Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T01:20:35.149Z Has data issue: false hasContentIssue false

Neogenomic events challenge current models of heritability, neuronal plasticity dynamics, and machine learning

Published online by Cambridge University Press:  24 October 2012

Cláudio Eduardo Corrêa Teixeira
Affiliation:
Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil. Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brazil. luiz@ufpa.br Programa de Pesquisa em Neurociências e Comportamento, Universidade da Amazônia, Belém, Pará, Brazil.
Nelson Monte de Carvalho-Filho
Affiliation:
Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil. Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brazil. luiz@ufpa.br
Luiz Carlos de Lima Silveira
Affiliation:
Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil. Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brazil. luiz@ufpa.br

Abstract

We address current needs for neogenomics-based theoretical and computational approaches for several neuroscience research fields, from investigations of heritability properties, passing by investigations of spatiotemporal dynamics in the neuromodulatory microcircuits involved in perceptual learning and attentional shifts, to the application of genetic algorithms to create robots exhibiting ongoing emergence.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, N. D. (2008) Temporal and epigenetic regulation of neurodevelopmental plasticity. Philosophical Transactions of the Royal Society B 363:2338. doi: 10.1098/rstb.2006.2010.Google Scholar
Ashwin, P., Karabacak, O. & Nowotny, T. (2011) Criteria for robustness of heteroclinic cycles in neural microcircuits. Journal of Mathematical Neuroscience 1:13. doi:10.1186/2190-8567-1-13.Google Scholar
Baylor, D. A. & Fuortes, M. G. F. (1970) Electrical responses of single cones in the retina of the turtle. Journal of Physiology 297:7792.CrossRefGoogle Scholar
Day, J. J. & Sweatt, J. D. (2011) Epigenetic mechanisms in cognition. Neuron 70(5):813–29. doi: 10.1016/j.neuron.2011.05.019.Google Scholar
Feng, J., Fouse, S. & Fan, G. (2007) Epigenetic regulation of neural gene expression and neuronal function. Pediatric Research 61(5):5863. doi: 0031-3998/07/6105-0058R.Google Scholar
Goard, M. & Dan, Y. (2009) Basal forebrain activation enhances cortical coding of natural scenes. Nature Neuroscience 12(11):1444–49. doi:10.1038/nn.2402.Google Scholar
Grossberg, S. (1988) Nonlinear neural networks: Principles, mechanisms and architectures. Neural Networks 1:1761. doi:10.1016/0893-6080(88)90021-4.CrossRefGoogle Scholar
Hawkey, D. J. C., Amitay, S. & Moore, D. R. (2004) Early and rapid perceptual learning. Nature Neuroscience 7(10):1055–56. doi:10.1038/nn1315.CrossRefGoogle ScholarPubMed
Heeger, D. J. (1992) Normalization of cell responses in cat striate cortex. Visual Neuroscience 9:181–97. doi: 10.1017/S0952523800009640.Google Scholar
Jong, H. D. (2002) Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology 9(1):67103. doi:10.1089/10665270252833208.CrossRefGoogle ScholarPubMed
Koenig-Robert, R. & VanRullen, R. (2011) Spatiotemporal mapping of visual attention. Journal of Vision 11(14):12, 1–16. doi: 10.1167/11.14.12.Google Scholar
Lewkowicz, D. J. (2000) The development of intersensory temporal perception: An epigenetic systems/limitations view. Psychological Bulletin 126(2):281308. doi: 10.1037//0033-2909.126.2.281.Google Scholar
Lo, C. C. & Wang, X. J. (2006) Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nature Neuroscience 9:956–63. doi:10.1038/nn1722.Google Scholar
Markman, T. M., Quittner, A. L., Eisenberg, L. S., Tobey, E. A., Thal, D., Niparko, J. K. & Wang, N. Y. (2011) Language development after cochlear implantation: An epigenetic model. Journal of Neurodevelopmental Disorders 3:388404. doi: 10.1007/s11689-011-9098-z.Google Scholar
Naka, K. I. & Rushton, W. A. (1966) S-potentials from luminosity units in the retina of fish (Cyprinidae). Journal of Physiology 185:587–99.CrossRefGoogle ScholarPubMed
Priebe, N. J. & Ferster, D. (2008) Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57:482–97. doi: 10.1016/j.neuron.2008.02.005.Google Scholar
Prince, C. G., Helder, N. A. & Hollich, G. J. (2005) Ongoing emergence: A core concept in epigenetic robotics. In: Proceedings of the 5th International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, ed. Berthouze, L., Kaplan, F., Kozima, H., Yano, H., Konczak, J., Metta, G., Nadel, J., Sandini, G., Stojanov, G. & Balkenius, C.. Lund University Cognitive Studies, Vol. 123, pp. 63–70. Nara, Japan.Google Scholar
Sagi, D. (2010) Perceptual learning in vision research. Vision Research 51:1552–66. doi: 10.1016/j.visres.2010.10.019.Google Scholar
Stanford, T. R., Shankar, S., Massoglia, D. P., Costello, M. G. & Salinas, E. (2010) Perceptual decision making in less than 30 milliseconds. Nature Neuroscience 13:379–85. doi:10.1038/nn.2485.Google Scholar
Wang, X. J. (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36:955–68. doi: 10.1016/S0896-6273(02)01092-9.Google Scholar
Zlatev, J. & Balkenius, C. (2001) Introduction: Why epigenetic robotics. Proceedings of the 1st International Workshop on Epigenetic Robotics 85:14. Lund University Cognitive Studies.Google Scholar