Hostname: page-component-857557d7f7-ksgrx Total loading time: 0 Render date: 2025-11-22T04:38:56.126Z Has data issue: false hasContentIssue false

The two-tiered life history model: from interrogating assumptions to refining concepts and hypotheses

Published online by Cambridge University Press:  11 November 2025

Bruce J. Ellis*
Affiliation:
Departments of Psychology and Anthropology, University of Utah, Salt Lake City, UT, USA bruce.ellis@psych.utah.edu
Karen L. Kramer
Affiliation:
Department of Anthropology, University of Utah, Salt Lake City, UT, USA karen.kramer@anthro.utah.edu
*
*Corresponding author.

Abstract

The two-tiered life history (LH) model proposes that different sources of extrinsic mortality (EM) have opposing effects that regulate development toward both slower and faster LH traits. Although the 53 commentators generally endorsed the two-tiered model and empirical conclusions of the target article, the devil is in the details. Some commentators challenged model assumptions (e.g., the mechanistic basis of the two-tiered model; whether the model is genetically confounded; the relative importance of child versus adult mortality). Other commentators proposed extensions/modifications of model concepts and hypotheses (e.g., incorporating density-dependent regulation; use of formal models to generate and test hypotheses; connection to the internal predictive adaptive response [PAR] model). In this reply, we review and address these challenges and proposed extensions/modifications. We hope that this iterative process advances our understanding of the complexity of EM, its opposing tiers, and their dualistic effects–both hierarchical and countervailing–on variation in human life histories.

Information

Type
Author’s Response
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ackerman, J. M., Hill, S. E., & Murray, D. R. (2018). The behavioral immune system: Current concerns and future directions. Social and Personality Psychology Compass, 12(2), e12371.CrossRefGoogle Scholar
Angeles, L. (2010). Demographic transitions: analyzing the effects of mortality on fertility. Journal of Population Economics, 23(1), 99120.CrossRefGoogle Scholar
Becker, G. S. (1960). An economic analysis of fertility. In Roberts, G. B. (Ed.), Demographic and economic change in developed countries (pp. 209240). Columbia University Press.Google Scholar
Becker, G. S. (1992). Fertility and the economy. Journal of Population Economics, 5(3), 185201.CrossRefGoogle ScholarPubMed
Belsky, J., Steinberg, L., & Draper, P. (1991). Childhood experience, interpersonal development, and reproductive strategy: An evolutionary theory of socialization. Child Development, 62, 647670.CrossRefGoogle ScholarPubMed
Blomquist, G. E. (2009). Trade-off between age of first reproduction and survival in a female primate. Biology letters, 5(3), 339342.CrossRefGoogle Scholar
Campbell, K. L., & Wood, J. W. (1988). Fertility in traditional societies. In Diggory, P., Potts, M. and Teper, S. (Eds.), Natural human fertility: Social and biological determinants (pp. 3969). Palgrave Macmillan.CrossRefGoogle Scholar
Castro, R., Behrman, J. R., & Kohler, H. P. (2015). Perception of HIV risk and the quantity and quality of children: The case of rural Malawi. Journal of population Economics, 28, 113132.CrossRefGoogle ScholarPubMed
Charnov, E. L., & Schaffer, W. M. (1973). Life-history consequences of natural selection: Cole’s result revisited. The American Naturalist, 107(958), 791793.CrossRefGoogle Scholar
Chin, Y. M., & Wilson, N. (2018). Disease risk and fertility: Evidence from the HIV/AIDS pandemic. Journal of Population Economics, 31, 429451.CrossRefGoogle Scholar
Colich, N. L., Rosen, M. L., Williams, E. S., & McLaughlin, K. A. (2020). Accelerated biological aging following childhood experiences of threat and deprivation: A meta-analysis. Psychological Bulletin, 146, 721764.CrossRefGoogle Scholar
Davison, R. J., & Gurven, M. D. (2021). Human uniqueness? Life history diversity among small- scale societies and chimpanzees. PLoS ONE, 16, e0239170.CrossRefGoogle ScholarPubMed
De la Croix, D., & Gobbi, P. E. (2017). Population density, fertility, and demographic convergence in developing countries. Journal of Development Economics, 127, 1324.CrossRefGoogle Scholar
de Vries, C., Galipaud, M., & Kokko, H. (2023). Extrinsic mortality and senescence: A guide for the perplexed. Peer Community Journal, 3, e29.CrossRefGoogle Scholar
Del Giudice, M. (2020). Rethinking the fast-slow continuum of individual differences. Evolution and Human Behavior, 41(6), 536549.CrossRefGoogle Scholar
Ding, W., Xu, Y., Kondracki, A. J., & Sun, Y. (2024). Childhood adversity and accelerated reproductive events: A systematic review and meta-analysis. American Journal of Obstetrics and Gynecology, 230(3), 315329.e31.CrossRefGoogle ScholarPubMed
Ellis, B. J., Bates, J. E., Dodge, K. A., Fergusson, D. M., John Horwood, L., Pettit, G. S., & Woodward, L. (2003). Does father absence place daughters at special risk for early sexual activity and teenage pregnancy? Child development, 74(3), 801821.CrossRefGoogle ScholarPubMed
Ellis, B. J., Figueredo, A. J., Brumbach, B. H., & Schlomer, G. L. (2009). Fundamental dimensions of environmental risk: The impact of harsh versus unpredictable environments on the evolution and development of life history strategies. Human Nature, 20, 204268.CrossRefGoogle ScholarPubMed
Ellis, BJ. 2004. Timing of pubertal maturation in girls: An integrated life history approach. Psychological Bulletin, 130, 920–58.CrossRefGoogle ScholarPubMed
Frankenhuis, W. E., Nettle, D., & Dall, S. R. (2019). A case for environmental statistics of early-life effects. Philosophical Transactions of the Royal Society B, 374(1770), 20180110.CrossRefGoogle ScholarPubMed
Gillespie, D. O., Russell, A. F., & Lummaa, V. (2008). When fecundity does not equal fitness: evidence of an offspring quantity versus quality trade-off in pre-industrial humans. Proceedings of the Royal Society B: Biological Sciences, 275(1635), 713722.CrossRefGoogle Scholar
Gori, L., Lupi, E., Manfredi, P., & Sodini, M. (2020). A contribution to the theory of economic development and the demographic transition: Fertility reversal under the HIV epidemic. Journal of Demographic Economics, 86(2), 125155.CrossRefGoogle Scholar
Hackman, J., & Kramer, K. L. (2022). Kin networks and opportunities for reproductive cooperation and conflict among hunter–gatherers. Philosophical Transactions of the Royal Society B, 378(1868), 20210434.CrossRefGoogle ScholarPubMed
Hart, S. A., Little, C., & van Bergen, E. (2021). Nurture might be nature: Cautionary tales and proposed solutions. NPJ science of learning, 6(1), 2.CrossRefGoogle ScholarPubMed
Hayward, A. D., Nenko, I., & Lummaa, V. (2015). Early-life reproduction is associated with increased mortality risk but enhanced lifetime fitness in pre-industrial humans. Proceedings of the Royal Society B: Biological Sciences, 282(1804), 20143053.CrossRefGoogle ScholarPubMed
Houle, D. (1991). Genetic covariance of fitness correlates: What genetic correlations are made of and why it matters. Evolution, 45, 630648.CrossRefGoogle Scholar
Hurt, L. S., Ronsmans, C., & Thomas, S. L. (2006). The effect of number of births on women’s mortality: Systematic review of the evidence for women who have completed their childbearing. Population Studies, 60(1), 5571.CrossRefGoogle ScholarPubMed
Jablonka, E., & Lamb, M. J. (2014). Evolution in four dimensions, revised edition: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT press.CrossRefGoogle Scholar
James, J., Ellis, B. J., Schlomer, G. L., & Garber, J. (2012). Sex-specific pathways to early puberty, sexual debut, and sexual risk taking: Tests of an integrated evolutionary–developmental model. Developmental Psychology, 48(3), 687702.CrossRefGoogle ScholarPubMed
Kalemli-Ozcan, S. (2012). AIDS,“reversal” of the demographic transition and economic development: Evidence from Africa. Journal of Population Economics, 25, 871897.CrossRefGoogle Scholar
Kaplan, H. S., & Lancaster, J. B. (2000). The evolutionary economics and psychology of the demographic transition to low fertility. In Cronk, L., Chagnon, N., & Irons, W. (Eds.), Adaptation and human behavior: An anthropological perspective (pp. 238322). Routledge.Google Scholar
Kohler, H. P., Rodgers, J. L., & Christensen, K. (1999). Is fertility behavior in our genes? Findings from a Danish twin study. Population and development review, 25(2), 253288.CrossRefGoogle Scholar
Kohler, H. P., Rodgers, J. L., & Christensen, K. (2002). Between nurture and nature: The shifting determinants of female fertility in Danish twin cohorts. Social biology, 49(3–4), 218248.Google ScholarPubMed
Kramer, K. L. (2008). Early sexual maturity among Pumé foragers of Venezuela: Fitness implications of teen motherhood. American Journal of Physical Anthropology, 136(3), 338350.CrossRefGoogle ScholarPubMed
Kramer, K. L., & Greaves, R. D. (2007). Changing patterns of infant mortality and maternal fertility among Pumé foragers and horticulturalists. American Anthropologist, 109(4), 713726.CrossRefGoogle Scholar
Kramer, K. L., & Greaves, R. D. (2010). Synchrony between growth and reproductive patterns in human females: Early investment in growth among Pumé foragers. American Journal of Physical Anthropology, 141(2), 235244.CrossRefGoogle Scholar
Lorentzen, P., McMillan, J., & Wacziarg, R. (2008). Death and development. Journal of Economic Growth, 13(2), 81124.CrossRefGoogle Scholar
Lynch, R., Lummaa, V., Briga, M., Chapman, S. N., & Loehr, J. (2020). Child volunteers in a women’s paramilitary organization in World War II have accelerated reproductive schedules. Nature Communications, 11(1), 2377.CrossRefGoogle Scholar
Macarthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Princeton University Press.Google Scholar
Madsen, E. L., & Finlay, J. E. (2019). The long-lasting toll of conflict on fertility and early childbearing. Policy Brief, Population Reference Bureau.Google Scholar
Međedović, J., Karić, T., Kostić, S., & Kovačević, U. (2025). Life history network in a postconflict socioecology: The effect of childhood environment. Adaptive Human Behavior and Physiology, 11(1), 121.Google Scholar
Nettle, D., Coall, D. A., & Dickins, T. E. (2011). Early-life conditions and age at first pregnancy in British women. Proceedings of the Royal Society B: Biological Sciences, 278(1712), 17211727.CrossRefGoogle ScholarPubMed
Nettle, D., Frankenhuis, W. E., & Rickard, I. J. (2013). The evolution of predictive adaptive responses in human life history. Proceedings of the Royal Society B: Biological Sciences, 280(1766), 20131343.CrossRefGoogle ScholarPubMed
Newmyer, L., McAllister, L., Alam, N., & Shenk, M. K. (2025). Life Course Timing of Mortality Exposure and Fertility Behavior. Population Research and Policy Review, 44(3), 120.CrossRefGoogle Scholar
Newson, L. (2009). Cultural versus reproductive success: Why does economic development bring new tradeoffs?. American Journal of Human Biology: The Official Journal of the Human Biology Association, 21(4), 464471.CrossRefGoogle ScholarPubMed
Nitsche, N., & Wilde, J. (2024). Fertility and family dynamics in the aftermath of the COVID-19 pandemic. Population and Development Review, 50(S1), 922.CrossRefGoogle Scholar
Page, A. E., Ringen, E. J., Koster, J., Borgerhoff Mulder, M., Kramer, K., Shenk, M. K., & Sear, R. (2024). Women’s subsistence strategies predict fertility across cultures, but context matters. Proceedings of the National Academy of Sciences, 121(9), e2318181121.CrossRefGoogle ScholarPubMed
Pettay, J. E., Kruuk, L. E., Jokela, J., & Lummaa, V. (2005). Heritability and genetic constraints of life-history trait evolution in preindustrial humans. Proceedings of the National Academy of Sciences, 102(8), 28382843.CrossRefGoogle ScholarPubMed
Quinlan, R. J. (2007). Human parental effort and environmental risk. Proceedings of the Royal Society B: Biological Sciences, 274(1606), 121125.CrossRefGoogle ScholarPubMed
Quinlan, R. J. (2010). Extrinsic mortality effects on reproductive strategies in a Caribbean community. Human Nature, 21, 124139.CrossRefGoogle Scholar
Rickard, I. J., Frankenhuis, W. E., & Nettle, D. (2014). Why are childhood family factors associated with timing of maturation? A role for internal prediction. Perspectives on Psychological Science, 9(1), 315.CrossRefGoogle ScholarPubMed
Rotella, A., Varnum, M. E., Sng, O., & Grossmann, I. (2021). Increasing population densities predict decreasing fertility rates over time: A 174-nation investigation. American Psychologist, 76(6), 933.CrossRefGoogle Scholar
Sasson, I, & Weinreb, A. (2024). Israel as a demographic anomaly: Between Europe and the Middle East. Strategic Assessment: A Multidisciplinary Journal on National Security, 27(2): 7084.Google Scholar
Smith-Greenaway, E., Yeatman, S., & Chilungo, A. (2022). Life after loss: A prospective analysis of mortality exposure and unintended fertility. Demography, 59(2), 563585.CrossRefGoogle Scholar
Sng, O., Neuberg, S. L., Varnum, M. E. W., & Kenrick, D. T. (2017). The crowded life is a slow life: Population density and life history strategy. Journal of Personality and Social Psychology, 112(5), 736754.CrossRefGoogle ScholarPubMed
Sobotka, T., Zeman, K., Jasilioniene, A., Winkler-Dworak, M., Brzozowska, Z., Alustiza-Galarza, A., & Jdanov, D. (2024). Pandemic roller-coaster? Birth trends in higher-income countries during the COVID-19 pandemic. Population and Development Review, 50(S1), 2358.CrossRefGoogle Scholar
Stearns, S. C., & Rodrigues, A. M. (2020). On the use of “life history theory” in evolutionary psychology. Evolution and Human Behavior, 41(6), 474485.CrossRefGoogle Scholar
Takeshita, R. S. (2024). A life for a (shorter) life: The reproduction–longevity trade-off. Proceedings of the National Academy of Sciences, 121(17), e2405089121.CrossRefGoogle ScholarPubMed
Ueyama, M., & Yamauchi, F. (2009). Marriage behavior response to prime-age adult mortality: Evidence from Malawi. Demography, 46(1), 4363.CrossRefGoogle ScholarPubMed
Volk, A. A. (2023). Historical and hunter-gatherer perspectives on fast-slow life history strategies. Evolution and Human Behavior, 44(2), 99109.CrossRefGoogle Scholar
Waguespack, N. M. (2002). Colonization of the Americas: Disease ecology and the Paleoindian lifestyle. Human Ecology, 30, 227243.CrossRefGoogle Scholar
Walker, R., Gurven, M., Hill, K., Migliano, A., Chagnon, N., De Souza, R., & Yamauchi, T. (2006). Growth rates and life histories in twenty-two small-scale societies. American Journal of Human Biology, 18(3), 295311.CrossRefGoogle ScholarPubMed
Walker, R. S., & Hamilton, M. J. (2008). Life-history consequences of density dependence and the evolution of human body size. Current Anthropology, 49(1), 115122.CrossRefGoogle Scholar
Waynforth, D. (2012). Life-history theory, chronic childhood illness and the timing of first reproduction in a British birth cohort. Proceedings of the Royal Society B: Biological Sciences, 279(1740), 29983002.CrossRefGoogle Scholar
Weitzman, A., Barber, J., Heinze, J., Kusunoki, Y., & Zimmerman, M. (2023). Exposure to nearby homicides and young women’s reproductive lives during the transition to adulthood. American Journal of Sociology, 129(3), 856906.CrossRefGoogle Scholar
West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.CrossRefGoogle Scholar
Wilson, A. J. (2014). Competition as a source of constraint on life history evolution in natural populations. Heredity, 112, 7078.CrossRefGoogle ScholarPubMed
Wood, J. W., & Smouse, P. E. (1982). A method of analyzing density-dependent vital rates with an application to the Gainj of Papua New Guinea. American Journal of Physical Anthropology, 58(4), 403411.CrossRefGoogle Scholar
Wright, J., Bolstad, G. H., Araya-Ajoy, Y. G., & Dingemanse, N. J. (2019). Life-history evolution under fluctuating density-dependent selection and the adaptive alignment of pace-of-life syndromes. Biological Reviews, 94(1), 230247.CrossRefGoogle ScholarPubMed
Xiao, B., Xin, Z., & Wang, L. (2024). COVID-19’s influence on life history strategy: Insights from cross-temporal meta-analysis and experimental research. Personality and Individual Differences, 219, 112505.CrossRefGoogle Scholar
Young, A. (2007). In sorrow to bring forth children: fertility amidst the plague of HIV. Journal of economic growth, 12, 283327.CrossRefGoogle Scholar
Zhao, Z. (1997). Demographic systems in historic China: Some new findings from recent research. Journal of the Australian Population Association, 14(2), 201232.CrossRefGoogle ScholarPubMed
Supplementary material: File

Ellis and Kramer supplementary material

Ellis and Kramer supplementary material
Download Ellis and Kramer supplementary material(File)
File 163 KB