Hostname: page-component-857557d7f7-s7d9s Total loading time: 0 Render date: 2025-12-03T09:58:15.488Z Has data issue: false hasContentIssue false

Putting effort into task complexity

Published online by Cambridge University Press:  26 November 2025

Damian Koevoet*
Affiliation:
Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands d.koevoet@uu.nl s.vanderstigchel@uu.nl
Stefan Van der Stigchel*
Affiliation:
Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands d.koevoet@uu.nl s.vanderstigchel@uu.nl
*
*Corresponding author.
*Corresponding author.

Abstract

Understanding the limits of visual processing is at the core of understanding visual attention. Rosenholtz proposes task complexity as a potential solution to identify a putative unifying capacity limit. We argue that if task complexity is indeed used to identify a unifying limit, effort must crucially be incorporated to prevent a future crisis in the field of visual attention.

Information

Type
Open Peer Commentary
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahern, S., & Beatty, J. (1979). Pupillary responses during information processing vary with scholastic aptitude test scores. Science, 205(4412), 12891292. https://doi.org/10.1126/science.472746 CrossRefGoogle ScholarPubMed
Ballard, D. H., Hayhoe, M. M., & Pelz, J. B. (1995). Memory representations in natural tasks. Journal of Cognitive Neuroscience, 7(1), 6680. https://doi.org/10.1162/jocn.1995.7.1.66 CrossRefGoogle ScholarPubMed
Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91(2), 276292. https://doi.org/10.1037/0033-2909.91.2.276 CrossRefGoogle ScholarPubMed
Böing, S., Ten Brink, A. F., Hoogerbrugge, A. J., Oudman, E., Postma, A., Nijboer, T. C. W., & Van der Stigchel, S. (2023). Eye movements as proxy for visual working memory usage: Increased reliance on the external world in Korsakoff syndrome. Journal of Clinical Medicine, 12(11), Article 11. https://doi.org/10.3390/jcm12113630 CrossRefGoogle ScholarPubMed
Bumke, O. (1911). Die pupillenstörungen bei geistes-und nervenkrankheiten (2nd ed.). Fischer.Google Scholar
Draschkow, D., Kallmayer, M., & Nobre, A. C. (2021). When natural behavior engages working memory. Current Biology, 31(4), 869874.e5. https://doi.org/10.1016/j.cub.2020.11.013 CrossRefGoogle ScholarPubMed
Hoogerbrugge, A. J., Strauch, C., Nijboer, T. C. W., & Van der Stigchel, S. (2023). Don’t hide the instruction manual: A dynamic trade-off between using internal and external templates during visual search. Journal of Vision, 23(7), 14. https://doi.org/10.1167/jov.23.7.14 CrossRefGoogle Scholar
Hoppe, D., & Rothkopf, C. A. (2016). Learning rational temporal eye movement strategies. Proceedings of the National Academy of Sciences, 113(29), 83328337. https://doi.org/10.1073/pnas.1601305113 CrossRefGoogle ScholarPubMed
Kadner, F., Thomas, T., Hoppe, D., & Rothkopf, C. A. (2022). Improving saliency models’ predictions of the next fixation with humans’ intrinsic cost of gaze shifts. arXiv:2207.04250.Google Scholar
Kahneman, D. (1973). Attention and effort. Prentice-Hall.Google Scholar
Koevoet, D., Naber, M., Strauch, C., Somai, R. S., & Van der Stigchel, S. (2023). Differential aspects of attention predict the depth of visual working memory encoding: Evidence from pupillometry. Journal of Vision, 23(6), 9. https://doi.org/10.1167/jov.23.6.9 CrossRefGoogle ScholarPubMed
Koevoet, D., Naber, M., Strauch, C., & Van der Stigchel, S. (2024). The intensity of internal and external attention assessed with pupillometry. Journal of Cognition, 7(1), Article 1. https://doi.org/10.5334/joc.336 CrossRefGoogle ScholarPubMed
Koevoet, D., Strauch, C., Naber, M., & Van der Stigchel, S. (2023). The costs of paying overt and covert attention assessed with pupillometry. Psychological Science, 34(8), 887898. https://doi.org/10.1177/09567976231179378 CrossRefGoogle ScholarPubMed
Koevoet, D., Strauch, C., Van der Stigchel, S., Mathôt, S., & Naber, M. (2024). Revealing visual working memory operations with pupillometry: Encoding, maintenance, and prioritization. WIREs Cognitive Science, 15(2), e1668. https://doi.org/10.1002/wcs.1668 CrossRefGoogle ScholarPubMed
Koevoet, D., Van Zantwijk, L., Naber, M., Mathôt, S., Van der Stigchel, S., & Strauch, C. (2024). Effort drives saccade selection. eLife, 13, 125. https://doi.org/10.7554/eLife.97760.1 Google Scholar
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), Article 6657. https://doi.org/10.1038/36846 CrossRefGoogle ScholarPubMed
Master, S. L., Li, S., & Curtis, C. E. (2024). Trying harder: How cognitive effort sculpts neural representations during working memory. Journal of Neuroscience, 44(28), 112. https://doi.org/10.1523/JNEUROSCI.0060-24.2024 CrossRefGoogle ScholarPubMed
Robison, M. K., & Brewer, G. A. (2020). Individual differences in working memory capacity and the regulation of arousal. Attention, Perception, & Psychophysics, 82(7), 32733290. https://doi.org/10.3758/s13414-020-02077-0 CrossRefGoogle ScholarPubMed
Robison, M. K., Ralph, K. J., Gondoli, D. M., Torres, A., Campbell, S., Brewer, G. A., & Gibson, B. S. (2023). Testing locus coeruleus-norepinephrine accounts of working memory, attention control, and fluid intelligence. Cognitive, Affective, & Behavioral Neuroscience, 23(4), 10141058. https://doi.org/10.3758/s13415-023-01096-2 CrossRefGoogle ScholarPubMed
Robison, M. K., & Unsworth, N. (2019). Pupillometry tracks fluctuations in working memory performance. Attention, Perception, & Psychophysics, 81(2), 407419. https://doi.org/10.3758/s13414-018-1618-4 CrossRefGoogle ScholarPubMed
Sahakian, A., Gayet, S., Paffen, C. L. E., & Van der Stigchel, S. (2023). Mountains of memory in a sea of uncertainty: Sampling the external world despite useful information in visual working memory. Cognition, 234, 105381. https://doi.org/10.1016/j.cognition.2023.105381 CrossRefGoogle Scholar
Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L., Cohen, J. D., & Botvinick, M. M. (2017). Toward a rational and mechanistic account of mental effort. Annual Review of Neuroscience, 40, 99124. https://doi.org/10.1146/annurev-neuro-072116-031526 CrossRefGoogle Scholar
Somai, R. S., Schut, M. J., & Van der Stigchel, S. (2020). Evidence for the world as an external memory: A trade-off between internal and external visual memory storage. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 122, 108114. https://doi.org/10.1016/j.cortex.2018.12.017 CrossRefGoogle Scholar
Strauch, C., Wang, C.-A., Einhäuser, W., Van der Stigchel, S., & Naber, M. (2022). Pupillometry as an integrated readout of distinct attentional networks. Trends in Neurosciences, 45(8), 635647. https://doi.org/10.1016/j.tins.2022.05.003 CrossRefGoogle Scholar
Thomas, T., Hoppe, D., & Rothkopf, C. A. (2022). The neuroeconomics of individual differences in saccadic decisions (p. 2022.06.03.494508). bioRxiv. https://doi.org/10.1101/2022.06.03.494508 CrossRefGoogle Scholar
Unsworth, N., & Miller, A. L. (2021). Individual differences in the intensity and consistency of attention. Current Directions in Psychological Science, 30(5), 391400. https://doi.org/10.1177/09637214211030266 CrossRefGoogle Scholar
Unsworth, N., & Robison, M. K. (2017). The importance of arousal for variation in working memory capacity and attention control: A latent variable pupillometry study. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(12), 19621987. https://doi.org/10.1037/xlm0000421 Google ScholarPubMed
Van der Stigchel, S. (2020). An embodied account of visual working memory. Visual Cognition, 28(5–8), 414419. https://doi.org/10.1080/13506285.2020.1742827 CrossRefGoogle Scholar
van der Wel, P., & van Steenbergen, H. (2018). Pupil dilation as an index of effort in cognitive control tasks: A review. Psychonomic Bulletin & Review, 25(6), 20052015. https://doi.org/10.3758/s13423-018-1432-y CrossRefGoogle Scholar
Westbrook, A., & Braver, T. S. (2015). Cognitive effort: A neuroeconomic approach. Cognitive, Affective, & Behavioral Neuroscience, 15(2), 395415. https://doi.org/10.3758/s13415-015-0334-y CrossRefGoogle ScholarPubMed