye movements in primate. Journal of Neurophysiology 46:878–99. [aJRB]Google Scholar
Zeki, S. (1990) Parallelism and functional specialization in human visual cortex. Cold Spring Harbor Symposia on Quantitative Biology 55:651–61. [RE]Google Scholar
Zipser, D. (1986) Programming neural nets to do spatial computations. ICS Report, University of California, San Diego. [cRAA]Google Scholar
Zipser, D. (1991) Recurrent network model of the neural mechanism of short-term active memory. Neural Computation 3:179–93. [rEEF]Google Scholar
Zipser, D. & Andersen, R. A. (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature (London) 331:679–84. [aGEA, aDAR, arJFS, RAA, CLC, MRWD, RE, APo, GS]Google Scholar