Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T17:49:26.514Z Has data issue: false hasContentIssue false

Beautiful minds (i.e., brains) and the neural basis of intelligence

Published online by Cambridge University Press:  26 July 2007

Richard J. Haier
Affiliation:
School of Medicine, University of California, Irvine, CA 92697-4475. rjhaier@uci.eduhttp://www.ucihs.uci.edu/pediatrics/faculty/neurology/haier/haier.html
Rex E. Jung
Affiliation:
Departments of Neurology and Psychology, University of New Mexico, and The MIND Research Network, Albuquerque, NM 87106. www.themindinstitute.orgrjung@themindinstitute.orgwww.positiveneuroscience.com

Abstract

The commentaries address conceptual issues ranging from our narrow focus on neuroimaging to the various definitions of intelligence. The integration of the P-FIT and data from cognitive neuroscience is particularly important and considerable consistency is found. Overall, the commentaries affirm that advances in neuroscience techniques have caused intelligence research to enter a new phase. The P-FIT is recognized as a reasonable empirical framework to test hypotheses about the relationship of brain structure and function with intelligence and reasoning.

Type
Authors' Response
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alkire, M. T. & Haier, R. J. (2001) Correlating in vivo anaesthetic effects with ex vivo receptor density data supports a gabaergic mechanism of action for propofol, but not for isoflurane. British Journal of Anaesthesiology 86(5): 618–26.CrossRefGoogle Scholar
Alkire, M. T., Pomfrett, C. J. D., Haier, R. J., Gianzero, M. V., Chan, C. M., Jacobsen, B. P. & Fallon, J. H. (1999) Functional brain imaging during anesthesia in humans: Effects of halothane on global and regional cerebral glucose metabolism. Anesthesiology 90(3):701709.CrossRefGoogle ScholarPubMed
Blair, C. (2006) How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability. Behavioral and Brain Sciences 29(2):109–25.CrossRefGoogle ScholarPubMed
Gottfredson, L. S. (2003) G, jobs and life. In: The scientific study of general intelligence, ed. Nyborg, H., pp. 293342. Elsevier Science.CrossRefGoogle Scholar
Haier, R. J. (2003) Positron emission tomography studies of intelligence: From psychometrics to neurobiology. In: The scientific study of general intelligence: Tribute to Arthur R. Jensen, ed. Nyborg, H., pp. 4151. Elsevier Science.CrossRefGoogle Scholar
Haier, R. J., Siegel, B. V., MacLachlan, A., Soderling, E., Lottenberg, S. & Buchsbaum, M. S. (1992a) Regional glucose metabolic changes after learning a complex visuospatial/motor task: A positron emission tomographic study. Brain Research 570(1–2):134–43.CrossRefGoogle ScholarPubMed
Haier, R. J., Siegel, B. V., Tang, C., Abel, L. & Buchsbaum, M. S. (1992b) Intelligence and changes in regional cerebral glucose metabolic-rate following learning. Intelligence 16(3–4):415–26.CrossRefGoogle Scholar
Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., Browning, H. L. & Buchsbaum, M. S. (1988) Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence 12(2):199217.CrossRefGoogle Scholar
Haier, R. J., White, N. S. & Alkire, M. T. (2003b) Individual differences in general intelligence correlate with brain function during non-reasoning tasks. Intelligence 31(5):429–41.CrossRefGoogle Scholar
Jensen, A. R. (1998) The g factor: The science of mental ability. Praeger.Google Scholar
Jensen, A. R. (2006) Clocking the mind: Mental chronometry and individual differences. Elsevier.Google Scholar
Jung, R. E., Haier, R. J., Yeo, R. A., Rowland, L. M., Petropoulos, H., Levine, A. S., Sibbitt, W. L. & Brooks, W. M. (2005) Sex differences in N-acetylaspartate correlates of general intelligence: An 1H-MRS study of normal human brain. NeuroImage 26(3):965–72.CrossRefGoogle ScholarPubMed
Larson, G. E., Haier, R. J., LaCasse, L. & Hazen, K. (1995) Evaluation of a “mental effort” hypothesis for correlations between cortical metabolism and intelligence. Intelligence 21(3):267–78.CrossRefGoogle Scholar
Lee, K. H., Choi, Y. Y., Gray, J. R., Cho, S. H., Chae, J. H., Lee, S. & Kim, K. (2006) Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. NeuroImage 29(2):578–86.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A., Straub, R. E., Lipska, B. K., Verchinski, B. A., Goldberg, T., Callicott, J. H., Egan, M. F., Huffaker, S. S., Mattay, V. S., Kolachana, B., Kleinman, J. E. & Weinberger, D. R. (2007) Genetic evidence implicating darpp-32 in human frontostriatal structure, function, and cognition. Journal of Clinical Investigation 117(3):672–82.CrossRefGoogle ScholarPubMed
Naghavi, H. R. & Nyberg, L. (2005) Common fronto-parietal activity in attention, memory, and consciousness: Shared demands on integration? Consciousness and Cognition 14(2):390425.CrossRefGoogle ScholarPubMed
Neubauer, A. C. & Fink, A. (2003) Fluid intelligence and neural efficiency: Effects of task complexity and sex. Personality and Individual Differences 35(4):811–27.CrossRefGoogle Scholar
Neubauer, A. C., Fink, A. & Schrausser, D. G. (2002) Intelligence and neural efficiency: The influence of task content and sex on the brain-IQ relationship. Intelligence 30(6):515–36.CrossRefGoogle Scholar
Neubauer, A. C., Grabner, R. H., Freudenthaler, H. H., Beckmann, J. F. & Guthke, J. (2004) Intelligence and individual differences in becoming neurally efficient. ACTA Psychologica (Amsterdam) 116(1):5574.CrossRefGoogle ScholarPubMed
Noble, K. G., Wolmetz, M. E., Ochs, L. G., Farah, M. J. & McCandliss, B. D. (2006) Brain-behavior relationships in reading acquisition are modulated by socioeconomic factors. Developmental Science 9(6):642–54.CrossRefGoogle ScholarPubMed
Rypma, B., Berger, J. S., Prabhakaran, V., Bly, B. M., Kimberg, D. Y., Biswal, B. B. & D'Esposito, M. (2006) Neural correlates of cognitive efficiency. NeuroImage 33(3):969–79.CrossRefGoogle ScholarPubMed
Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., Evans, A., Rapoport, J. & Giedd, J. (2006) Intellectual ability and cortical development in children and adolescents. Nature 440(7084):676–79.CrossRefGoogle ScholarPubMed
Thoma, R. J., Yeo, R. A., Gangestad, S., Halgren, E., Davis, J., Paulson, K. M. & Lewine, J. D. (2006) Developmental instability and the neural dynamics of the speed-intelligence relationship. NeuroImage 32(3):1456–64.CrossRefGoogle ScholarPubMed
van der Maas, H. L. J., Dolan, C. V., Grasman, R. P. P. P., Wicherts, J. M., Huizenga, H. M. & Raijmakers, M. E. J. (2006) A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review 113(4):842–61.CrossRefGoogle ScholarPubMed
Woods, R. P., Freimer, N. B., De Young, J. A., Fears, S. C., Sicotte, N. L., Service, S. K., Valention, D. J., Toga, A. W. & Mazziota, J. (2006) Normal variants of Microcephalin and ASPM do not account for human brain size variability. Human Molecular Genetics 15(12):2025–29.CrossRefGoogle Scholar