Hostname: page-component-857557d7f7-zv5th Total loading time: 0 Render date: 2025-12-04T00:22:46.078Z Has data issue: false hasContentIssue false

Mental abstraction aids group cohesion in large social networks

Published online by Cambridge University Press:  27 November 2025

Yi-Fei Hu
Affiliation:
Department of Cognitive and Psychological Sciences, Brown University, Providence, RI, USA yifei_hu1@brown.edu
Alice Xia
Affiliation:
Department of Cognitive and Psychological Sciences, Brown University, Providence, RI, USA yifei_hu1@brown.edu
Oriel FeldmanHall*
Affiliation:
Department of Cognitive and Psychological Sciences, Brown University, Providence, RI, USA yifei_hu1@brown.edu Carney Institute for Brain Science, Brown University, Providence, RI, USA alice_xia@brown.edu oriel.feldmanhall@brown.edu
*
*Corresponding author.

Abstract

Human social networks are far larger than those of nonhuman primates. Maintaining cohesion in large networks requires a robust mechanism that can accommodate the dense webs of connections within communities. A parsimonious account of how humans achieve social cohesion is mental abstraction, which enables individuals to construct fuzzy network representations that facilitate information flow tracking and mitigate conflict.

Information

Type
Open Peer Commentary
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Acemoglu, D., Ozdaglar, A., & ParandehGheibi, A. (2010). Spread of (mis)information in social networks. Games and Economic Behavior, 70(2), 194227. https://doi.org/10.1016/j.geb.2010.01.005 CrossRefGoogle Scholar
Ackermann, A. (2003). The idea and practice of conflict prevention. Journal of Peace Research, 40(3), 339347. https://doi.org/10.1177/0022343303040003006 CrossRefGoogle Scholar
Aslarus, I. C., Son, J. Y., Xia, A., & FeldmanHall, O. (2025). Early insight into social network structure predicts climbing the social ladder. Science Advances, 11(25), eads2133. http://doi.org/10.1126/sciadv.ads2133 CrossRefGoogle ScholarPubMed
Axelrod, R., Daymude, J. J., & Forrest, S. (2021). Preventing extreme polarization of political attitudes. Proceedings of the National Academy of Sciences, 118(50), e2102139118. https://doi.org/10.1073/pnas.2102139118 CrossRefGoogle ScholarPubMed
Basyouni, R., & Parkinson, C. (2022). Mapping the social landscape: Tracking patterns of interpersonal relationships. Trends in Cognitive Sciences, 26(3), 204221. https://doi.org/10.1016/j.tics.2021.12.006 CrossRefGoogle ScholarPubMed
Burt, R. S. (2014). Structural Holes. In Social Stratification (4th ed.). Routledge.Google Scholar
Chen, W., Castillo, C., & Lakshmanan, L. V. S. (2014). Information and influence propagation in social networks (1st ed. 2014). Springer International Publishing. https://doi.org/10.1007/978-3-031-01850-3 CrossRefGoogle Scholar
Daley, D. J., & Kendall, D. G. (1964). Epidemics and Rumours. Nature, 204(4963), 11181118. https://doi.org/10.1038/2041118a0 CrossRefGoogle Scholar
Dunbar, R. I. M. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution, 22(6), 469493. https://doi.org/10.1016/0047-2484(92)90081-J CrossRefGoogle Scholar
Dunbar, R. I. M. (1998). Grooming, gossip, and the evolution of language (1st Harvard University Press paperback ed). Harvard University Press.Google Scholar
Dunbar, R. I. M. (2024). The social brain hypothesis – thirty years on. Annals of Human Biology, 51(1), 2359920. https://doi.org/10.1080/03014460.2024.2359920 CrossRefGoogle Scholar
Dunbar, R. I. M., Mac Carron, P., & Shultz, S. (2018). Primate social group sizes exhibit a regular scaling pattern with natural attractors. Biology Letters, 14(1), 20170490. https://doi.org/10.1098/rsbl.2017.0490 CrossRefGoogle ScholarPubMed
Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 13601380.CrossRefGoogle Scholar
Hill, R. A., & Dunbar, R. I. M. (2003). Social network size in humans. Human Nature, 14(1), 5372. https://doi.org/10.1007/s12110-003-1016-y CrossRefGoogle ScholarPubMed
Hu, Y. F., Vives, M. L., Bhandari, A., & FeldmanHall, O. (2025). Using Statistical Learning to Navigate Signed Social Networks. OSF. https://doi.org/10.31219/osf.io/2fpt5_v1 CrossRefGoogle Scholar
Jolly, E., Sadhukha, S., Iqbal, M., Molani, Z., Walsh, T., Manning, J. R., & Chang, L. J. (2023). People are represented and remembered through their relationships with others. PsyArXiv. https://doi.org/10.31234/osf.io/bw9r2 CrossRefGoogle Scholar
Nan, L., Cook, K. S., Burt, R. S. , & Lin, N. (Eds.). (2008). Social capital: Theory and research (4. print). Aldine Transaction.Google Scholar
Offer, S. (2021). Negative social ties: Prevalence and consequences. Annual Review of Sociology, 47(1), 177196. https://doi.org/10.1146/annurev-soc-090820-025827 CrossRefGoogle Scholar
Park, S. A., Miller, D. S., Nili, H., Ranganath, C., & Boorman, E. D. (2020). Map making: Constructing, combining, and inferring on abstract cognitive maps. Neuron, 107(6), 12261238.e8. https://doi.org/10.1016/j.neuron.2020.06.030 CrossRefGoogle ScholarPubMed
Parkinson, C., Kleinbaum, A. M., & Wheatley, T. (2017). Spontaneous neural encoding of social network position. Nature Human Behaviour, 1(5), 0072. https://doi.org/10.1038/s41562-017-0072 CrossRefGoogle Scholar
Pasquaretta, C., Levé, M., Claidière, N., van de Waal, E., Whiten, A., MacIntosh, A. J. J., Pelé, M., Bergstrom, M. L., Borgeaud, C., Brosnan, S. F., Crofoot, M. C., Fedigan, L. M., Fichtel, C., Hopper, L. M., Mareno, M. C., Petit, O., Schnoell, A. V., di Sorrentino, E. P., Thierry, B., & Sueur, C. (2014). Social networks in primates: Smart and tolerant species have more efficient networks. Scientific Reports, 4(1), 7600. https://doi.org/10.1038/srep07600 CrossRefGoogle ScholarPubMed
Sherif, M. (Ed.). (1988). The robbers cave experiment: Intergroup conflict and cooperation. Wesleyan Univ. Press.Google Scholar
Son, J.-Y., Bhandari, A., & FeldmanHall, O. (2021). Cognitive maps of social features enable flexible inference in social networks. Proceedings of the National Academy of Sciences, 118(39), e2021699118. https://doi.org/10.1073/pnas.2021699118 CrossRefGoogle ScholarPubMed
Son, J.-Y., Bhandari, A., & FeldmanHall, O. (2023). Abstract cognitive maps of social network structure aid adaptive inference. Proceedings of the National Academy of Sciences, 120(47), e2310801120. https://doi.org/10.1073/pnas.2310801120 CrossRefGoogle ScholarPubMed
Son, J.-Y., Vives, M.-L., Bhandari, A., & FeldmanHall, O. (2024). Replay shapes abstract cognitive maps for efficient social navigation. Nature Human Behaviour, 8(11), 21562167. https://doi.org/10.1038/s41562-024-01990-w CrossRefGoogle ScholarPubMed
Tempest, K. (2017). Brutus: The noble conspirator. Yale University Press.CrossRefGoogle Scholar
Teoh, Y. Y., Son, J.-Y., Xia, A., Bhandari, A., & FeldmanHall, O. (2025). Medial temporal lobe encodes cognitive maps of real-world social networks (p. 2025.03.18.643925). bioRxiv. https://doi.org/10.1101/2025.03.18.643925 CrossRefGoogle Scholar
Xia, A., Teoh, Y. Y., Nassar, M. R., Bhandari, A., & FeldmanHall, O. (2025). Knowledge of information cascades through social networks facilitates strategic gossip. Nature Human Behaviour, 114. https://doi.org/10.1038/s41562-025-02241-2 Google ScholarPubMed