Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T05:31:08.827Z Has data issue: false hasContentIssue false

Is sensory gating a form of cognitive coordination?

Published online by Cambridge University Press:  03 September 2003

Michael A. Kisley
Affiliation:
Department of Psychology, University of Colorado at Colorado Springs, Colorado Springs, CO 80933-7150 mkisley@uccs.edu
Deana B. Davalos
Affiliation:
Department of Psychiatry, University of Colorado Health Sciences Center, Denver, CO 80262 deana.davalos@uchsc.edu

Abstract

Neurophysiological investigations of the past two decades have consistently demonstrated a deficit in sensory gating associated with schizophrenia. Phillips & Silverstein interpret this impairment as being consistent with cognitive coordination dysfunction. However, the physiological mechanisms that underlie sensory gating have not been shown to involve gamma-band oscillations or NMDA-receptors, both of which are critical neural elements in the cognitive coordination model.

Type
Article Commentary
Copyright
Copyright © Cambridge University Press 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abely, P. & Carton, C. (1967) The man of night and the man of silence: Prologue to a report on a comparative psychopathological and psychiatric study of the blind and deaf. Annals Medico Psychologiques 2:111–25. [GSS]Google Scholar
Abi-Saab, W. M., D’Souza, D. C., Moghaddam, B. & Krystal, J. H. (1998) The NMDA model for schizophrenia: Promise and pitfalls. Pharmacopsychiatry 31:104109. [aWAP]Google Scholar
Adler, C. M., Goldberg, T. E., Malhotra, A. K., Pickar, D. & Breier, A. (1998a) Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers. Biological Psychiatry 43:811–16. [aWAP]Google Scholar
Adler, C. M., Malhotra, A. K., Elman, I., Goldberg, T. E., Egan, M., Pickar, D. & Breier, A. (1999) Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia. American Journal of Psychiatry 156:1646–49. [aWAP]Google Scholar
Adler, L. E., Olincy, A., Waldo, M., Harris, J. G., Griffith, J., Stevens, K., Flach, K., Nagamoto, H., Bickford, P., Leonard, S. & Freedman, R. (1998b) Schizophrenia, sensory gating, and nicotinic receptors. Schizophrenia Bulletin 24:189202. [MAK, aWAP]Google Scholar
Adler, L. E., Pachtman, E., Franks, R. D., Pecevich, M., Waldo, M. C. & Freedman, R. (1982) Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biological Psychiatry 17:639–54. [MAK]Google Scholar
Adler, L. E., Rose, G. & Freedman, R. (1986) Neurophysiological studies of sensory gating in rats: Effects of amphetamine, phencyclidine, and haloperidol. Biological Psychiatry 21:787–98. [MAK]Google Scholar
Aghajanian, G. K. & Marek, G. J. (1999) Serotonin 5-HT2A receptors increase ESPCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Research 825:161–71. [rSMS]Google Scholar
Aghajanian, G. K. & Marek, G. J. (2000) Serotonin model of schizophrenia: Emerging role of glutamate mechanisms. Brain Research Reviews 31:302–12. [rSMS]Google Scholar
Ahveninen, J., Kähkönen, S., Pennanen, S., Liesivuori, J., Ilmoniemi, R. J. & Jääskiläinen, I. P. (2002) EEG and MEG measurements after tryptophan depletion suggest serotonergic modulation of auditory involuntary attention. Neuroimage 16:1052–61. [RDO]Google Scholar
Ahveninen, J., Kahkonen, S., Tiitinen, H., Pekkonen, E., Huttunen, J., Kaakkola, S., Ilmoniemi, R. J. & Jaaskelainen, I. P. (2000) Suppression of transient 40- Hz auditory response by haloperidol suggests modulation of human selective atttention by dopamine D2 receptors. Neuroscience Letters 292:2932. [LMW]Google Scholar
Aksentijeviç, A., Elliott, M. A. & Barber, P. (2001) Dynamics of perceptual grouping: Similarities in the organization of visual and auditory groups. Visual Cognition 8:349–58. [rSMS]Google Scholar
al-Amin, H. A. & Schwarzkopf, S. B. (1996) Effects of the PCP analog dizocilpine on sensory gating: Potential relevance to clinical subtypes of schizophrenia. Biological Psychiatry 40:744–54. [MEP]Google Scholar
Alexander, G. E. & Crutcher, M. D. (1990) Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends in Neuroscience 13:266–71. [aWAP]Google Scholar
Allen, H. A., Liddle, P. F. & Frith, C. D. (1993) Negative features, retrieval processes and verbal fluency in schizophrenia. British Journal of Psychiatry 163:769–75. [LMW]Google Scholar
Allen, R. M. & Young, S. J. (1978) Phencyclidine-induced psychosis. American Journal of Psychiatry 135:1081–84. [aWAP]Google Scholar
Allman, J. M., Miezin, F., & McGuinness, E. (1985) Direction- and velocityspecific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception 14(2):105–26. [YC]Google Scholar
Alpert, M., ed. (1985) Controversies in schizophrenia: Changes and constancies. Erlbaum. [MA]Google Scholar
Alpert, M., Angrist, B., Diamond, F. & Gershon, S. (1970) Comparison of ditran intoxication and acute alcohol psychoses. In: Origins and mechanisms of hallucinations, ed. W. Keup. Plenum Press. [MA]Google Scholar
Alpert, M. & Bogorad, D. D. (1975) Reduction of sensory sharpening processes associated with chronic alcoholism. In: Alcohol intoxication and withdrawal. Experimental Studies II, ed. M. M. Gross. Advances in experimental medicine and biology, vol. 59. Plenum Press. [MA]Google Scholar
Alpert, M. & Friedhoff, A. J. (1980) An undopamine hypothesis of schizophrenia. Schizophrenia Bulletin 6:387–90. [MA]Google Scholar
Alpert, M. & Martz, M. J. (1977) Cognitive views of schizophrenia in light of recent studies of brain asymmetry. In: Psychopathology and brain dysfunction, ed. C. Shagass, S. Gershon & A. J. Friedhoff. Raven Press. [MA]Google Scholar
Alpert, M., Rosenberg, S. D., Pouget, E. R. & Shaw, R. (2000) Prosody and lexical accuracy in flat affect schizophrenia. Psychiatry Research 97:107–18. [MA]Google Scholar
Alpert, M., Rubinstein, H. & Kesselman, M. (1976) Asymmetry of information processing in hallucinators and nonhallucinators. Journal of Nervous and Mental Diseases 162(4):258–65. [MA]Google Scholar
Alpert, M. & Silvers, K. N. (1970) Perceptual characteristics distinguishing auditory hallucinations in schizophrenia and acute alcoholic psychoses. American Journal of Psychiatry 127(3):298302. [MA]Google Scholar
Altmann, G. T. M. (1998) Ambiguity in sentence processing. Trends in Cognitive Sciences 2:146–52. [rSMS]Google Scholar
American Psychiatric Association (1989) Treatment of psychiatric disorders: A task force report of the American Psychiatric Association, vol. 2. American Psychiatric Association. [aWAP]Google Scholar
Andreasen, N. C. (1999) A unitary model of schizophrenia. Archives of General Psychiatry 56:781–93. [aWAP]Google Scholar
Andreasen, N. C., Arndt, S., Alliger, R., Iller, D. & Flaum, M. (1995) Symptoms of schizophrenia: Methods, meanings, and mechanisms. Archives of General Psychiatry 52:341–51. [aWAP]Google Scholar
Andreasen, N. C., Paradiso, S. & O’Leary, D. S. (1998) “Cognitive dysmetria” as an integrative theory of schizophrenia: A dysfunction in cortical-subcorticalcortical circuitry? Schizophrenia Bulletin 24:203–18. [RC]Google Scholar
Andrew, A. (2000) A computational model of information processing in the frontal cortex and basal ganglia. Journal of Cognitive Neuroscience 12:505–19. [LMT]Google Scholar
Andrews, S., Shelley, A. M., Ward, P. B., Fox, A., Catts, S. V. & McConaghy, N. (1993) Event-related potential indices of semantic processing in schizophrenia. Biological Psychiatry 34:443–58. [DT]Google Scholar
Angelopoulos, E. K., Markianos, M., Daskalopoulou, E. G. Hatzimanolis, J. & Tzemos, J. (2002) Changes in central serotonergic function as a correlate of duration of illness in paranoid schizophrenia. Psychiatry Research 110:918. [RDO]Google Scholar
Angrist, B. (1972) Amphetamine psychosis: Clinical variations of the syndrome. In: Amphetamine and its Analogs, ed. A. K. Cho & D. S. Segal. Academic Press 387–414. [MA]Google Scholar
Angrist, B. & Gershon, S. (1970) The phenomenology of experimentally induced amphetamine psychosis: Preliminary observations. Biological Psychiatry 2:95107. [MA]Google Scholar
Anscombe, R. (1987) The disorder of consciousness in schizophrenia. Schizophrenia Bulletin 11:241–60. [DRH]Google Scholar
Arieti, S. (1979) Interpretation of schizophrenia, 2nd edition. Basic Books. [rSMS]Google Scholar
Arnsten, A. F. T. (1998) Catecholamine modulation of prefrontal cortical cognitive function. Trends in the Cognitive Sciences 2:436–47. [aWAP]Google Scholar
Ashby, F. G., Isen A. M. & Turken A. U. (1999) A neuropsychological theory of positive affect and its influence on cognition. Psychological Review 106(3):529–50. [SP]Google Scholar
Astington, J. W., Pelletier, J. & Homer, B. (2002) Theory of mind and epistemological development: The relation between children's second-order false-belief understanding and their ability to reason about evidence. New Ideas in Psychology 20(2–3):131–44. [DL]Google Scholar
Baddeley, A. D. (1996) Exploring the central executive. Quarterly Journal of Experimental Psychology 49A:5–28. [aWAP]Google Scholar
Bakker, C. B. & Amini, F. B. (1961) Observations on the psychotomimetic effects of Serynl. Comprehensive Psychiatry 2:269–80. [aWAP]Google Scholar
Baldeweg, T., Spence, S., Hirsch, S. R. & Gruzelier, J. (1998) Gamma-band electroencephalographic oscillations in a patient with somatic hallucinations. The Lancet 352:620–21. [aWAP]Google Scholar
Balla, A., Hashim, A., Burch, S., Javitt, D. C., Lajtha, A. & Sershen, H. (2001) Phencyclidine-induced dysregulation of dopamine response to amphetamine in prefrontal cortex and striatum. Neurochemical Research 26:10011006. [DCJ]Google Scholar
Barch, D. M. & Berenbaum, H. (1997) The effect of language production manipulations on negative thought disorder and discourse coherence disturbances in schizophrenia. Psychiatry Research 71:115–27. [aWAP]Google Scholar
Barch, D. M., Carter, C. S., Hachten, P. C., Usher, M. & Cohen, J. D. (1999) The “benefits” of distractability: Mechanisms underlying increased Stroop effects in Schizophrenia. Schizophrenia Bulletin 25:749–62. [aWAP, rSMS]Google Scholar
Barch, D. M., Carter, C. S., MacDonald, A., Braver, T. S. & Cohen, J. D. (2003) Context processing deficits in schizophrenia: Diagnostic specificity, four-week course, and relationships to clinical symptoms. Journal of Abnormal Psychology 112:132–43 . [DMB]Google Scholar
Baron-Cohen, S. (1995) Mindblindness: An essay on autism and Theory of Mind. MIT Press. [DL]Google Scholar
Baron-Cohen, S. & Hammer J. (1997) Parents of children with Asperger syndrome: What is the cognitive phenotype? Journal of Cognitive Neuroscience 9:548–54. [aWAP]Google Scholar
Basar, E., Rosen, B., Basar-Eroglu, C. & Greitschus, F. (1987) The associations between 40 Hz-EEG and the middle latency response of the auditory evoked potential. International Journal of Neuroscience 33:103–17. [MAK]Google Scholar
Beauchamp, M. S., Petit, L., Ellmore, T. M., Ingeholm, J. & Haxby, J. V. (2001) A parametric fMRI study of overt and covert shifts of visuospatial attention. Neuroimage 14:310–21. [RDO]Google Scholar
Beaumont, J. G. & Dimond, S. J. (1973) Brain disconnection and schizophrenia. British Journal of Psychiatry 123(577):661–62. [YC]Google Scholar
Bender, S., Müller, B., Oades, R. D. & Sartory, G. (2001) Conditioned blocking and schizophrenia: A replication and study of the role of symptoms, age, onset-age of psychosis and illness-duration. Schizophrenia Research 49: 157–70. [RDO]Google Scholar
Benedict, R. H., Harris, A. E., Markow, T., McCormick, J. A., Nuechterlein, K. H. & Asarnow, R. F. (1994) Effects of attention training on information processing in schizophrenia. Schizophrenia Bulletin 20:537–46. [rSMS]Google Scholar
Benes, F. M. (2000a) Alterations of neural circuitry within layer II of the anterior cingulate cortex in schizophrenia. Journal of Psychiatric Research 33:511–12. [RDO]Google Scholar
Benes, F. M. (2000b) Emerging principles of altered neural circuitry in schizophrenia. Brain Research Reviews 31:251–69. [aWAP]Google Scholar
Benes, F. M. & Coyle, J. T. (1998) Déja-vu all over again. Biological Psychiatry 43:781–82. [aWAP]Google Scholar
Blackwell, S. L., McIntyre, C. W. & Murray, M. E. (1983) Information processed from brief visual displays by learning disabled boys. Child Development 54:927–40. [aWAP]Google Scholar
Blaney, P. H. (1999) Paranoid conditions. In: Oxford textbook of psychopathology, ed. T. Millon, P. H. Blaney & R. D. Davis. Oxford Unversity Press. [JPG]Google Scholar
Bleuler, E. (1911/1961) Dementia praecox oder die Gruppe der Schizophrenia. In: Handbuch der psychiatrie (Handbook of psychiatry), ed. G. Ascheffenburg. Deuticke. [rSMS]Google Scholar
Bleuler, E. English translation: Dementia Praecox or the Group of Schizophrenias.] International Universities Press. (English edition, 1961). [YC]Google Scholar
Blumenfeld, L. D. & Clementz, B. A. (2001) Response to the first stimulus determines reduced auditory evoked response suppression in schizophrenia: Single trials analysis using MEG. Clinical Neurophysiology 112:1650–59. [rSMS]Google Scholar
Bock, J. & Braun, K. (1999) Blockade of N-methyl-D-aspartate receptor activation suppresses learning-induced synaptic elimination. Proceedings of the National Academy of Sciences USA 96:2485–90. [REH]Google Scholar
Born, R. T. (2000) Center-surround interactions in the middle temporal visual area of the owl monkey. Journal of Neurophysiology 84(5):2658–69. [YC]Google Scholar
Boutros, N. N., Torello, M. W., Barker, B. A., Tueting, P. A., Wu, S. C. & Nasrallah, H. A. (1995) The P50 evoked potential component and mismatch detection in normal volunteers: Implications for the study of sensory gating. Psychiatry Research 57:8388. [MEP]Google Scholar
Bowers, K. S., Regher, G., Balthazard, C. & Parker, K. (1990) Intuition in the context of discovery. Cognitive Psychology 22:72110. [SP]Google Scholar
Bradski, G., Carpenter, G. A. & Grossberg, S. (1994) STORE working memory networks for storage and recall of arbitrary temporal sequences. Biological Cybernetics 71:469–80. [SG]Google Scholar
Braff, D. L., Geyer, M. A. & Swerdlow, N. R. (2001) Human studies of prepulse inhibition of startle: Normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berlin) 156:234–58. [MAK]Google Scholar
Braff, D. L., Saccuzzo, D. P. & Geyer, M. A. (1991) Information processing dysfunctions in schizophrenia: Studies of visual backward masking, sensorimotor gating, and habituation. In: Handbook of schizophrenia, vol. 5: Neuropsychology, psychophysiology and information processing, ed. S. R. Steinhauer, J. H. Gruzelier & J. Zubin. Elsevier Science. [RC]Google Scholar
Braff, D. L., Swerdlow, N. R. & Geyer, M. A. (l999) Symptom correlates of prepulse inhibition deficits in male schizophrenic patients. American Journal of Psychiatry 156:596602. [DCG, DRH]Google Scholar
Braitenberg, V. & Schüz, A. (1991) Anatomy of the cortex. Springer-Verlag. [aWAP]Google Scholar
Braver, T. S., Barch, D. M. & Cohen, J. D. (1999) Cognition and control in schizophrenia: A computational model of dopamine and prefrontal function. Biological Psychiatry 46:312–28. [DMB, aWAP, LMT]Google Scholar
Breier, A., Malhotra, A. K., Pinals. D. A., Weisenfeld. N. I. & Pickar, D. (1997) Association of ketamine induced psychosis with frontal activation of the prefrontal cortex in healthy volunteers. American Journal of Psychiatry 154:805–11. [aWAP]Google Scholar
Breitenseher, M., Uhl, F., Wimberger, D., Deecke, L., Trattnig, S. & Kramer, J. (1998) Morphological dissociation between visual pathways and cortex: MRI of visually-deprived patients with congenital peripheral blindness. Neuroradiology 40:424–27. [GSS]Google Scholar
Breitmeyer, B. G. & Ganz, L. (1976) Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing. Psychological Review 83:136. [RC]Google Scholar
Bressler, S. L. (1996) Interareal synchronization in the visual cortex. Behavioral Brain Research 76:3749. [SLB]Google Scholar
Bressler, S. L. (1999) The dynamic manifestation of cognitive structures in the cerebral cortex. In: Understanding representation in the cognitive sciences, ed. A. Riegler, M. Peschl & A. von Stein. Kluwer Academic. [SLB]Google Scholar
Bressler, S. L. (2002) Understanding cognition through large-scale cortical networks. Current Directions in Psychological Science 11:5861. [SLB]Google Scholar
Bressler, S. L. (2003) Cortical coordination dynamics and the disorganization syndrome in schizophrenia. Neuropsychopharmacology 28:535539. [SLB]Google Scholar
Bressler, S. L., Coppola, R. & Nakamura, R. (1993) Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366:153–56. [aWAP]Google Scholar
Bressler, S. L. & Kelso, J. A. S. (2001) Cortical coordination dynamics and cognition. Trends in Cognitive Sciences 5:2636. [SLB, aWAP]Google Scholar
Broadbent, D. E. (1971) Decision and stress. Academic Press. [DRH]Google Scholar
Brown, G. D. A., Preece, T. & Hulme, C. (2000) Oscillator-based memory for serial order. Psychological Review 107:127–81. [rSMS]Google Scholar
Bundesen, C. (1990) A theory of visual attention. Psychological Review 97:523–47. [AR]Google Scholar
Burgess, A., Strelets, V., Golicova, J., Novototsky-Vlasov, V., Lehman, D. & Gruzelier, J. (submitted) Neural complexity and integration in unmedicated schizophrenia. International Journal of Psychophysiology. [VS]Google Scholar
Butler, P. D., DeSanti, L. A., Maddox, J., Harkavy-Friedman, J. M., Amador, X. F., Goetz, R. R., Javitt, D. C. & Gorman, J. M. (2003) Visual backward-masking deficits in schizophrenia: Relationship to visual pathway function and symptomatology. Schizophrenia Research 59:199209 . [RC]Google Scholar
Butler, P. D., Schechter, I., Zemon, V., Schwartz, S. G., Greenstein, V. C., Gordon, J., Schroeder, C. E. & Javitt, D. C. (2001) Dysfunction of early stage visual processing in schizophrenia. American Journal of Psychiatry 158:1126–33. [DCJ]Google Scholar
Cadenhead, K. S., Geyer, M. A., Butler, R. W., Perry, W., Sprock, J. & Braff, D. L. (1997) Information processing deficits of schizophrenia patients: Relationship to clinical ratings, gender, and medication status. Schizophrenia Research 28:5162. [RC]Google Scholar
Cardno, A. G., Pak, C. S., Murray, R. M. & McGuffin, P. (2001) Twin study of symptom dimensions in psychoses. British Journal of Psychiatry 179:3945. [aWAP, rSMS]Google Scholar
Carlsson, A. (1995) The selective 5-HT2A receptor antagonist MDL 100, 907 counteracts the psychomotor stimulation ensuing manipulations with monoaminergic, glutamatergic, or muscarinic transmission in the mouse: Implications for psychosis. Journal of Neural Transmission 100:225–37. [rSMS]Google Scholar
Carr, V. & Wale, J. (1986) Schizophrenia: An information processing model. Australian and New Zealand Journal of Psychiatry 20:136–55. [aWAP]Google Scholar
Catts, S. V., Shelley, A., Ward, P. B., Liebert, B., McConaghy, N., Andrews, S. & Michie, P. T. (1995) Brain potential evidence for an auditory sensory memory deficit in schizophrenia. American Journal of Psychiatry 152:213–19. [aWAP]Google Scholar
Chapman, J. (1966) The early symptoms of schizophrenia. British Journal of Psychiatry 112:225–51. [rSMS]Google Scholar
Chapman, L. J., Chapman, J. P. & Daut, R. L. (1976) Schizophrenic inability to disattend from strong aspects of meaning. Journal of Abnormal Psychology 85:3540. [DT]Google Scholar
Chapman, L. J., Chapman, J. P., Kwapil, T. R., Eckblad, M. & Zinser, M. C. (1994) Putatively psychosis-prone subjects 10 years later. Journal of Abnormal Psychology 103:171–83. [rSMS]Google Scholar
Chen, E. Y. H. & McKenna, P. J. (1996) Memory dysfunction in schizophrenia. In: Schizophrenia: A neuropsychological perspective, ed. C. Pantelis, H. E. Nelson & T. R. E Barnes. Wiley. [aWAP]Google Scholar
Chen, Y., Nakayama, K., Levy, D. L., Matthysse, S. W. & Holzman, P. S. (1999a) Psychological isolation of motion processing deficits in schizophrenic patients and their relatives and its relation to eye tracking deficits. Proceeding of National Academy Sciences USA 96:4724–29. [YC]Google Scholar
Chen, Y., Nakayama, K., Levy, D. L., Matthysse, S. W. & Holzman, P. S. (2001) Global and local motion processing in schizophrenia. Schizophrenia Research 49:213. [aWAP]Google Scholar
Chen, Y., Nakayama, K., Levy, D. L., Matthysse, S. W. & Holzman, P. S. (2003) Processing of global, but not local, motion direction is deficient in schizophrenia processing. Schizophrenia Research 61:215–27. [YC]Google Scholar
Chen, Y., Palafox, G., Nakayama, K., Levy, D. L., Matthysse, S. W. & Holzman, P. S. (1999b) Motion perception in schizophrenia. Archives of General Psychiatry 56:149–54. [YC]Google Scholar
Chevigny, H. & Braverman, S. (1950) The adjustment of the blind. Yale University Press. [GSS]Google Scholar
Chey, J., Grossberg, S. & Mingolla, E. (1997) Neural dynamics of motion grouping: From aperture ambiguity to object speed and direction. Journal of the Optical Society of America 14:2570–94. [SG]Google Scholar
Chey, J. & Holzman, P. S. (1997) Perceptual organization in schizophrenia: The employment of gestalt principles. Journal of Abnormal Psychology 106:530– 38. [YC, aWAP, rSMS]Google Scholar
Churchland, P. S., Koch, C. & Sejnowski, T. J. (1990) What is computational neuroscience? In: Computational neuroscience, ed. E. L. Schwartz. MIT Press. [rSMS]Google Scholar
Clark, L., Iversen, S. D. & Goodwin, G. M. (2001) A neuropsychological investigation of prefrontal cortex involvement in acute mania. American Journal of Psychiatry 158:1605–11. [rSMS]Google Scholar
Clementz, B. A., Barber, S. K. & Dzau, J. R. (2002) Knowledge of stimulus repetition affects the magnitude and spatial distribution of low-frequency event-related brain potentials. Audiology and Neurootology 7:303–14. [rSMS]Google Scholar
Clementz, B. A. & Blumenfeld, L. D. (2001) Multichannel electroencephalographic assessment of auditory evoked response suppression in schizophrenia. Experimental Brain Research 139:377–90. [MAK, rSMS]Google Scholar
Clementz, B. A., Blumenfeld, L. D. & Cobb, S. (1997) The gamma band response may account for poor P50 suppression in schizophrenia. NeuroReport 8: 3889–93. [MAK, MEP, aWAP]Google Scholar
Cohen, J. D., Barch, D. M., Carter, C. S. & Servan-Schreiber, D. (1999a) Contextprocessing deficits in schizophrenia: Converging evidence from three theoretically motivated tasks. Journal of Abnormal Psychology 108:120–33. [DCJ, aWAP]Google Scholar
Cohen, J. D., Barch, D. M., Carter, C. S. & Servan-Schreiber, D. (1999b) Schizophrenic deficits in the processing of context: Converging evidence from three theoretically motivated cognitive tasks. Journal of Abnormal Psychology 108:120–33. [DMB]Google Scholar
Cohen, J. D., Braver, T. S. & O’Reilly, R. (1996) A computational approach to prefrontal cortex, cognitive control and schizophrenia: Recent developments and current challenges. Philosophical Transactions of the Royal Society of London 351:1515–27. [DRH]Google Scholar
Cohen, J. D. & Servan-Schreiber, D. (1992) Context, cortex, and dopamine: A connectionist approach to behavior and biology in schizophrenia. Psychological Review 99:577. [DCJ, AWM, SP, aWAP, rSMS, DT]Google Scholar
Condray, R., Steinhauer, S. R., van Kammen, D. P. & Kasparek, A. (2002) The language system in schizophrenia: Effects of capacity and linguistic structure. Schizophrenia Bulletin 28:475–90. [RC]Google Scholar
Conrad, K. (1958) Die Beginnende Schizophrenie. Versuch einer Gestalt Analyse des Wahns, 3rd edition. G. Thieme. [aWAP, LAS, rSMS]Google Scholar
Contestabile, A. (2000) Roles of NMDA receptor activity and nitric oxide production in brain development. Brain Research Reviews 32:476509. [REH]Google Scholar
Corcoran, R., Mercer, G. & Frith, C. D. (1995) Schizophrenia, symptomatology, and social inference: Investigating “theory of mind” in people with schizophrenia. Schizophrenia Research 17:513. [rSMS]Google Scholar
Cosgrove, J. & Newell, T. G. (1991) Recovery of neuropsychological functions during reduction in use of phencyclidine. Journal of Clinical Psychology 47:159–69. [aWAP]Google Scholar
Coull, J. T. (1998) Neural correlates of attention and arousal: Insights from electrophysiology, functional neuroimaging and psychopharmacology. Progress in Neurobiology 55:343–61. [RDO]Google Scholar
Cox, M. D. & Leventhal, D. N. (1978) A multivariate analysis and modification of a preattentive perceptual dysfunction in schizophrenia. Journal of Nervous and Mental Disease 166:709–18. [aWAP, rSMS]Google Scholar
Coyle, J. T. (1996) The glutamatergic dysfunction hypothesis for schizophrenia. Harvard Review of Psychiatry 3:241–53. [aWAP]Google Scholar
Crick, F. (1994) The astonishing hypothesis. Touchstone. [rSMS]Google Scholar
Cromwell, R. (1975) Assessment of schizophrenia. Annual Review of Psychology 26:593619. [aWAP]Google Scholar
Csibra, G., Davis, G., Spratling, M. W. & Johnson, M. H. (2000) Gamma oscillations and object processing in the infant brain. Science 290:582–85. [aWAP]Google Scholar
Curtis, C., Calkins, M. E., Grove, W. M., Feil, K. J. & Iacono, W. G. (2001) Saccadic disinhibition in patents with acute and remitted schizophrenia and their first-degree biological relatives. American Journal of Psychiatry 158:100106. [aWAP]Google Scholar
Cutting, J. (1989) Gestalt theory and psychiatry: Discussion paper. Journal of the Royal Society of Medicine 82:429–32. [aWAP]Google Scholar
Cutting, J. & Dunne, F. (1989) Subjective experience of schizophrenia. Schizophrenia Bulletin 15:217–31. [aWAP]Google Scholar
Damasio, A. R. (1994) Descartes’ error: Emotion, reason and the human brain. Putnam. [aWAP]Google Scholar
Danion, J.-M., Rizzo, L. & Bryant, A. (1999) Functional mechanisms underlying recognition memory and conscious awareness in patients with schizophrenia. Archives of General Psychiatry 56:639–44. [rSMS]Google Scholar
Das, A. & Gilbert, C. D. (1995) Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature 375:780–84. [rSMS]Google Scholar
Davis, K. L., Kahn, R. S., Ko, G. & Davidson, M. (1991) Dopamine in schizophrenia: A review and reconceptualization. American Journal of Psychiatry 148:1474–86. [aWAP]Google Scholar
Daw, N. W., Stein, P. S. G. & Fox, K. (1993) The role of NMDA receptors in information processing. Annual Review of Neuroscience 16:207–22. [aWAP]Google Scholar
DeBelleroche, J., Humphries, C., Durnin, A., Mortimer, A. & Hirsch, S. (1998) Regional specificity of changes in the expression of NMDA receptor and cholecystokinin mRNA in schizophrenia. Schizophrenia Research 29:96. [GSS]Google Scholar
DeBeni, R. & Cornoldi, C. (1988) Imagery limitations in totally congenitally blind subjects. Journal of Experimental Psychology: Learning, Memory, and Cognition 14:650–55. [GSS]Google Scholar
Debruille, J. B. (1998) N400 and knowledge inhibition: Tests with words that look like common words. Brain and Language 62:202–20. [DT]Google Scholar
Debruille, J. B., Pineda, J. & Renault, B. (1996) N400-like potentials elicited by faces and knowledge inhibition. Brain Research: Cognitive 4:133–44. [DT]Google Scholar
Decker, R. & Koole, F. D. (1992) Visually impaired children's visual characteristics and intelligence. Developmental Medicine and Child Neurology 34:123–33. [GSS]Google Scholar
Deiber, M. P., Ibanez, V., Honda, M., Sadato, N., Raman, R. & Hallett, M. (1995) Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography. NeuroImage 7:7385. [GSS]Google Scholar
Desimone, R. & Duncan, J. (1995) Neural mechanisms of selective attention. Annual Review of Neuroscience 18:193222. [aWAP, AR, PRR]Google Scholar
Dickerson, F. B. (2000) Cognitive behavioral psychotherapy for schizophrenia: A review of recent empirical studies. Schizophrenia Research 16:7190. [rSMS]Google Scholar
Dierks, T., Linden, D. E. J., Jandl, M., Formisano, E., Goebel, R., Lanfermann, H. & Singer, W. (1999) Activation of Heschl's gyrus during auditory hallucinations. Neuron 22:615–21. [PRR]Google Scholar
Doheny, H. C., Faulkner, H. J., Gruzelier, J. H., Baldeweg, T. & Whittington, M. A. (2000) Pathway-specific habituation of induced gamma oscillations in the hippocampal slice. NeuroReport 11:2629–33. [aWAP]Google Scholar
Dolan, R. J. Fletcher, P. C. McKenna, P., Friston, K. J. & Frith, C. D. (1999) Abnormal neural integration related to cognition in schizophrenia. Acta Psychiatrica Scandinavica 99:5867. [HPB, aWAP]Google Scholar
Donchin, E. & Coles, M. G. H. (1988) Is the P300 component a manifestation of context updating. Behavioral and Brain Sciences 11:355–72. [DT]Google Scholar
Done, D. J. & Frith, C. D. (1984) The effect of context during word perception in schizophrenic patients. Brain and Language 23:318–36. [DT]Google Scholar
Doniger, G. M., Silipo, G., Rabinowicz, E. F., Snodgrass, J. G. & Javitt, D. C. (2001) Impaired sensory processing as a basis for object-recognition deficits in schizophrenia. American Journal of Psychiatry 158:1818–26. [DCJ]Google Scholar
Doody, G. A., Goetz, M., Johnson, E. C., Frith, C. D. & Cunningham-Owens, D. G. (1998) Theory of mind and psychoses. Psychological Medicine 28:397405. [DL]Google Scholar
Douglas, R. J. & Martin, K. A. C. (1990) Neocortex. In: The synaptic organization of the brain, ed. G. M. Shepherd. Oxford University Press. [aWAP]Google Scholar
Dove, A., Pollmann, S., Schubert, T., Wiggins, C. J. & von Cramon, Y. (2000) Prefrontal cortex activation in task switching: An event-related fMRI study. Cognitive Brain Research 9:103109. [RDO]Google Scholar
Drury, V. M., Robinson, E. J. & Birchwood, M. (1998) “Theory of mind” skills during acute episode of psychosis and following recovery. Psychological Medicine 28:1,101–12. [DL]Google Scholar
Duffy, L. & O’Carroll, R. (1994) Memory impairment in schizophrenia – a comparison with that observed in the alcoholic Korsakoff syndrome. Psychological Medicine 24:155–65. [aWAP]Google Scholar
Duncan, E. J., Madonick, S. H., Parwani, A., Angrist, B., Rajan, R., Chakravorty, S., Efferen, T. R., Szilagyi, S., Stephanides, M., Chappell, P. B., Gonzenback, S., Ko, G. N. & Rotrosen, J. P. (2001) Clinical and sensorimotor gating effects of ketamine in normals. Neuropsychopharmacology 25:7283. [MEP, rSMS]Google Scholar
Duncan, G. E., Sheitman, B. B. & Lieberman, J. A. (1999) An integrated view of pathophysiological models of schizophrenia. Brain Research Reviews 29:250– 64. [aWAP]Google Scholar
Eastwood, S. L. & Harrison, P. J. (1995) Decreased synaptophysin in the medial temporal lobe in schizophrenia demonstrated using immunoautoradiography. Neuroscience 69:339–43. [REH]Google Scholar
Edelman, G. M. (1989) The remembered present. Basic Books. [aWAP]Google Scholar
Ellison, G. (1995) The N-methyl-D-aspartate antagonists phencyclidine, ketamine and dizocilpine as both behavioral and anatomical models of the dementias. Brain Research Review 20:250–67. [aWAP]Google Scholar
Elvevag, B., Duncan, J. & McKenna, P. (2000) The use of cognitive context in schizophrenia: An investigation. Psychological Medicine 30:885–97. [DRH]Google Scholar
Engel, A. K. & Singer, W. (2001) Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Sciences 5:1625. [aWAP]Google Scholar
Epstein, R. (2000) The neural-cognitive basis of the Jamesian stream of thought. Consciousness and Cognition 9:550–75. [DRH]Google Scholar
Fathollahi, Y. & Salami, M. (2001) The role of N-methyl-D-aspartate receptors in synaptic plasticity of rat visual cortex in vitro: Effect of sensory experience. Neuroscience Letters 306:149–52. [GSS]Google Scholar
Faulkner, H. J., Traub, R. D. & Whittington, M. A. (1998) Disruption of synchronous gamma oscillations in the rat hippocampal slice: A common mechanism of anaesthetic drug action. British Journal of Pharmacology 125:483–92. [aWAP](1999) Anaesthetic/amnesic agents disrupt beta frequency oscillations associated with potentiation of excitatory synaptic potentials in the rat hippocampal slice. British Journal of Pharmacology 128:1813–25. [aWAP]Google Scholar
Feierman, J. (1982) Nocturnalism: An ethological theory of schizophrenia. Medical Hypotheses 9:455–79. [GSS]Google Scholar
Feinberg, I. (1982/1983) Schizophrenia: Caused by a fault in programmed synaptic elimination? Journal of Psychiatric Research 17:319–34. [REH]Google Scholar
Feldman, D., Sherif, J. E., Press, W. A. & Bear, M. F. (1990) N-methyl-Daspartate- evoked calcium uptake by kitten visual cortex maintained in vitro. Experimental Brain Research 80:252–59. [GSS]Google Scholar
Feldman, R. S., Meyer, J. S. & Quenzer, L. F. (1997) Principles of neuropsychopharmacology. Sinauer. [aWAP]Google Scholar
Felleman, D. J. & Van Essen, D. C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1:147. [aWAP, PPR]Google Scholar
Field, D. J., Hayes, A. & Hess, R. F. (1993) Contour integration by the human visual system: Evidence for a local “association field.” Vision Research 33:173–93. [MEP]Google Scholar
Fisher, R. (1976a) On creative, psychotic, and ecstatic states. In: Readings in abnormal psychology: Contemporary perspectives, ed. L. R. Allman & D. T. Jaffe. Harper and Row. (Original article published 1969). [aWAP]Google Scholar
Fisher, R. (1976b) On creative, psychotic, and ecstatic states: Update. In: Readings in abnormal psychology: Contemporary perspectives, ed. L. R. Allman & D. T. Jaffe. Harper and Row. [aWAP]Google Scholar
Fodor, J. A. & Pylyshyn, Z. W. (1988) Connectionism and cognitive architecture: A critical analysis. Cognition 28:372. [aWAP, rSMS]Google Scholar
Fonta, C., Chappert, C. & Imbert, M. (2000) Effect of monocular deprivation on NMDAR1 immunostaining in ocular dominance columns of the marmoset Callithrix jacchus. Visual Neuroscience 17:345–52. [GSS]Google Scholar
Fox, K., Henley, J. & Issac, J. (1999) Experience-dependent development of NMDA receptor transmission. Nature Neuroscience 2:297–99. [GSS]Google Scholar
Fox, K., Sato, H. & Daw, N. W. (1990) The effect of varying stimulus intensity on NMDA-receptor activity in cat visual cortex. Journal of Neurophysiology 64:1413–28. [aWAP, PPR]Google Scholar
Franks, R. D., Adler, L. E., Waldo, M. C., Alpert, J. & Freedman, R. (1983) Neurophysiological studies of sensory gating in mania: Comparison with schizophrenia. Biological Psychiatry 18:9891005. [aWAP, rSMS]Google Scholar
Fries, P., Reynolds, J. H., Rorie, A. E. & Desimone, R. (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–63. [aWAP]Google Scholar
Friston, K. J. (1998) The disconnection hypothesis. Schizophrenia Research 30(2):115–25. [YC, DRH](1999) Schizophrenia and the disconnection hypothesis. Acta Psychiatrica Scandinavica 99:6879. [HPB, aWAP]Google Scholar
Friston, K. J., Ungerleider, L. G., Jezzard, P. & Turner R. (1995) Characterizing modulatory interactions between areas V1 and V2 in human cortex: A new treatment of functional MRI data. Human Brain Mapping 2:211–24. [aWAP]Google Scholar
Frith, C. D. (1992) The cognitive neuropsychology of schizophrenia. Erlbaum/ Taylor and Francis. [DL, aWAP]Google Scholar
Frith, C. D. & Corcoran, R. (1996) Exploring theory of mind in people with schizophrenia. Psychological Medicine 26:521–30. [DL]Google Scholar
Frith, C. D., Stevens, M., Johnstone, E. C., Owens, D. G. C. & Crow, T. (1983) Integration of schematic faces and other complex objects in schizophrenia. Journal of Nervous and Mental Disease 171:3439. [aWAP]Google Scholar
Frith, U. & Happé, F. (1994) Autism: Beyond “theory of mind.” Cognition 50: 115–32. [aWAP]Google Scholar
Funahashi, M. & Stewart, M. (1998) Properties of gamma-frequency oscillations initiated by propagating population bursts in retrohippocampal regions of rat brain slices. Journal of Physiology 510:191208. [aWAP]Google Scholar
Fuster, J. M. (1997) The prefrontal cortex. Lippincott-Raven. [aWAP]Google Scholar
Gaddum, J. & Hammeed, K. A. (1954) Drugs which antogonize 5- hydroxytriptamine. British Journal of Pharmacology 9:240–48. [rSMS]Google Scholar
Gao, X-M., Sakai, K., Roberts, R. C., Conley, R. R., Dean, B. & Tamminga, C. A. (2000) Ionotropic glutamate receptors and expression of N-methyl-daspartate receptor subunits in subregions of human hippocampus: Effects of schizophrenia. American Journal of Psychiatry 157:1141–49. [aWAP, rSMS]Google Scholar
Garey, L. J., Ong, W. Y., Patel, T. S., Kanani, M., Davis, A., Mortimer, A. M., Barnes, T. R. & Hirsch, S. R. (1998) Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. Journal of Neurology, Neurosurgery and Psychiatry 65:446–53. [REH]Google Scholar
Geary, D. C. & Huffman, K. J. (2002) Brain and cognitive evolution: Forms of modularity and functions of mind. Psychological Bulletin 128:667–98. [GSS]Google Scholar
Geyer, M. A., Krebs-Thomson, K., Braff, D. L. & Swerdlow, N. R. (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: A decade in review. Psychopharmacology (Berlin) 156:117–54. [rSMS]Google Scholar
Ghonheim, M. M., Hinrichs, J. V., Mewaldt, S. P. & Petersen, R. C. (1985). Ketamine: behavioral effects of subanesthetic doses. Journal of Clinical Psychopharmacology 5:7077. [aWAP]Google Scholar
Giere, R. N. (2001) The nature and function of models. Behavioral and Brain Sciences 24:1060. [rSMS]Google Scholar
Gilbert, C. D. (1992) Horizontal integration and cortical dynamics. Neuron 9:113. [aWAP]Google Scholar
Gilbert, C. Ito, M., Kapadia, M. & Westheimer, G. (2000) Interactions between attention, context and learning in primary visual cortex. Vision Research 40:1217–26. [aWAP, rSMS]Google Scholar
Glantz, L. A. & Lewis, D. A. (1997) Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia. Regional and diagnostic specificity. Archives of General Psychiatry 54:660–69. [REH](2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Archives of General Psychiatry 57:6573. [REH]Google Scholar
Goff, D. C. & Coyle, J. T. (2001) The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. American Journal of Psychiatry 158:1367–77. [aWAP, rSMS]Google Scholar
Goff, D. C., Tsai, G., Levitt, J., Amico, E., Manoach, D., Schoenfeld, D. A., Hayden, D. L., McCaley, R. & Coyle, J. T. (1999) A placebo-controlled trial of Dcycloserine added to conventional neuroleptics in patients with schizophrenia. Archives of General Psychiatry 56:2127. [aWAP]Google Scholar
Gold, J. M., Carpenter, C. J., Randolph, C., Goldberg, T. & Weinberger, D. R. (1997) Auditory working memory and Wisconsin Card Sort Test in schizophrenia. Archives of General Psychiatry 54:159–65. [aWAP]Google Scholar
Goldberg, T. E., Aloia, M. S., Gourovitch, M. L., Missar, D., Pickar, D., & Weinberger, D. R. (1998) Cognitive substrates of thought disorder, I: The semantic system. American Journal of Psychiatry 155:1671–76. [aWAP]Google Scholar
Goldman-Rakic, P. S., Sclaidhe, S. P. O. & Chafee, M. V. (2000) Domain specificity in cognitive systems. In: The new cognitive neurosciences, ed. M. S. Gazzaniga. MIT Press. [aWAP, rSMS]Google Scholar
Goodarzi, M. A., Wykes, T. & Hemsley, D. R. (2000) Cerebral lateralization of global-local processing in people with schizotypy. Schizophrenia Research 45:115–21. [aWAP]Google Scholar
Gooding, D. C. (l999) Antisaccade task performance in questionnaire-identified schizotypes. Schizophrenia Research 35:157–66. [DCG]Google Scholar
Gooding, D. C., Kwapil, T. R. & Tallent, K. A. (l999) Wisconsin Card Sorting Test deficits in schizotypic individuals. Schizophrenia Research 40:201209. [DCG]Google Scholar
Gooding, D. C., Miller, M. D. & Kwapil, T. R. (2000) Smooth pursuit and visual fixation in psychosis-prone individuals. Psychiatry Research 93:4154. [DCG]Google Scholar
Gooding, D. C., Tallent, K. A. & Hegyi, J. V. (2001) Cognitive slippage in schizotypic individuals. Journal of Nervous and Mental Disease 189:750–56. [DCG]Google Scholar
Gopnik, A. & Wellman, H. M. (1992) Why the child's theory of mind really is a theory. Special Issue: Mental simulation: Philosophical and psychological essays. Mind and Language 7:145–71. [DL]Google Scholar
Gordon, E., Williams, L. M., Haig, A. R., Wright, J. & Meares, R. A. (2001) Symptom profile and “gamma” processing in schizophrenia. Cognitive Neuropsychiatry 6:719. [arWAP, LMW]Google Scholar
Gottesman, I. I. (l991) Schizophrenia genesis. W. H. Freeman. [DCG]Google Scholar
Grace, A. A. (1991) Phasic vs. tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia. Neuroscience 41:124. [JPG]Google Scholar
Grafman, J., Partiot, A. & Hollnagel, C. (1995) Fables of the prefrontal cortex. Behavioral and Brain Sciences 18:349–58. [aWAP]Google Scholar
Gray, C. M. (1999) The temporal correlation hypothesis of visual feature integration: Still alive and well. Neuron 24:3147. [aWAP]Google Scholar
Gray, J. A., Feldon, J., Rawlins, J. N. P., Hemsley, D. R. & Smith, A. D. (1991) The neuropsychology of schizophrenia. Behavioral and Brain Sciences 14:184. [DRH, SP, aWAP]Google Scholar
Gray, J. R., Braver, T. S. & Raichle, M. E. (2002) Integration of emotion and cognition in the lateral prefrontal cortex. Proceedings of the National Academy of Sciences, USA 99(6):4115–20. [SP]Google Scholar
Graybiel, A. M. (1997) The basal ganglia and cognitive pattern generators. Schizophrenia Bulletin 23:459–69. [aWAP]Google Scholar
Green, M. F., Nuechterlein, K. H., Breitmeyer, B. & Mintz, J. (1999) Backward masking in unmedicated schizophrenic patients in psychotic remission: Possible reflection of aberrant cortical oscillation. American Journal of Psychiatry 156:1367–73. [RC, aWAP]Google Scholar
Green, M. F., Nuechterlein, K. H. & Mintz, J. (1994) Backward masking in schizophrenia and mania: II. Specifying the visual channels. Archives of General Psychiatry 51:945–51. [RC]Google Scholar
Green, M. J., Williams, L. M. & Hemsley, D. R. (2000) Cognitive theories of delusion formation: The contribution of visual scan path research. Cognitive Neuropsychiatry 5:6374. [DRH]Google Scholar
Greengard, P., Nairn, A. C., Girault, J. A., Ouimet, C. C., Snyder, G. L., Fisone, G., Fienberg, A. & Nishi, A. (1998) The DARPP-32/protein phosphatase-1 cascade: A model for signal integration. Brain Research Reviews 26:274–84. [aWAP]Google Scholar
Grossberg, S. (1976) Adaptive pattern classification and universal recoding, II: Feedback, expectation, olfaction, and illusions. Biological Cybernetics 23: 187–202. [SG]Google Scholar
Grossberg, S. (1978) Behavioral contrast in short-term memory: Serial binary memory models or parallel continuous memory models? Journal of Mathematical Psychology 3:199219. [SG]Google Scholar
Grossberg, S. (1984) Some normal and abnormal behavioral syndromes due to transmitter gating of opponent processes. Biological Psychiatry 19:1075–118. [SG, LMW]Google Scholar
Grossberg, S. (1999) How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. Spatial Vision 12:163–85. [SG, PRR]Google Scholar
Grossberg, S. (2000a) How hallucinations may arise from brain mechanisms of learning, attention, and volition. Journal of the International Neuropsychological Society 6:583–92. [SG]Google Scholar
Grossberg, S. (2000b) The complementary brain: Unifying brain dynamics and modularity. Trends in Cognitive Sciences 4:233–46. [SG]Google Scholar
Grossberg, S. (2000c) The imbalanced brain: From normal behavior to schizophrenia. Biological Psychiatry 48:8198. [SG]Google Scholar
Grossberg, S. & Grunewald, A. (1997) Cortical synchronization and perceptual framing. Journal of Cognitive Neuroscience 9:117–32. [SG]Google Scholar
Grossberg, S., Mingolla, E. & Viswanathan, L. (2001) Neural dynamics of motion integration and segmentation within and across apertures. Vision Research 41:2521–53. [SG]Google Scholar
Grossberg, S. & Raizada, R. (2000) Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex. Vision Research 40:1413–32. [SG]Google Scholar
Grossberg, S. & Somers, D. (1991) Synchronized oscillations during cooperative feature linking in a cortical model of visual perception. Neural Networks 4:453–66. [SG]Google Scholar
Grunwald, T., Beck, H., Lehnertz, K., Blumcke, I., Pezer, N., Kurthen, M., Fernandez, G., Van Roost, D., Heinze, H. J., Kutas, M. & Elger, C. E. (1999) Evidence relating human verbal memory to hippocampal N-methyl-Daspartate receptors. Proceedings of the National Academy of Sciences USA 96:12085–89. [DT]Google Scholar
Grunze, H. C. R., Rainnie, D. G., Hasselmoe, M. E., Barkai, E. Hearn, E. F., McCarley, R. W. & Greene, R. W. (1996) NMDA-dependent modulation of CA1 local circuit inhibition. Journal of Neuroscience 16:2034–43. [aWAP]Google Scholar
Gruzelier, J. (2000) Self-regulation of electrocortical activity in schizophrenia and schizotypy: A review. Clinical Electroencephalography 31:2329. [rSMS]Google Scholar
Gruzelier, J., Seymour, K., Wilson, L., Jolley, A. & Hirsch, S. (1988) Impairments on neuropsychological tests of temporohippocampal and frontohippocampal functions and word fluency in remitting schizophrenia and affective disorders. Archives of General Psychiatry 45:623–29. [aWAP]Google Scholar
Guillem, F., Bicu, M., Hooper, R., Bloom, D., Wolf, M-A., Messier, J., Desautels, R. & Debruille. J. B. (2001) Memory impairment in schizophrenia: A study using event-related potentials in implicit and explicit tasks. Psychiatry Research 104:157173. [DT]Google Scholar
Guillem, F., Bicu, M., Hooper, R., Bloom, D., Wolf, M.-A., Messier, J. Desautels, R., Todorov, C., Lalonde, P., Debruille, J. B. (2003) The cognitive and anatomo-functional basis of reality distortion in schizophrenia: A view from memory event-related potentials. Psychiatry Research 111:137–58. [DT]Google Scholar
Gurd, J. M., Amunts, K., Weiss, P. H., Zafiris, O., Zilles, K., Marshall, J. C. & Fink, G. R. (2002) Posterior parietal cortex is implicated in continuous switching between verbal fluency tasks: An fMRI study with clinical implications. Brain 125:1024–38. [RDO]Google Scholar
Gurwitsch, A. (1964) The field of consciousness. Duquesne University Press. [LAS, rSMS]Google Scholar
Habeck, C. G. & Srinivasan, R. (2000) Neural solutions to the problem of functional integration. Behavioral and Brain Sciences 23:402403. [aWAP]Google Scholar
Hachem, D. G., Vivian, P. J. & Azouri, E. F. (1997) Retrospective study of 6,988 involuntary schizophrenic admissions and readmissions over a decade (1980– 1990). Biological Psychiatry 42(1) (Suppl. 2):193S. [JPG]Google Scholar
Haenschel, C., Baldeweg, T., Croft, R. J., Whittington, M. & Gruzelier, J. (2000) Gamma and beta frequency oscillations in response to novel auditory stimuli: A comparison of human electroencephalogram (EEG) data with in vitro models. Proceedings of the National Academy of Sciences USA 97:7645–50. [aWAP]Google Scholar
Halford, G., Wilson, W. H. & Phillips, S. (1998) Relational complexity metric is effective when assessments are based on actual cognitive processes. Behavioral and Brain Sciences 21(6):848–64. http://www.bbsonline.org/documents/a/00/00/05/50/bbs00000550–00/bbs.halford.html [DL]Google Scholar
Halgren, E. & Smith, M. E. (1987) Cognitive evoked potentials as modulatory processes in human memory formation and retrieval. Human Neurobiology 6:129–39. [DT]Google Scholar
Hamilton, R. & Pascual-Leone, A. (1998) Cortical plasticity associated with Braille learning. Trends in Cognitive Sciences 2:168–74. [GSS]Google Scholar
Happé, F. (1997) Central coherence and theory of mind in autism: Reading homographs in context. British Journal of Developmental Psychology 15:112. [aWAP]Google Scholar
Happé, F. (1999) Autism: Cognitive deficit or cognitive style? Trends in the Cognitive Sciences 3:216–22. [aWAP]Google Scholar
Harborne, G. C., Watson, F. L., Healy, D. T. & Groves, L. (1996) The effects of subanesthetic doses of ketamine on memory, cognitive performance and subjective experience in healthy volunteers. Journal of Psychopharmacology 10:134–40. [aWAP]Google Scholar
Harrison, P. J. & Eastwood, S. L. (2001) Neuropathological studies of synaptic connectivity in the hippocampal formation in schizophrenia. Hippocampus 11(5):508–19. [LMT]Google Scholar
Hasbani, M. J., Schlief, M. L., Fisher, D. A. & Goldberg, M. P. (2001) Dendritic spines lost during glutamate receptor activation reemerge at original sites of synaptic contact. Journal of Neuroscience 21:2393–403. [REH]Google Scholar
Heinrichs, R. W. (1993) Schizophrenia and the brain. American Psychologist 48:221–33. [aWAP]Google Scholar
Hemby, S. E., Ginsberg, S. D., Brunk, B., Arnold, S. E., Trojanowski, J. Q. & Eberwine, J. H. (2002) Gene expression profile for schizophrenia: Discrete neuron transcription patterns in the entorhinal cortex. Archives of General Psychiatry 59(7):631–40. [LMT]Google Scholar
Hemsley, D. R. (1975) A two stage model of attention in schizophrenia research. British Journal of Social and Clinical Psychology 14:8188. [DRH]Google Scholar
Hemsley, D. R. (1994) Cognitive disturbance as the link between schizophrenic symptoms and their biological bases. Neurology, Psychiatry and Brain Research 2:163–70. [DRH]Google Scholar
Hemsley, D. R. (1998) The disruption of the “sense of self” in schizophrenia: Potential links with disturbances of information processing. British Journal of Medical Psychology 71:115–24. [DRH]Google Scholar
Hemsley, D. R., Rawlins, J. N. P., Feldon, J., Jones, S. H. & Gray J. A. (1993) The neuropsychology of schizophrenia: Act 3. Behavioral and Brain Sciences 16:209–15. [DRH, RDO, aWAP]Google Scholar
Hemsley, D. R. & Richardson, P. H. (1980) Shadowing by context in schizophrenia. Journal of Nervous and Mental Disease 168:141–45. [DRH]Google Scholar
Heresco-Levy, U., Javitt, D. C., Ermilov, M., Mordel, C., Silipo, G. & Lichtenstein M. (1999) Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Archives of General Psychiatry 56:2936. [aWAP, rSMS]Google Scholar
Hertzman, M., Reba, R. C. & v.Kotlyarov, E. (1991). Single photon emission computed tomography in phencyclidine and related drug abuse. American Journal Psychiatry 147:256–57. [aWAP]Google Scholar
Hirsch, S. R., Das, I., Garey, L. J. & Debelleroche, J. (1997) A pivotal role for glutamate in the pathogenisis of schizoprenia and its cognitive dysfunction. Pharmacology, Biochemistry and Behavior 56:797802. [aWAP]Google Scholar
Hoffman, R. E., Buchsbaum, M. S., Jensen, R. V., Guich, S. M., Tsai, K. & Nuechterlein, K. H. (1996) Dimensional complexity of EEG waveforms in neuroleptic-free schizophrenic patients and normal control subjects. Journal of Neuropsychiatry and Clinical Neurosciences 8:436–41. [aWAP]Google Scholar
Hoffman, R. E. & Dobscha, S. (1989) Cortical pruning and the development of schizophrenia: A computer model. Schizophrenia Bulletin 15:477–90. [REH]Google Scholar
Hoffman, R. E. & McGlashan, T. H. (1993) Parallel distributed processing and the emergence of schizophrenic symptoms. Schizophrenia Bulletin 19:119–40. [aWAP, rSMS]Google Scholar
Hoffman, R. E. & McGlashan, T. H. (1997) Synaptic elimination, neurodevelopment and the mechanism of hallucinated “voices” in schizophrenia. American Journal of Psychiatry 154:1683–89. [REH]Google Scholar
Hoffman, R. E. & McGlashan, T. H. (2001) Neural networks models of schizophrenia. The Neuroscientist 7:441–54. [REH]Google Scholar
Holcomb, H. H., Lahti, A. C., Medoff, D. R., Weiler, M. & Tamminga, C. A. (2001) Sequential regional cerebral blood flow brain scans using PET with H2(15)O demonstrate ketamine actions in CNS dynamically. Neuropsychopharmacology 25:165–72. [MAT]Google Scholar
Holcomb, P. J. (1993) Semantic priming and stimulus degradation: Implications for the role of the N400 in language processing. Psychophysiology 30:4761. [DT]Google Scholar
Holzman, P. S. (1994) Parsing cognition. The power of psychology paradigms. Archives of General Psychiatry 51(12):952–54. [YC]Google Scholar
Horrobin, D. (1979) Schizophrenia: Reconciliation of the dopamine, prostaglandin, and opioid concepts and the role of the pineal. Lancet 1 (Issue 8115):529–31. [GSS]Google Scholar
Horwitz, B., Tagamets M. A. & McIntosh A. R. (1999) Neural modeling, functional brain imaging, and cognition. Trends in Cognitive Sciences 3:9198. [MAT]Google Scholar
Ibrahim, H. M., Hogg, A. J., Healy, D. J., Haroutunian, V., Davis, K. L. & Meador-Woodruff, J. H. (2000) Ionotropic glutamate receptor binding and subunit mRNA expression in the schizophrenic thalamus. Biological Psychiatry 47: 22–28. [rSMS]Google Scholar
Ito, M. & Gilbert, C. D. (1999) Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron 22:593604. [aWAP]Google Scholar
Izawa, R. & Yamamoto, S. (2002) Spatio-temporal disintegration of visual perception in schizophrenia as revealed by a novel cognitive task, the Searchlight Test. Schizophrenia Research 52:6774. [rSMS]Google Scholar
James, W. (1890) The principles of psychology. Macmillan. [DRH]Google Scholar
Janowsky, J. S., Shimamura, A. P. & Squire, L. R. (1989) Source memory impairment in patients with frontal lobe lesions. Neuropsychologia 27: 1043–56. [aWAP]Google Scholar
Jarrold, C., Butler, D. W., Cottington, E. M. & Jiminez, F. (2000) Linking theory of mind and central coherence bias in autism and in the general population. Developmental Psychology 36:126–38. [rSMS]Google Scholar
Javitt, D. C., Shelley, A.-M. & Riter, W. (2000) Associated deficits in mismatch negativity generation and tone matching in schizophrenia. Clinical Neurophysiology 111:1733–37. [RDO]Google Scholar
Javitt, D. C., Silipo, G., Cienfuegos, A., Shelley, A. M., Bark, N., Park, M., Lindenmayer, J. P., Suckow, R. & Zukin, S. R. (2001) Adjunctive high-dose glycine in the treatment of schizophrenia. International Journal of Neuropsychopharmacology 4:385–92. [DCJ]Google Scholar
Javitt, D. C., Steinscheider, M., Schroeder, C. E. & Arezzo, J. C. (1996) Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: Implications for schizophrenia. Proceedings of the National Academy of Science USA 93:11962–67. [aWAP, LMT, MEP]Google Scholar
Javitt, D. C. & Zukin, S. R. (1989) Biexponential kinetics of [3H]MK-801 binding: Evidence for access to closed and open N-methyl-D-aspartate receptor channels. Molecular Pharmacology 35:387–93. [rSMS](1991) Recent advances in the phencyclidine model of schizophrenia. American Journal of Psychiatry 148:1301–308. [aWAP, rSMS]Google Scholar
Javoy-Agid, F., Scatton, B, Ruberg, M., L’Heureux, R., Cervera, P., Raisman, R., Maloteaux, J. M., Beck, H. & Agid, Y. (1989) Distribution of monoaminergic, cholinergic, and GABAergic markers in the human cerebral cortex. Neuroscience 29:251–59. [LMW]Google Scholar
Jemel, B., Achenbach, C., Müller, B. W., Röpcke, B. & Oades R. D. (2002) Mismatch negativity results from bilateral asymmetric dipole sources in the frontal and temporal lobes. Brain Topography 15:1327. [RDO]Google Scholar
Jensen, O., Idiart, M. A. P. & Lisman, J. E. (1996) Physiologically realistic formation of autoassociative memory in networks with theta/gamma oscillations: Role of fast NMDA channels. Learning and Memory 3:243–56. [aWAP]Google Scholar
Jensterle, J., Mlakar, J., Vodusek, D. B. & Frith, C. D. (2000) Disorganization in schizophrenia need not result from a failure to inhibit dominant response tendencies. Cognitive neuropsychiatry 5:105–21. [DRH]Google Scholar
Jentsch, J. D., Redmond, Jr. D. E., Elsworth, J. D., Taylor, J. R., Youngren, K. D. & Roth, R. H. (1997a) Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Science 277:953–55. [aWAP]Google Scholar
Jentsch, J. D. & Roth, R. H. (1999) The neuropsychopharmacology of phencyclidine: From NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–25. [aWAP, rSMS]Google Scholar
Jentsch, J. D., Tran, A., Le, D., Youngren, K. D. & Roth, R. H. (1997b) Subchronic phencyclidine administration reduces mesoprefrontal dopamine utilization and impairs prefrontal cortical dependent cognition in the rat. Neuropsychopharmacology 17:9299. [aWAP]Google Scholar
Jockers-Scherubl, M. C., Godeman, F. & Pitzcker, A. (2001) Negative symptoms of schizophrenia are improved by paroxetine added to neuroleptics: A pilot study. Journal of Clinical Psychiatry 62:573. [RDO]Google Scholar
John, C. H. & Hemsley, D. R. (1992) Gestalt perception in schizophrenia. European Archives of Psychiatry Clinical Neuroscience 241(4):215–21. [YC]Google Scholar
John, E. R. (2001) A field theory of consciousness. Consciousness and Cognition 10:184213. [RC]Google Scholar
Johnson, S. C. & Carey, S. (1998) Knowledge enrichment and conceptual change in folkbiology: Evidence from Williams syndrome. Cognitive Psychology 37(2):156200. [DL]Google Scholar
Jones, S. H., Hemsley, D. R. & Gray, J. A. (1991) Contextual effects on choice reaction time and accuracy in acute and chronic schizophrenics. British Journal of Psychiatry 159:415–21. [aWAP]Google Scholar
Judd, L. L., McAdams, L., Budnick, B. & Braff, D. L. (1992) Sensory gating deficits in schizophrenia: New results. American Journal of Psychiatry 149:488–93. [aWAP]Google Scholar
Kähkönen, S., Ahveninen, J., Pekkonen, E., Kaakkola, S., Huttunen, J., Ilmoniemi, R. J. & Jääskiläinen, I. P. (2002) Dopamine modulates involuntary attention shifting and reorienting: An electromagnetic study. Clinical Neurophysiology 113:18941902. [RDO]Google Scholar
Kandel, E. R. (1998) A new intellectual framework for psychiatry. American Journal of Psychiatry 155:457–69. [aWAP]Google Scholar
Kapadia, M. K., Ito, M., Gilbert, C. D. & Westheimer, G. (1995) Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys. Neuron 15:843–56. [aWAP, PPR]Google Scholar
Kaplan, R. D. (1974) The crossover phenomenon: Three studies of the effect of training and information on process schizophrenic reaction time. Unpublished doctoral dissertation, University of Waterloo, Ontario, Canada. [aWAP]Google Scholar
Kapur, S. & Seeman, P. (2002) NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D2 and serotonin 5-HT2 receptors: Implications for models of schizophrenia. Molecular Psychiatry 7:837–44. [RDO, rSMS]Google Scholar
Karmiloff-Smith, A. (1998) Development itself is the key to understanding developmental disorders. Trends in the Cognitive Sciences 2:389–98. [aWAP]Google Scholar
Karp, H. N., Kaufman, N. D. & Anand, S. K. (1980) Phencyclidine poisoning in young children. Journal of Pediatrics 97:10061009. [aWAP]Google Scholar
Karson, C. N., Mrak, R. E., Schluterman, K. O., Sturner, W. Q., Sheng, J. G. & Griffin, W. S. (1999) Alterations in synaptic proteins and their encoding mRNAs in prefrontal cortex in schizophrenia: A possible neurochemical basis for “hypofrontality.” Molecular Psychiatry 4:3945. [REH]Google Scholar
Kay, J., Floreano, D. & Phillips, W. A. (1998) Contextually guided unsupervised learning using local multivariate binary processors. Neural Networks 11:117– 40. [aWAP, rSMS]Google Scholar
Kay, S. R., Opler, L. A. & Fiszbein, A. (1987) The positive and negative syndrome scale (PANNS) for schizophrenia. Schizophrenia Bulletin 13:261–76. [aWAP]Google Scholar
Kegeles, L. S., Abi-Dargham, A., Zea-Ponce, Y., Rodenhiser-Hill, J., Mann, J. J., Van Heertum, R. L., Cooper, T. B., Carlsson, A. & Laruelle, M. (2000) Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: Implications for schizophrenia. Biological Psychiatry 48:627–40. [DCJ]Google Scholar
Keil, A., Müller, M. M., Ray, W. J., Gruber, T. & Elbert, T. (1999) Human gamma band activity and perception of a gestalt. Journal of Neuroscience 19:7152–61. [aWAP, rSMS]Google Scholar
Kelso, J. A. S. (1995) Dynamic patterns: The self-organization of brain and behavior. MIT Press. [aWAP]Google Scholar
Kendler, K. S., McGuire, M., Gruenberg, A. M., O’Hare, A., Spellman, M. & Walsch D. (1993) The Roscommon family study. I. Methods, diagnosis of probands, and risk of schizophrenia in relatives. Archives of General Psychiatry 50:527–40. [REH]Google Scholar
Kim, D., Zemon, V., Saperstein, A., Butler, P. D. & Javitt, D. C. (2002) Lateral cortical interactions in schizophrenia: A visual evoked potential study. Program No. 705.13. 2002 Abstract Viewer/Itinerary Planner. Society for Neuroscience, 2002. CD-ROM. [MEP]Google Scholar
Kisley, M. A., Olincy, A., Robbins, E., Polk, S. D., Adler, L. E., Waldo, M. C. & Freedman, R. (2003) Sensory gating impairment associated with schizophrenia persists into REM sleep. Psychophysiology, 40:2938. [MAK]Google Scholar
Kissler, J., Muller, M. M., Fehr, T., Rockstruh, B. & Elbert, T. (2000) MEG gamma band activity in schizophrenia patients and healthy subjects in a mental arithmetic task and at rest. Clinical Neurophysiology 111:2079–87. [aWAP]Google Scholar
Klosterkötter, J., Schultze-Lutter, F., Gross, G., Huber, G. & Steinmeyer, E. M. (1997) Early self-experienced neuropsychological deficits and subsequent schizophrenic diseases: An 8-year average follow-up prospective study. Acta Psychiatrica Scandinavica 95:396404. [LAS]Google Scholar
Knierim, J. J. & Van Essen, D. C. (1992) Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology 67:961–80. [PRR]Google Scholar
Knight, R. A. (1984) Converging models of cognitive deficit in schizophrenia. In: Theories of schizophrenia and psychosis. Nebraska Symposium on Motivation 1983, ed. W. D. Spaulding & J. K. Cole. University of Nebraska Press. [aWAP, rSMS]Google Scholar
Knight, R. A. (1992) Specifying cognitive deficiencies in poor premorbid schizophrenics. In: Progress in experimental personality and psychopathology research, vol. 15, ed. E. F. Walker, R. H. Dworkin & B. A. Cornblatt. [aWAP, rSMS]Google Scholar
Knight, R. A., Elliot, D. S. & Freedman, E. G. (1985) Short-term visual memory in schizophrenics. Journal of Abnormal Psychology 94:427–42. [aWAP]Google Scholar
Knight, R. A. & Roff, J. D. (1985) Affectivity in schizophrenia: The predictive and discriminant validity of affectivity deficits. Chapter 15:280317. In: Controversies in schizophrenia: Changes and constancies, ed. M. Alpert. Erlbaum. [MA]Google Scholar
Knight, R. A. & Silverstein, S. M. (1998) The role of cognitive psychology in guiding research on cognitive deficits in schizophrenia. In: Origins and development of schizophrenia: Advances in experimental psychopathology, ed. M. Lenzenweger & R. H. Dworkin. APA Press. [aWAP, rSMS]Google Scholar
Knight, R. A. & Silverstein, S. M. (2001) A process-oriented approach for averting confounds resulting from general performance deficiencies in schizophrenia. Journal of Abnormal Psychology 110:1530. [rSMS]Google Scholar
Knight, R., Manoach, D. S, Elliott, D. S. & Hershenson, M. (2001) Perceptual organization in schizophrenia: The processing of symmetrical configurations. Journal of Abnormal Psychology 109:575–87. [LAS]Google Scholar
Köhler, W. (1929) Gestalt psychology. Liveright. [rSMS]Google Scholar
Köhler, W. (1947) Gestalt psychology: An introduction to new concepts in modern psychology. Liveright. [rSMS]Google Scholar
Konstantareas, M. M. & Hewitt, T. (2001) Autistic disorder and schizophrenia: Diagnostic overlaps. Journal of Autism and Developmental Disorders 31:19– 28. [aWAP]Google Scholar
Kopell, N. (2000) We got rhythm: Dynamical systems of the nervous system. Notices of the AMS 47:616. [aWAP, rSMS, MAT]Google Scholar
Körding, K. P. & König, P. (2000) Learning with two sites of synaptic integration. Network: Computation in Neural Systems 11:2540. [aWAP]Google Scholar
Kovács, I. (1996) Gestalten of today: Early processing of visual contours and surfaces. Behavioral Brain Research 82:111. [aWAP]Google Scholar
Koyama, S., Nageishi, Y., Shimokochi, M., Hokama, H., Miyazato, Y., Miyatani, M. & Ogura, C. (1991) The N400 component of event-related potentials in schizophrenic patients: A preliminary study. Electroencephalography and Clinical Neurophysiology 78:124–32. [DT]Google Scholar
Kreiter, A. K., & Singer, W. (1996) Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake Macaque monkey. Journal of Neuroscience 16:2381–96. [aWAP]Google Scholar
Krystal, J. H., Bennett, A., Abi-Saab, W. M., Belger, A., Karper, L. P., D’Souza, D. C., Lipschitz, D., Abi-Dargham, A. & Charney, D. S. (2000) Dissociation of ketamine effects on rule acquisition and rule implementation: Possible relevance to NMDA receptor contributions to executive cognitive functions. Biological Psychiatry 47:137–43. [aWAP]Google Scholar
Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney, R., Bremner, J. D., Heninger, G. R., Bowers, M. B. & Charney, D. S. (1994) Subanesthetic effects of the noncompetitive NMDA anatagonist, ketamine, in humans. Archives of General Psychiatry 51:199214. [aWAP]Google Scholar
Kujala, T., Alho, K., Kekoni, J., Hamalainen, H., Rainikainen, K., Salonen, O., Standertskjold-Nordenstam, C. G. & Naatanen, R. (1995) Auditory and somatosensory event-related brain potentials in early blind humans. Experimental Brain Research 104:519–26. [GSS]Google Scholar
Kuperberg, G. R., McGuire, P. K. & David, A. S. (1998) Reduced sensitivity to linguistic context in schizophrenic thought disorder. Journal of Abnormal Psychology 107:423–34. [aWAP, rSMS]Google Scholar
Kutas, M. (1988) Review of event-related potentials studies of memory. In: Perspectives of memory research, ed. M. S. Gazzaniga. MIT Press. [DT]Google Scholar
Kutas, M, McCarthy, G, Donchin, E. (1977) Augmenting mental chronometry: The P300 as a measure of stimulus evaluation time. Science 197(4305):792–95. [DT]Google Scholar
Kutsuwada, T., Kashiwabuchi, N., Mori, H., Sakimura, K., Kushiya, E., Araki, K., Meguro, H., Masaki, H., Kumanisis, T., Arakawa, M. & Mishina, M. (1992) Molecular diversity of the NMDA receptor channel. Nature 358:3641. [aWAP]Google Scholar
Kwapil, T. R. (l998) Social anhedonia as a predictor of the development of schizophrenia-spectrum disorders. Journal of Abnormal Psychology 107:558– 65. [DCG]Google Scholar
Kwon, J. S., O’Donnell, B. F., Wallenstein, G. V., Greene, R. W., Hirayasu, Y., Nestor, P. G., Hasselmo, M. E., Potts, G. F., Shenton, M. E. & McCarley, R. W. (1999) Gamma-frequency range abnormalities to auditory stimulation in schizophrenia. Archives of General Psychiatry 56:10011005. [MAK, aWAP, rSMS]Google Scholar
Kwon, Y. H., Nelson, S. B., Toth, L. J. & Sur, M. (1992) Effect of stimulus contrast and size on NMDA receptor activity in cat lateral geniculate nucleus. Journal of Neurophysiology 68:182–96. [DCJ]Google Scholar
Lahti, A. C., Holcomb, H. H., Medoff, D. R. & Tamminga, C. A. (1995a) Ketamine activates psychosis and alters limbic blood-flow in schizophrenia. NeuroReport 6:869–72. [aWAP]Google Scholar
Lahti, A. C., Koffel, B., Laporte, D. & Tamminga, C. A. (1995b) Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 13:919. [aWAP]Google Scholar
Lamme, V. A. F. & Roelfsema, P. R. (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neuroscience 23:571–79. [PRR]Google Scholar
Lamme, V. A. F. & Spekreijse, H. (2000) Contextual modulation in primary visual cortex and scene perception. In: The new cognitive neurosciences, ed. M. S. Gazzaniga. MIT Press. [aWAP]Google Scholar
Lamme, V. A. F., Zipser, K. & Spekreijse, H. (1998) Figure-ground activity in primary visual cortex is suppressed by anesthesia. Proceedings of the National Academy of Sciences USA 95:3263–68. [PRR]Google Scholar
Lee, J., Chun, M. M., Jiang, Y. & Park, S. (2003a) Spatial context effects on visuospatial working memory (VSWM) in schizophrenia. Schizophrenia Research 605:143. [SP]Google Scholar
Lee, J. & Park, S. (2002a) The role of stimuli-driven attention in spatial working memory in schizophrenia. Schizophrenia Research 53(3):131. [SP]Google Scholar
Lee, J. & Park, S. (2002b) The effect of target salience on the Continuous Performance Task (CPT-AX) performance in schizophrenia patients. Proceedings of the Seventeenth Annual Meeting of Society for Research in Psychopathology, San Francisco, CA p. 20. [SP]Google Scholar
Lee, K.-H., Williams, L. M., Breakspear, M. & Gordon, E. (2003b) Synchronous Gamma activity: A review and contribution to an integrative neuroscience model of schizophrenia. Brain Research Reviews 41:5778. [aWAP, LMW]Google Scholar
Lee, K.-H., Williams, L. M., Haig A. & Gordon, E. (2003c) “Gamma (40Hz) phase synchronicity” and symptom dimensions in schizophrenia. Cognitive Neuropsychiatry 8:5771. [LMW]Google Scholar
Lehar, S. (2002) The world in your head: A gestalt view of the mechanism of conscious experience. Erlbaum. [rSMS](in press) Gestalt isomorphism and the primacy of subjective conscious experience: A gestalt bubble model. Behavioral and Brain Sciences. [rSMS]Google Scholar
Leiser, D. (2001) Scattered naive theories: Why the human mind is isomorphic to the internet web. New Ideas in Psychology 19(3):175202. http://www.bgu.ac.il/∼dleiser/docs/naive.pdf [DL]Google Scholar
Lewis, D. A. & Gonzalez-Burgos, G. (2000) Intrinsic excitatory connections in the prefrontal cortex and the pathophysiology of schizophrenia. Brain Research Bulletin 52:309–17. [REH]Google Scholar
Lezak, M. (1995) Neuropsychological assessment, 3rd edition. Oxford University Press. [aWAP]Google Scholar
Liddle, P. F. (1987) The symptoms of chronic schizophrenia. A re-examination of the positive-negative dichotomy. British Journal of Psychiatry 151:145–51. [aWAP]Google Scholar
Liddle, P. F., Friston, K. J., Frith, C. D., Hirsch, S. R., Jones, T. & Frakowiak, R. S. J. (1992) Patterns of cerebral blood flow in schizophrenia. British Journal of Psychiatry 160:179–86. [aWAP]Google Scholar
Liddle, P. F. & Morris, D. L. (1991) Schizophrenic syndromes and frontal lobe performance. British Journal of Psychiatry 158:340–45. [aWAP]Google Scholar
Lindenmayer, J.-P., Bernstein-Hyman, R. & Grochowski, S. (1994) A new five factor model of schizophrenia. Psychiatric Quarterly 65:299322. [aWAP, rSMS]Google Scholar
Liotti, M., Ryder, K. & Woldorff, M. G. (1998) Auditory attention in the congenitally blind: Where, when and what gets reorganized? NeuroReport 9:1007–12. [GSS]Google Scholar
Lisman, J. E., Fellous, J. M. & Wang, X. J. (1998) A role for NMDA-receptor channels in working memory. Nature Neuroscience 1:273–75. [aWAP, rSMS]Google Scholar
Lisman, J. E. & Idiart, M. A. P. (1995) Storage of 71/- 2 short-term memories in oscillatory subcycles. Science 267:1512–14. [aWAP]Google Scholar
Liu, D., Diorio, J., Day, J. C., Francis, D. D. & Meaney, M. J. (2000) Maternal care, hippocampal synaptogenesis, and cognitive development in rats. Nature Neuroscience 3:799806. [rSMS]Google Scholar
Llinas, R. (1993) Is dyslexia a dyschronia? Annals of the New York Academy of Sciences 682:4856. [RC]Google Scholar
Lovell, P. G. (2002) Human contour integration: Evaluating the association field theory using psychophysical and computational methods. Submitted doctoral dissertation, University of Stirling, UK. Available via Internet at: http://www.stir.ac.uk/Departments/HumanSciences/Psychology/Postgrads/pgl1/downloads/PhDThesis/Thesis_MaxCompression.pdf [MEP]Google Scholar
Lubow, R. E. (1989) Latent inhibition and conditioned attention theory. Cambridge University Press. [DRH]Google Scholar
Lubow, R. E., Kaplan, O., Abramovich, P., Rudnick, A. & Laor, N. (2000) Visual search in schizophrenia: Latent inhibition and novel pop-out effects. Schizophrenia Research 45:145–56. [PRR]Google Scholar
Luby, E. D., Gottlieb, J. S., Cohen, B. D. & Rosenbaum, G. (1962) Model psychoses and schizophrenia. American Journal of Psychiatry 119:6167. [aWAP]Google Scholar
Luck, S. J. & Vogel, E. K. (1997) The capacity of visual working memory for features and conjunctions. Nature 390:279–81. [aWAP]Google Scholar
Lutz, A. (2002) Toward a neurophenomenology as an account of generative passages: A first empirical case study. Phenomenology and the Cognitive Sciences 1:133–67. [rSMS]Google Scholar
MacDonald, A. W., III, Pogue-Geile, M. F., Johnson, M. K. & Carter, C. S. (2003) A specific deficit in context processing in the unaffected siblings of patients with schizophrenia. Archives of General Psychiatry 60:5765. [AWM, rSMS]Google Scholar
Magaro, P. A. (1980) Cognition in schizophrenia and paranoia: The integration of cognitive processes. Erlbaum. [aWAP]Google Scholar
Maher, B. A., Manschreck, T. C. & Rucklos, M. E. (1980) Contextual constraint and the recall of verbal material in schizophrenia: The effect of thought disorder. British Journal of Psychiatry 137:6973. [aWAP]Google Scholar
Malhotra, A. K., Pinals, D. A., Adler, C. M., Elman, I., Clifton, A., Pickar, D. & Breier, A. (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17:141–50. [aWAP]Google Scholar
Malhotra, A. K., Pinals, D. A., Weingartner, H., Sirocco, K., Missar, C. D., Pickar, D. & Breier, A. (1996) NMDA receptor function and human cognition – The effects of ketamine in healthy volunteers. Neuropsychopharmacology 14:301– 307. [aWAP]Google Scholar
Marenco, S. & Weinberger, D. R. (2000) The neurodevelopmental hypothesis of schizophrenia: Following a trail of evidence from cradle to grave. Development and Psychopathology, 12:501–27. [RC]Google Scholar
Marr, D. (1982) Vision. W. W. Freeman. [rSMS]Google Scholar
Mathe, J. M., Nomikos, G. G., Schilstrom, B. & Svensson, T. H. (1998) Non- NMDA excitatory amino acid receptors in the ventral tegmental area mediate systemic dizocilpine (MK-801) induced hyperlocomotion and dopamine release in the nucleus accumbens. Journal of Neuroscience Research 51:583– 92. [rSMS]Google Scholar
Matussek, P. (1952/1987) Untersuchungen über die Wahnwahrnehmung [Studies in delusional perception]. Archiv für Psychiatry und Zeitschrift Neurologie 189:279318. Translated and condensed English edition, 1987. In: Clinical roots of the schizophrenia concept. Translations of seminal European contributions on schizophrenia, ed. J. Cutting & M. Sheppard. Cambridge University Press. [aWAP, LAS, rSMS]Google Scholar
Maunsell, J. H. R. (1995) The brain's visual world: Representations of visual targets in cerebral cortex. Science 270:764–68. [aWAP]Google Scholar
Mayes, A. R., Meudell, P. R. & Pickering, A. D. (1985) Is organic amnesia caused by a selective deficit in remembering contextual information? Cortex 21:167– 202. [DRH]Google Scholar
McAdams, C. J. & Maunsell, J. H. R. (1999) Effects of attention on orientationtuning functions of single neurons in macaque area V4. Journal of Neuroscience 19:431–41. [PRR]Google Scholar
McBain, C. J. & Mayer, M. L. (1994) N-Methyl-D-Aspartic acid receptor structure and function. Physiological Review 74:723–63. [aWAP]Google Scholar
McCarley, R. W., Hsiao, J., Freedman, R., Pfefferbaum, A. & Donchin, E. (1996) Neuroimaging and the cognitive neuroscience of schizophrenia. Schizophrenia Bulletin 22:703–26. [rSMS]Google Scholar
McCarley, R. W., Niznikiewicz, M. A., Salisbury, D. F., Nesotr, P. G., Salisbury, D. F., O’Donnell, B. F., Hirayasu, Y., Grunze, H., Greene, R. W. & Shenton, M. E. (l999) Cognitive dysfunction in schizophrenia: Unifying basic research and clinical aspects. European Archives of Psychiatry and Clinical Neuroscience 249(Suppl. 4):69–82. [DCG]Google Scholar
McDonald, L. M., Moran, P. M., Vythelingum, M. H., Joseph, J. H., Stephenson, J. D. & Gray, J. A. (2002) Latent inhibition is attenuated by noise and restored by a 5-HT2A receptor antagonist. Behavioural Pharmacology 13:663–67. [RDO]Google Scholar
McGhie, A. & Chapman, J. (1961) Disorders of attention and perception in early schizophrenia. British Journal of Medical Psychology 34:103–16. [rSMS]Google Scholar
McGlashan, T. H. & Hoffman, R. E. (2000) Schizophrenia as a disorder of developmentally-reduced synaptic connectivity. Archives of General Psychiatry 57:637–48. [aWAP, REH]Google Scholar
Meador-Woodruff, J. H. & Healy, D. J. (2000). Glutamate receptor expression in schizophrenic brain. Brain Research Reviews 31:288–94. [aWAP]Google Scholar
Mechri, A., Saoud, M., Khiari, G., d’Amato, T., Dalery, J. & Gaha, L. (2001) Glutaminergic hypothesis of schizophrenia: studies with ketamine. Encephale 27:5359. [aWAP]Google Scholar
Medalia, A., Aluma, M., Tryon, W. & Merriam, A. E. (1998) Effectiveness of attention training in schizophrenia. Schizophrenia Bulletin 24:147–52. [rSMS]Google Scholar
Mednick, S. A. & Silverton, L. (1988) High-risk studies of the etiology of schizophrenia. In: Handbook of schizophrenia: Nosology, epidemiology, and genetics of schizophrenia, vol. 3, ed. M. T. Tsuang & J. C. Simpson. Elsevier. [aWAP]Google Scholar
Medoff, D. R., Holcomb, H. H., Lahti, A. C. & Tamminga, C. A. (2001) Probing the human hippocampus using RCBF: Contrasts in schizophrenia. Hippocampus 11:543–50. [MAT]Google Scholar
Meehl, P. E. (l962) Schizotaxia, schizotypy, schizophrenia. American Psychologist 17:827–38. [DCG, rSMS](l989) Schizotaxia revisited. Archives of General Psychiatry 46:935–44. [DCG]Google Scholar
Meeter, M., Murre, J. M. J. & Talamini, L. M. (2002) A computational approach to memory deficits in schizophrenia. Neurocomputing 44:929–36. [LMT]Google Scholar
Menninger, K., Mayman, M. & Pruyser P. (1963) The vital balance. The Viking Press. [HPB]Google Scholar
Michie, P. T. (2001) What has MMN revealed about the auditory system in schizophrenia? International Journal of Psychophysiology 42:177–94. [RDO]Google Scholar
Miller, C. L., Bickford, P. C., Luntz-Leybman, V., Adler, L. E., Gerhardt, G. A. & Freedman, R. (1992) Phencyclidine and auditory sensory gating in the hippocampus of the rat. Neuropharmacology 31:1041–48. [MAK]Google Scholar
Miller, E. K. & Cohen, J. D. (2001) An integrative theory of prefrontal cortical function. Annual Review of Neuroscience 24:167202. [aWAP]Google Scholar
Milner, R. (1999) Communicating and mobile systems: The p calculus. Cambridge University Press. [HPB]Google Scholar
Mintz, S. & Alpert, M. (1972) Imagery vividness, reality testing and schizophrenic hallucinations. Journal of Abnormal Psychology 79(3):310–16. [MA]Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H. & Howerter, A. (2000) The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology 41:49100. [DCG]Google Scholar
Moghaddam, B., Adams, B., Verma, A. & Daly, D. (1997) Activation of glutamatergic neurotransmission by ketamine – A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. Journal of Neuroscience 17:2921–27. [aWAP]Google Scholar
Mohn, A. R., Gainetdinov, R. R., Caron, M. G. & Koller, B. H. (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98:427–36. [rSMS]Google Scholar
Møller, P. & Husby, R. (2000) The initial prodrome in schizophrenia: Searching for naturalistic core dimensions of experience and behavior. Schizophrenia Bulletin 26:217–32. [LAS]Google Scholar
Monaghan, D. T., Bridges, R. J., & Cotman, C. (1989) The excitatory amino acid receptors: Their classes, pharmacology, and distinct properties in the function of the central nervous system. Annual Review of Pharmacology and Toxicology 29:365402. [aWAP]Google Scholar
Monchi, O., Taylor, J. G. & Dagher, A. (2002) A neural model of working memory processes in normal subjects, Parkinson's disease and schizophrenia for fMRI design and predictions. Neural Networks 13:953–73. [LMT]Google Scholar
Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B. & Seeburg, P. H. (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–40. [aWAP]Google Scholar
Moran, P. M., Al-Uzri, M. M., Watson, J. & Reveley, M. A. (2003) Reduced Kamin blocking in non-paranoid schizophrenia: Associations with schizotypy. Journal of Psychiatric Research 37:155–63. [RDO]Google Scholar
Murthy, V. N. & Fetz, E. E. (1996) Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. Journal of Neurophysiology 76:3968–82. [aWAP]Google Scholar
Näätänen, R. (1990) The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behavioral and Brain Sciences 13:201–88. [RDO]Google Scholar
Nadler, V., Kloog, Y. & Sokolovsky M. (1990) Distinctive structural requirement for the binding of uncompetitive blockers (phencyclidine-like drugs) to the NMDA receptor. European Journal of Pharmacology 188:97104. [rSMS]Google Scholar
Nakagawa, H., Sato, K., Shiraishi, Y., Kuriyama, H. & Altschuler, R. A. (2000) NMDAR1 isoforms in the rat superior olivary complex and changes after unilateral cochlear ablation. Brain Research. Molecular Brain Research 77:246–57. [GSS]Google Scholar
Neville, H., Kutas, M., Chesney, G. & Schmidt, A. L. (1986) Event-related brain potentials during initial encoding and recognition memory of congruous and incongruous words. Journal of Memory and Language 25:7592. [DT]Google Scholar
Newcomer, J. W., Farber, N. B., Jevtovic-Todorovic, V., Selke, G., Melson, A. K., Hershley, T., Craft, S. & Olney, J. W. (1998) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20:106–18. [aWAP]Google Scholar
Newcomer, J. W. & Krystal, J. H. (2001) NMDA receptor regulation of memory and behavior in humans. Hippocampus 11:529–42. [LMT]Google Scholar
Niebur, E. (2001) Research, robots, and reality: A statement on current trends in biorobotics. Behavioral and Brain Sciences 24:1072–73. [rSMS]Google Scholar
Nishijo, H., Yamamoto, Y., Ono, T., Uwano, T., Yamashita, J. & Yamashita, T. (1997) Single neuron responses in the monkey anterior cingulate cortex during visual discrimination. Neuroscience Letters 227:7982. [GSS]Google Scholar
Niznikiewicz, M. A., Voglmaier, M., Shenton, M. E., Seidman, L. J., Dickey, C. C., Rhoads, R., Teh, E. & McCarley, R. W. (1999) Electrophysiological correlates of language processing in schizotypal personality disorder. American Journal of Psychiatry 56:1052–58. [DT]Google Scholar
Nuechterlein, K. H. (1977). Reaction time and attention in schizophrenia: A critical evaluation of the data and theories. Schizophrenia Bulletin 3:373428. [aWAP]Google Scholar
Nuechterlein, K. H., Dawson, M. E., Gitlin, M., Ventura, J., Goldstein, M. J., Snyder, K. S., Yee, C. M. & Mintz, J (1992). Developmental processes in schizophrenic disorders: Longitudinal studies of vulnerability and stress. Schizophrenia Bulletin 18:387424. [aWAP]Google Scholar
Nunez, P. L. (2000) Towards a quantitative description of large-scale neocortical dynamic function and EEG. Behavioral and Brain Sciences 23:371473. [aWAP]Google Scholar
Oades, R. D. (1985) The role of noradrenaline in tuning and dopamine in switching between signals in the CNS. Neuroscience and Biobehavioral Reviews 9:261–83. [RDO]Google Scholar
Oades, R. D., Müller, B., Schall U., Bender, S. & Wolstein, J. (2000) Automatic vs. controlled attention in schizophrenia: Conditioned blocking and sensory gating. Behavioural Pharmacology 11:346. [RDO]Google Scholar
Oades, R. D., Rivet, J.-M., Taghzouti, K., Kharouby, M., Simon, H. & Le Moal, M. (1987) Catecholamines and conditioned blocking: Effects of ventral tegmental, septal and frontal 6-hydroxydopamine lesions in rats. Brain Research 406:136–46. [RDO]Google Scholar
Oades, R. D., Ropcke, B. & Eggers, C. (1994) Monoamine activity reflected in urine of young patients with obsessive compulsive disorder, psychosis with and without reality distortion and healthy subjects: An explorative analysis. Journal of Neural Transmission – General Section 96:143–59. [LMW]Google Scholar
Oades, R. D., Zerbin, D. & Eggers, C. (1993) Stimulus-Vergleichsprozesse bei psychotischen Jugendlichen mit paranoiden und nicht paranoiden Symptomen: Mismatch Negativity deutet auf differenzierte Beeinträchtigungen hin. In: Biologische Psychiatrie der Gegenwart, ed. P. Baumann. Springer-Verlag. [RDO]Google Scholar
Oades, R. D., Zimmermann, B. & Eggers, C. (1996) Conditioned blocking in patients with paranoid, non-paranoid psychosis or obsessive compulsive disorder: Associations with symptoms, personality and monoamine metabolism. Journal of Psychiatric Research 30:369–90. [RDO]Google Scholar
Oleskevich, S. & Walmsley, B. (2002) Synaptic transmission in the auditory brainstem of normal and congenitally deaf mice. The Journal of Physiology 540:447–55. [GSS]Google Scholar
Olney, J. W. & Farber, N. B. (1995) Glutamate receptor dysfunction and schizophrenia. Archives of General Psychiatry 52:9981007. [aWAP]Google Scholar
Olney, J. W., Newcomer, J. W. & Farber, N. B. (1999) NMDA receptor hypofunction model of schizophrenia. Journal of Psychiatric Research 33:523–33. [aWAP]Google Scholar
Olufsen, M. S., Whittington, M. A., Camperi, M. & Kopell, N. (2003) New roles for the gamma rhythm: Population tuning and preprocessing for the beta rhythm. Journal of Computational Neuroscience 14:3354. [rSMS]Google Scholar
Oranje, B., Gispen-de Weid, C. C., Verbaten, M. N. & Kahn, R. S. (2002) Modulating sensory gating in healthy volunteers: The effects of ketamine and haloperidol. Biological Psychiatry 52:887–95. [MAK, rSMS]Google Scholar
O’Reilly, R. C. & Rudy, J. W. (2001) Conjunctive representations in learning and memory: Principles of cortical and hippocampal function. Psychological Review 108:311–45. [DRH]Google Scholar
Osborn, L. M., Silverstein, S. M., Matteson, S., West, L., Kamin, D. & Schwarzkopf, S. B. (1994) Visual organization, memory, and thought disorder in schizoprenia. Biological Psychiatry 35:633. [aWAP]Google Scholar
Owen, A. M. (2000) The role of the lateral frontal cortex in mnemonic processing: The contribution of functional neuroimaging. Experimental Brain Research 133:3343. [aWAP]Google Scholar
Pack, C. C., Berezovskii, V. K. & Born, R. T. (2001) Dynamic properties of neurons in cortical area MT in alert and anaesthetized macaque monkeys. Nature 414:905908. [PRR]Google Scholar
Pani, J. R., Mervis, C. B. & Robinson B. F. (1999). Global spatial organization by individuals with Williams Syndrome. Psychological Science 10:453–58. [aWAP]Google Scholar
Park, S. & Holzman, P. S. (1992) Schizophrenics show spatial working memory deficits. Archives of General Psychiatry 49:975–82. [aWAP]Google Scholar
Park, S., Jefferis, V., Knurek, E., Pitiyanuvath, N. & Brown, N. (2000) Facilitation of prefrontal function in schizophrenia by increasing socioaffective input. Biological Psychiatry 47(8):S67–68. [SP]Google Scholar
Parnas, J., Jansson, L., Sass, L. A. & Handest, P. (1998) Self-experience in the prodromal phases of schizophrenia: A pilot study of first admissions. Neurology, Psychiatry, and Brain Research 6:97106. [LAS]Google Scholar
Parnas, J., Vianin, P., Saebye, D., Jansson, L., Volmer-Larsen, A. & Bovet, P. (2001) Visual binding abilities in the initial and advanced stages of schizophrenia. Acta Psychiatrica Scandinavica 103:171–80. [rSMS]Google Scholar
Passingham, R. E., Stephan, K. E. & Kotter R. (2002) The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience 3:606–16. [SLB]Google Scholar
Patterson, T. (1987) Studies toward the subcortical pathogenesis of schizophrenia. Schizophrenia Bulletin 13:555–76. [aWAP]Google Scholar
Patterson, T., Spohn, H. E., Bogia. D. P. & Hayes, K. (1986) Thought disorder in schizophrenia: Cognitive and neuroscience approaches. Schizophrenia Bulletin 12:460–72. [aWAP]Google Scholar
Paul, G. L. & Lentz, R. J. (1977) Psychosocial treatment of chronic mental patients: Milieu versus social learning programs. Harvard University Press. [rSMS]Google Scholar
Pekkone, E., Hirvonen, J., Ahveninen, J., Kahkonen, S., Kaakola, S., Huttunen, J. & Jaaskelainen, I. P. (2002) Memory-based comparison process not attenuated by haloperidol: A combined MEG and EEG study. NeuroReport 13:177–81. [MEP]Google Scholar
Perlstein, W. M., Carter, C. S., Barch, D. M. & Baird, J. W. (1998) The Stroop task and attention deficits in schizophrenia. Neuropsychology 12:414–25. [aWAP]Google Scholar
Perlstein, W. M., Carter, C. S., Noll, D. C. & Cohen, J. D. (2001) Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. American Journal of Psychiatry 158:1105–13. [aWAP]Google Scholar
Perry, W., Geyer, M. A. & Braff, D. L. (1999) Sensorimotor gating and thought disturbance measured in close temporal proximity in schizophrenic patients. Archives of General Psychiatry 56:277–81. [aWAP]Google Scholar
Petrides, M. (1994) Frontal lobes and behavior. Current Opinion in Neurobiology 4:207–11. [aWAP]Google Scholar
Phillips, W. A. (1974) On the distinction between sensory storage and short-term visual memory. Perception and Psychophysics 16:283–90. [aWAP]Google Scholar
Phillips, W. A. (2001) Contextual modulation and dynamic grouping in perception: Response. Trends in Cognitive Sciences 5:9596. [rSMS]Google Scholar
Phillips, W. A. & Christie, D. F. M. (1977) Interference with visualization. Quarterly Journal of Experimental Psychology 29:637–50. [aWAP]Google Scholar
Phillips, W. A. & Craven, B. J. (2000) Interactions between coincident and orthogonal cues to texture boundaries. Perception and Psychophysics 62:1019–38. [rSMS]Google Scholar
Phillips, W. A., Kay, J. & Smyth, D. (1995) The discovery of structure by multistream networks of local processors with contextual guidance. Network 6:225– 46. [AWM, aWAP, rSMS]Google Scholar
Phillips, W. A. & Pflieger, M. E. (2000) Interactions that coordinate cortical activity. In: Integrated human brain science: Theory, method, application (music), ed. T. Nakada. Elsevier. [MEP, aWAP]Google Scholar
Phillips, W. A. & Singer, W. (1997a) In search of common foundations for cortical computation. Behavioral and Brain Sciences 20:657722. [DRH, MEP, aWAP, PPR, rSMS, MAT]Google Scholar
Phillips, W. A. & Singer, W. (1997b) Progress towards an understanding of cortical computation. Behavioral and Brain Sciences 20:703–22. [aWAP, rSMS]Google Scholar
Pickering, A. D. (1993) Schizophrenia: In context or in the garbage can? Behavioral and Brain Sciences 16:205206. [aWAP]Google Scholar
Picton, T. W., Alain, C., Otten, L., Ritter, W. & Achim, A. (2000) Mismatch negativity: Different water in the same river. Audiology and Neurootology 5:111–39. [MAK]Google Scholar
Pigache, R. M. (1999) Vigilance in schizophrenia and its disruption by impaired preattentive selection: A dysintegration hypothesis. Cognitive Neuropsychiatry 4:119–44. [aWAP]Google Scholar
Pilling, S., Bebbington, P., Kuipers, E., Garety, P., Geddes, J., Orbach, G. & Morgan, C. (2002) Psychological treatments in schizophrenia: I. Meta-analysis of family intervention and cognitive behaviour therapy. Psychological Medicine 32:763–82. [rSMS]Google Scholar
Place, E. J. S. & Gilmore, G. C. (1980) Perceptual organization in schizophrenia. Journal of Abnormal Psychology 89:409–18. [YC, AWM, aWAP, rSMS]Google Scholar
Polat, U., Mizobe, K., Pettet, M. W., Kasamatsu, T. & Norcia, A. M. (1998) Collinear stimuli regulate visual responses depending on cell's contrast threshold. Nature 391:580–84. [aWAP]Google Scholar
Polat, U. & Norcia, A. M. (1996) Neurophysiological evidence for contrast dependent long range facilitation and suppression in the human visual cortex. Vision Research 36:2099–109. [MEP]Google Scholar
Polat, U. & Sagi D. (1993) Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments. Vision Research 33:993–99. [aWAP]Google Scholar
Polat, U., Sagi, D. & Norcia, A. M. (1997) Abnormal long-range spatial interactions in amblyopia. Vision Research 37:737–44. [MEP, aWAP]Google Scholar
Posner, M. I. & Raichle, M. E. (1994) Images of mind. Freeman. [aWAP]Google Scholar
Povinelli, D. J. & Preuss, T. M. (1995) Theory of mind: Evolutionary history of a cognitive specialization. Trends in Neurosciences. Special Issue: Evolution and Development of the Cerebral Cortex 18(9):418–24. [DL]Google Scholar
Premack, D. & Woodruff, G. (1978) Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences 4:515–26. [DL]Google Scholar
Prentky, R. A. (1979) Creativity and psychopathology. A neurocognitive perspective. In: Progress in experimental personality research, vol. 9, ed. B. A. Maher. Academic Press. [SP]Google Scholar
Pulvermuller, F. (1999) Words in the brain's language. Behavioral and Brain Sciences 22:253336. [RC]Google Scholar
Quinlan, E. M., Philpot, B. D., Huganir, R. L. & Bear, M. F. (1999) Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nature Neuroscience 2:352–57. [GSS]Google Scholar
Rabinowicz, E. F., Knight, R. A., Bruder, G., Owen, D. R. & Gorman, J. (1995) Short-term visual memory deficits in schizophrenia: Medication effects and electrophysiological correlates. Poster session presented at the meeting of the Society for Research in Psychopathology, October, 1995, Iowa City, IA. [aWAP]Google Scholar
Rabinowicz, E. F., Opler, L. A., Owen, D. R. & Knight, R. A. (1996) The dot enumeration perceptual organization task (DEPOT): Evidence for a shortterm visual memory deficit in schizophrenia. Journal of Abnormal Psychology 105:336–48. [aWAP]Google Scholar
Rabinowicz, E. F., Silipo, G., Goldman, R. & Javitt, D. C. (2000) Auditory sensory dysfunction in schizophrenia: Imprecision or distractibility? Archives of General Psychiatry 57:1149–55. [DCJ, aWAP]Google Scholar
Raffone, A., Murre, J. M. J. & Wolters, G. (in preparation) Cortical mechanisms for maintenance and control in visual working memory. [AR]Google Scholar
Raffone, A. & Wolters, G. (2001) A cortical mechanism for binding in visual working memory. Journal of Cognitive Neuroscience 13:766–85. [aWAP, AR]Google Scholar
Raffone, A., Wolters, G. & Murre, J. M. J. (2001) A neurophysiological account of working memory limited capacity: Within-chunk integration and betweenitem segregation. Behavioral and Brain Sciences 24:139–41. [AR]Google Scholar
Raizada, R. D. S. & Grossberg, S. (2001) Context-sensitive binding by the laminar circuits of V1 and V2: A unified model of perceptual grouping, attention, and orientation contrast. Visual Cognition 8:431–46. [rSMS]Google Scholar
Raizada, R. D. S. & Grossberg, S. (2003) Towards a theory of the laminar architecture of cerebral cortex: Computational clues from the visual system. Cerebral Cortex 13:100–13. [SG]Google Scholar
Read, J., Perry, B. D., Moskowitz, A. & Connolly, J. (2001). The contribution of early traumatic events to schizophrenia in some patients: A traumagenic neurodevelopmental model. Psychiatry 64:319–45. [rSMS]Google Scholar
Reeke, G. N. (2001) Modeling criteria: Not just for robots. Behavioral and Brain Sciences 24:1074–75. [rSMS]Google Scholar
Rennie, C. J., Wright, J. J. & Robinson, P. A. (2000) Mechanisms of cortical electrical activity amd emergence of gamma rhythm. Journal of Theoretical Biology 205:1735. [LMW]Google Scholar
Reuter, L. E., Fornal, C. A. & Jacobs, B. L. (1997) A critical review of 5-HT brain microdialysis and behavior. Reviews in the Neurosciences 8:117–37. [RDO]Google Scholar
Reynolds, J. H. & Desimone, R. (2003) Interacting roles of attention and visual salience in V4. Neuron 37:853–63. [rSMS]Google Scholar
Rief, W. (1991) Visual perceptual organization in schizophrenic patients. British Journal of Clinical Psychology 30 (Pt 4):359–66. [YC]Google Scholar
Riley, E. M., McGovern, D., Mockler, D. C, Doku, V. C. K., OiCeallaigh, S. & Fannon, D. (2000) Neuropsychological functioning in first-episode psychosis: Evidence of specific deficits. Schizophrenia Research 43:4755. [aWAP]Google Scholar
Riscalla, L. (1980) Blindness and schizophrenia. Medical Hypotheses 6:1327–28. [GSS]Google Scholar
Robbins, T. W. (1990) The case of frontostriatal dysfunction in schizophrenia. Schizophrenia Bulletin 16:391402. [aWAP]Google Scholar
Robbins, T. W. (1996) Dissociating executive functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London B 351:1463–71. [aWAP]Google Scholar
Rochester, S. R. (1978) Are language disorders in acute schizophrenics actually information processing problems? Journal of Psychiatric Research 14:275–83. [aWAP]Google Scholar
Roelfsema, P. R., Engel, A. K., König, P. & Singer, W. (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385:157–61. [aWAP]Google Scholar
Roelfsema, P. R., König, P., Engel, A. K., Sireteanu, R. & Singer, W. (1994) Reduced synchronization in the visual cortex of cats with strabismic amblyopia. European Journal of Neuroscience 6:1645–55. [aWAP]Google Scholar
Roelfsema, P. R., Lamme, V. A. F. & Spekreijse, H. (2000) The implementation of visual routines. Vision Research 40:1385–411. [PRR]Google Scholar
Roelfsema, P. R., Lamme, V. A. F., Spekreijse, H. & Bosch, H. (2002) Figureground segregation in a recurrent network architecture. Journal of Cognitive Neuroscience 14:525–37. [PRR]Google Scholar
Rosenbaum, G., Cohen, B. D., Luby, E. D., Gottlieb, J. S. & Yelen, D. (1959) Comparison of sernyl with other drugs. Archives of General Psychiatry 1:651– 56. [aWAP]Google Scholar
Rourke, B. P. (1982) Central processing deficiencies in children: Toward a developmental neuropsychological model. Journal of Clinical Neuropsychology 4:118. [aWAP]Google Scholar
Roy, S. A., Dear S. P. & Alloway K. D. (2001) Long-range cortical synchronization without concomitant oscillations in the somatosensory system of anesthetized cats. Journal of Neuroscience 21(5):1795–808. [MAT]Google Scholar
Rudy, J. W. & Sutherland, R. J. (1989) The hippocampal formation is necessary for rats to learn and remember configural discriminations. Behavioral Brain Research 34:97109. [JPG]Google Scholar
Rugg, M. D., Furda, J. & Lorist, M. (1988) The effects of the task on the modulation of event-related potentials by word repetition. Psychophysiology 25:5563. [DT]Google Scholar
Sah, P. & Nicoll, R. A. (1991) Mechanisms underlying potentiation of synaptic transmission in rat anterior cingulate cortex in vitro. The Journal of Physiology 433:615–30. [GSS]Google Scholar
Salin, P. & Bullier, J. (1995) Corticocortical connections in the visual system: Structure and function. Physiological Reviews 75:107–54. [aWAP]Google Scholar
Salisbury, D. F., Shenton, M. E., Griggs, C. B., Bonner-Jackson, A. & McCarley, R. W. (2002) Mismatch negativity in chronic schizophrenia and first-episode schizophrenia. Archives of General Psychiatry 59:686–94. [rSMS]Google Scholar
Salt, T. E. & Eaton, S. A. (1996) Functions of ionotropic and metabotropic glutamate receptors in sensory transmission in the mammalian thalamus. Progress in Neurobiology 48:5572. [aWAP]Google Scholar
Sanders, G. S., Gallup, G. G., Heinsen, H., Hof, P. R. & Schmitz, C. (2002) Cognitive deficits, schizophrenia, and the anterior cingulate cortex. Trends in Cognitive Sciences 6:190–92. [GSS]Google Scholar
Sandler, A. & Hobson, R. (2001) On engaging with people in early childhood: The case of congenital blindness. Clinical Child Psychology and Psychiatry 6:205– 22. [GSS]Google Scholar
Sanislow, C. A. & Carson, R. C. (2001) Schizophrenia: A critical examination. In: Comprehenive handbook of psychopathology, ed. P. B. Sutker & H. E. Adams. Kluwer Academic/Plenum. [JPG]Google Scholar
Sarfati, Y. & Hardy-Bayle, M. (1999) How do people with schizophrenia explain the behaviour of others? A study of theory of mind and its relationship to thought and speech disorganization in schizophrenia. Psychological Medicine 29:613–20. [DL]Google Scholar
Sarfati, Y., Hardy-Bayle, M. C., Besche, C. & Wildlöcher, D. (1997) Attribution of intentions to others in people with schizophrenia: A non-verbal exploration with comic strips. Schizophrenia Research 25:199209. [DL]Google Scholar
Sarfati, Y., Hardy-Bayle, M. C., Nadel, J., Chevalier, J.-F. & Widlöcher, D. (1997) Attribution of mental states to others by schizophrenic patients. Cognitive Neuropsychiatry 2:117. [rSMS]Google Scholar
Sass, L. (1992) Madness and modernism: Insanity in the light of modern art, literature, and thought. Basic Books. [rSMS]Google Scholar
Sass, L. (2000) Schizophrenia, self-experience, and the so-called “negative symptoms” (Reflections on hyperreflexivity). In: Exploring the self: Philosophical and psychopathological perspectives on self-experience, ed. D. Zahavi. John Benjamins. [LAS]Google Scholar
Sass, L. (in press). Schizophrenia: A disturbance of the thematic field. In: Gurwitsch's relevance for cognitive science, ed. L. Embree. Kluwer. [LAS]Google Scholar
Sass, L. & Parnas, J. (in press a) Explaining schizophrenia: The relevance of phenomenology. In: The philosophical understanding of schizophrenia, ed. M. Chung, W. Fulford & G. Graham. Oxford University Press. [LAS](in press b). Schizophrenia, consciousness, and the self. Schizophrenia Bulletin. [LAS]Google Scholar
Schenkel, L. S., Meredith, C., Purcell, L., Ritchie, A. J. & Spaulding, W. D. (2001) Cognitive correlates of perceptual context processing in schizophrenia. Poster session presented at the meeting of the Society for Research in Psychopathology, Madison, WI, September 2001. [rSMS]Google Scholar
Schenkel, L. S. & Spaulding, W. D. (2002) Social inference in schizophrenia: Relationships with childhood functioning and later cognitive impairment. Poster session presented at the meeting of the Society for Research in Psychopathology, San Francisco, CA, September 2002. [rSMS]Google Scholar
Schmidt, K. E., Löwel, S., Goebel, R. & Singer, W. (1997) The perceptual grouping criterion of colinearity is reflected by anisotropies of connections in primary visual cortex. European Journal of Neuroscience 9:1083–89. [aWAP]Google Scholar
Schonauer, K., Achtergarde, D., Suslow, T. & Michael, N. (1999) Comorbidity of schizophrenia and prelingual deafness: Its impact on social network structures. Social Psychiatry and Psychiatric Epidemiology 34:526–32. [GSS]Google Scholar
Schroeder, C. E. (1995) Defining the neural bases of visual selective attention: Conceptual and empirical issues. International Journal of Neuroscience 80:6578. [DCJ]Google Scholar
Selemon, L. D. & Goldman-Rakic, P. S. (1999) The reduced neuropil hypothesis: A circuit based model of schizophrenia. Biological Psychiatry 45:1725. [REH]Google Scholar
Selemon, L. D., Rajkowski, G. & Goldman-Rakic, P. S. (1995) Abnormally high neuronal density in schizophrenic cortex: A morphometric analysis of prefrontal area 9 and occipital cortex area 17. Archives of General Psychiatry 52:805–18. [REH]Google Scholar
Selverston, A. I. (2001) Biomimetic robots and biology. Behavioral and Brain Sciences 24(6):1077. [rSMS]Google Scholar
Serper, M., Alpert, M., Richardson, N. A. & Dickson, S. (1995) Clinical effects of recent cocaine use in patients with acute schizophrenia. American Journal of Psychiatry 152:1464–69. [MA]Google Scholar
Serper, M., Alpert, M. & Trujillo, M. (1996) Recent cocaine use decreases negative signs in acute schizophrenia. Biological Psychiatry 39:816–18. [MA]Google Scholar
Servan-Schreiber, D., Cohen, J. D. & Steingard, S. (1996) Schizophrenic deficits in the processing of context: A test of a theoretical model. Archives of General Psychiatry 53:1105–12. [DMB, AWM, aWAP, rSMS]Google Scholar
Shakow, D. (1962) Segmental set: A theory of formal psychological deficit in schizophrenia. Archives of General Psychiatry 6:117. [aWAP]Google Scholar
Shallice, T. (1988) From neuropsychology to mental structure. Cambridge University Press. [DRH, aWAP]Google Scholar
Shallice, T. & Burgess, P. (1996) The domain of supervisory processes and temporal organization of behaviour. Philosophical Transactions of the Royal Society of London B 351:1405–11. [aWAP]Google Scholar
Shallice, T., Fletcher, P., Frith, C. D. Grasby, P. M., Frackowiak, R. S. J. & Dolan, R. J. (1994) Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature 368:633–35. [aWAP]Google Scholar
Sheer, D. E. (1984) Focused arousal, 40-Hz EEG, and dysfunction. In: Selfregulation of the brain and behavior, ed. T. Elbert, B. Rockstroh, W. Lutzenberger & N. Birbaumer. Springer-Verlag. [LMW]Google Scholar
Shim, S. S. (2002) Is NMDA receptor hypofunction in schizophrenia associated with a primary hyperglutamatergic state? Archives of General Psychiatry 59:466–67. [RDO]Google Scholar
Siegel, S. J.,Brose, N.,Jansenn, W. G., Gasic, G. P., Jahn, R. & Heinemann, S. F. (1994) Regional, cellular,and ultrastructural distribution of N-methyl-Daspartate receptor subunit 1 in monkey hippocampus. Proceedings of the National Academy of Science USA 91:564–68. [aWAP]Google Scholar
Silverstein, S. M. (1988) A study of religious conversion in North America. Genetic, Social, and General Psychology Monographs 114:261305. [aWAP]Google Scholar
Silverstein, S. M., Baksi, S., Chapman, R. M. & Nowlis, G. (1998a) Perceptual organization of configural and nonconfigural visual patterns in schizophrenia: Effects of repeated exposure. Cognitive Neuropsychiatry 3:209–23. [aWAP, rSMS]Google Scholar
Silverstein, S. M., Hatashita-Wong, M. & Bloch, A. (2002) A second chance for people with “treatment-refractory” psychosis. Psychiatric Services 53:480. [rSMS]Google Scholar
Silverstein, S. M., Knight, R. A., Schwarzkopf, S. B., West, L. L., Osborn, L. M. & Kamin, D. (1996a) Stimulus configuration and context effects in perceptual organization in schizophrenia. Journal of Abnormal Psychology 105:410–20. [aWAP, rSMS]Google Scholar
Silverstein, S. M., Kovács, I., Corry, R. & Valone, C. (2000) Perceptual organization, the disorganization syndrome, and context processing in schizophrenia. Schizophrenia Research 43:1120. [YC, aWAP, rSMS]Google Scholar
Silverstein, S. M., Light, G. A. & Palumbo, D. R. (1998b) The sustained attention test: A measure of cognitive dysfunction. Computers in Human Behavior 14:463–75. [aWAP, rSMS]Google Scholar
Silverstein, S. M., Matteson, S. & Knight, R. A. (1996b) Reduced top-down influence in auditory perceptual organization in schizophrenia. Journal of Abnormal Psychology 105:663–67. [aWAP, rSMS]Google Scholar
Silverstein, S. M., Menditto, A. A. & Stuve, P. (2001) Shaping attention span: An operant conditioning procedure to improve neurocognition and functioning in schizophrenia. Schizophrenia Bulletin 27:247–57. [rSMS]Google Scholar
Silverstein, S. M., Osborn, L. M. & Palumbo, D. R. (1998c) Rey-Osterreith Complex Figure Test performance in acute, chronic, and outpatient schizophrenia patients. Journal of Clinical Psychology 54:110. [aWAP]Google Scholar
Silverstein, S. M., Osborn, L. M., West, L. L. & Knight, R. A. (1998d) Perceptual organization in schizophrenia: Evidence for intact processing of configural patterns. Cognitive Neuropsychiatry 3:225–35. [aWAP]Google Scholar
Silverstein, S. M. & Palumbo, D. R. (1995). Nonverbal perceptual organization output disability and schizophrenia spectrum symptomatology. Psychiatry 58:6681. [aWAP]Google Scholar
Silverstein, S. M. & Schenkel, L. S. (1997) Schizophrenia as a model of contextdeficient cortical computation. Behavioral and Brain Sciences 20:696–97. [aWAP]Google Scholar
Silverstein, S. M., Schenkel, L. S. & Valone, C. (1998e) Cognitive deficits and psychiatric rehabilitation outcomes in schizophrenia. Psychiatric Quarterly 69:169–91. [aWAP]Google Scholar
Singer, W. (1994) Coherence as an organizing principle of cortical functions. International Review of Neurobiology 37:153–83. [aWAP]Google Scholar
Singer, W. (1995) Development and plasticity of cortical processing architectures. Science 270:758–64. [aWAP]Google Scholar
Singer, W. (1999) Neuronal synchrony, a versatile code for the definition of relations? Neuron 24:4964. [aWAP]Google Scholar
Singer, W. & Gray, C. M. (1995) Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience 18:555–86. [aWAP, PPR]Google Scholar
Sitnikova, T., Salisbury, D. F., Kuperberg, G. & Holcomb, P. I. (2002) Electrophysiological insights into language processing in schizophrenia. Psychophysiology 39:851–60. [DT]Google Scholar
Smith, R. E., Haroutunian, V., David, L. & Meador-Woodruff, J. H. (2001) Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. American Journal of Psychiatry 158:1393–99. [rSMS]Google Scholar
Solovay, M. R., Shenton, M. E., Gasparetti, C., Coleman, M., Kestnbaum, E., Carpenter, J. T. & Holzman, P. S. (1986) Scoring manual for the Thought Disorder Index. Schizophrenia Bulletin 12:483–96. [aWAP]Google Scholar
Solovay, M. R., Shenton, M. E. & Holzman, P. S. (1987) Comparative studies of thought disorders. I. Mania and schizophrenia. Archives of General Psychiatry 44:1320. [rSMS]Google Scholar
Spaulding, W. D., Reed, D., Sullivan, M., Richardson, C. & Weiler, M. (1999) Effects of cognitive treatment in psychiatric rehabilitation. Schizophrenia Bulletin 25:657–76. [rSMS]Google Scholar
Spitzer, M. (1997) A cognitive neuroscience view of schizophrenic thought disorder. Schizophrenia Bulletin 23:2950. [DRH]Google Scholar
Spitzer, M., Beuckers, J., Beyer, S., Maier, S. & Hermle, L. (1994) Contextual insensitivity in thought-disordered schizophrenic patients: Evidence from pauses in spontaneous speech. Language and Speech 37:171–85. [aWAP]Google Scholar
Spitzer, M., Braun, U., Hermle, L. & Maier, S. (1993) Associative semantic network dysfunction in thought-disordered schizophrenia patients: Direct evidence from indirect semantic priming. Biological Psychiatry 34:864–77. [aWAP]Google Scholar
Sporns, O., Gally, J. A., Reeke, G. N. & Edelman, G. M. (1989) Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory activity. Proceedings of the National Academy of Science USA 86:7265–69. [aWAP, rSMS]Google Scholar
Stoet, G. & Hommel, B. (1999) Action planning and the temporal binding of response codes. Journal of Experimental Psychology: Human Perception and Performance 25:1625–40. [aWAP]Google Scholar
Stone, J. V. & Kotter, R. (2002) Making connections about brain connectivity. Trends in Cognitive Sciences 6:327–28. [SLB]Google Scholar
Strandburg, R. J., Marsh, J. T., Brown, W. S., Asarnow, R. F., Guthrie, D., Harper, R., Ylee, C. M. & Nuechterlein, K. H. (1997) Event related potential correlates of linguistic information processing in schizophrenics. Biological Psychiatry 42:596608. [DRH]Google Scholar
Stratta, P., Daneluzzo, E., Bustini, M., Casacchia, M. & Rossi, A. (1998) Schizophrenic deficits in the processing of context. Archives of General Psychiatry 55:186–87. [DMB]Google Scholar
Straube, E. R. & Oades, R. D. (1992) Schizophrenia: Empirical research and findings. Academic Press. [RDO]Google Scholar
Strelets, V., Faber, P. L., Golicova, J., Novototsky-Vlasov, V., Koenig, T., Gianotti, L. R. R., Gruzelier, J. H. & Lehman, D. (under review) Chronic schizophrenics with positive symptomatology have shortened EEG microstate durations. Clinical Neurophysiology. [VS]Google Scholar
Strelets, V. B., Novototsky-Vlasov, V. Y. & Golikova, J. V. (2002) Cortical connectivity in high frequency beta-rhythm in schizophrenics with positive and negative symptoms. International Journal of Psychophysiology 44:101–15. [VS]Google Scholar
Sullivan, H. S. (1956) The schizophrenic dynamism: A tripartite view. In: H. S. Sullivan, Clinical studies in psychiatry. W. W. Norton. [rSMS]Google Scholar
Sutherland, R. J. & Rudy, J. W. (1989) Configural association theory: The role of the hippocampal formation in learning, memory, and amnesia. Psychobiology 17:129–44. [JPG]Google Scholar
Svensson, T. H. (2000) Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugs. Brain Research – Brain Research Reviews 31:320–29. [MAT]Google Scholar
Tagamets, M. A. & Horwitz, B. (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed matchto- sample human brain imaging study. Cerebral Cortex 8:310–20. [MAT]Google Scholar
Talamini, L. M., Meeter, M., Murre, J. M. J., Elvevåg, B. & Goldberg, T. E. (in preparation) Integration of parallel input streams in parahippocampal model circuits; implications for schizophrenia. [LMT]Google Scholar
Tallent, K. A. & Gooding, D. C. (2000) Working Memory and Wisconsin Card Sorting Test performance in schizotypic individuals: A replication and extension. Psychiatry Research 89:161–70. [DCG]Google Scholar
Tallon-Baudry, C., & Bertrand, O. (1999) Oscillatory gamma activity in humans and its role in object representation. Trends in the Cognitive Sciences 3:151– 62. [aWAP]Google Scholar
Tamminga, C. A. (1998) Schizophrenia and glutamatergic transmission. Critical Review of Neurobiology 12:2136. [aWAP, MAT]Google Scholar
Tamminga, C. A., Holcomb, H. H., Gao, X. M. & Lahti, A. C. (1995) Glutamate pharmacology and the treatment of schizophrenia: Current status and future directions. International Clinical Psychopharmacology 10 (Suppl. 3):29–37. [aWAP]Google Scholar
Tarnowski, K. J., Prinz, R. J. & Nay, S. M. (1986). Comparative analysis of attentional deficits in hyperactive and learning-disabled children. Journal of Abnormal Psychology 95:341–45. [aWAP]Google Scholar
Tellegen, A. & Atkinson, G. (1974) Openness to absorbing and self-altering experiences (‘absorption’), a trait related to hypnotic susceptibility. Journal of Abnormal Psychology 83:268277. [aWAP]Google Scholar
Tendolkar, I., Ruhrman, S., Brockhaus, A., Pukrop, R. & Klosterkotter, J. (2002) Remembering or knowing: Electrophysiological evidence for an episodic memory deficit in schizophrenia. Psychological Medicine 32:1261–71. [rSMS]Google Scholar
Thagard, P. (2000) Coherence in thought and action. MIT Press. [SLB]Google Scholar
Tien, A. Y. (1999) Deficits of information management associated with schizophrenia: Awareness and associated integrative cognitive functions. Archives of General Psychiatry 56:637–38. [rSMS]Google Scholar
Tiitinen, H., Sinkkonen, J., Reinikainen, K., Alho, K., Lavikainen, J. & Näätänen R. (1993) Selective attention enhances the auditory 40-Hz transient response in humans. Nature 364:5960. [aWAP]Google Scholar
Titone, D., Levy, D. & Holzman, P. S. (2000) Contextual insensitivity in schizophrenic language processing: Evidence from lexical ambiguity. Journal of Abnormal Psychology 109:761–67. [DT]Google Scholar
Titone, D., Holzman, P. S. & Levy, D. L. (2002) Idiom processing in schizophrenia: Literal implausibility saves the day for idiom priming. Journal of Abnormal Psychology 111:313–20. [DT]Google Scholar
Tononi, G. & Edelman, G. M. (2000) Schizophrenia and the mechanisms of conscious integration. Brain Research Reviews 31:391400. [aWAP]Google Scholar
Tononi, G., McIntosh, A. R., Russell, D. P. & Edelman, G. M. (1998a) Functional clustering: Identifying strongly interactive brain regions in neuroimaging data. Neuroimage 7:133–49. [aWAP]Google Scholar
Tononi, G., Sporns, O. & Edelman, G. M. (1994) A measure for brain complexity: Relating functional segregation and integration in the nervous system. Proceedings of the National Academy of Science USA 91:5033–37. [aWAP]Google Scholar
Tononi, G., Sporns, O. & Edelman, G. M. (1996) A measure for selective matching of signals by the brain. Proceedings of the National Academy of Science USA 93:3422–27. [aWAP]Google Scholar
Tononi, G., Sporns, O. & Edelman, G. M. (1998b) Complexity and coherency: Integrating information in the brain. Trends in the Cognitive Sciences 2:474–84. [aWAP]Google Scholar
Tost, H., Wolf, I. G., Ruf, M., Henn, F. A. & Braus, D. F. (2001) Disturbed visual information processing in neuroleptic-naive schizophrenia patients: A fMRI study. Schizophrenia Research 49:187. [aWAP]Google Scholar
Treisman, A. (1999) Solutions to the binding problem: progress through controversy and convergence. Neuron 24:105–10. [aWAP]Google Scholar
Treue, S. & Tujillo, J. C. M. (1999) Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399:575–79. [aWAP]Google Scholar
Tsai, G., Passani, L. A., Slusher, B. S., Carter, R., Baer, L., Kleinman, J. E. & Coyle, J. T. (1995) Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Archives of General Psychiatry 52:829–36. [rSMS]Google Scholar
Turvey, M. T. (1977) Preliminaries to a theory of action with reference to vision. In: Perceiving, acting and knowing, ed. R. Shaw & J. Bransford. Erlbaum. [aWAP]Google Scholar
Uhlhaas, P. (2003) Gestalt perception in schizophrenia spectrum disorders. Doctoral dissertation, University of Stirling, UK. [rSMS]Google Scholar
Uhlhaas, P. J., Silverstein, S. M., Phillips, W. A. & Lovell, P. G. (submitted) Evidence for impaired visual context processing in schizotypy with thought disorder. [rSMS]Google Scholar
Umbricht, D., Schmid, L., Koller, R., Vollenweider, F. X., Hell, D. & Javitt, D. C. (2000) Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers. Implications for models of cognitive deficits in schizophrenia. Archives of General Psychiatry 57:1139–47. [DCJ, RDO, aWAP, GSS, rSMS]Google Scholar
Umbricht, D., Vollenweider, F. X., Schmid, L., Grubel, C., Skrabo, A., Huber, T. & Koller, R. (2003) Effects of the 5-HT(2A) agonist psilocybin on mismatch negativity generation and AX-continuous performance task: Implications for the neuropharmacology of cognitive deficits in schizophrenia. Neuropsychopharmacology 28:170181. [rSMS]Google Scholar
Van Berckel, B. N., Hijman, R., van der Linden, J. A., Westenberg, H. G., van Ree, J. M. & Kahn, R. S. (1996) Efficacy and tolerance of D-cycloserine in drugfree schizophrenic patients. Biological Psychiatry 40:1298–300. [MAT]Google Scholar
Van Berckel, B. N., Oranje, B., van Ree, J. M., Verbaten, M. N. & Kahn, R. S. (1998) The effects of low dose ketamine on sensory gating, neuroendocrine secretion and behavior in healthy human subjects. Psychopharmacology (Berlin) 137:271–81. [MAK, MEP, rSMS]Google Scholar
Van der Velde, F. & de Kamps, M. (2001) From knowing what to knowing where: Modeling object-based attention with feedback disinhibition of activation. Journal of Cognitive Neuroscience 13:479–91. [PRR]Google Scholar
Van Hoof, J. J. M. (2002) The abnormal development of drive and guidance mechanisms in the brain: The pathogenesis of schizophrenia, Acta Neuropsychiatrica 14:134–46. [HPB]Google Scholar
Varela, F. (1995) Resonant cell assemblies: A new approach to cognitive functions and neuronal synchrony. Biological Research 28:8195. [rSMS]Google Scholar
Varela, F. J. (1996) Neurophenomenology; a methodological remedy for the hard problem. Journal of Consciousness Studies 3:330–49. [LAS]Google Scholar
Varela, F., Lachaux, J. P., Rodriguez, E. & Martinerie, J. (2001) The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience 2:229–39. [SLB]Google Scholar
Venables, P. (1964) Input dysfunction in schizophrenia. Progress in Experimental Personality Research 1:147. [MAK]Google Scholar
Vizuete, M. L., Venero, J. L., Vargas, C., Revuelta, M., Machado, A. & Cano, J. (2001) Potential role of endogenous brain-derived neurotrophic factor in longterm neuronal reorganization of the superior colliculus after bilateral visual deprivation. Neurobiology of Disease 8:866–80. [GSS]Google Scholar
Vogt, B. A. & Miller, M. W. (1983) Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices. The Journal of Comparative Neurology 216:192210. [GSS]Google Scholar
Vollenweider, F. X., Leenders, K. L., Oye, I., Hell, D. & Angst, J. (1997a) Differential psychopathology and patterns of cerebral glucose utilization produced by (S)-ketamine and (R)-ketamine in healthy volunteers using positron emision tomography (Pet). European Neuropsychopharmacology 7:2538. [aWAP]Google Scholar
Vollenweider, F. X., Leenders, K. L., Scharfetter, C., Antonini, A., Macguire, P., Missimer, J. & Angst, J. (1997b) Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (Pet) and (F-18) fluorodexyglucose (Fdg). European Neuropsychopharmacology 7:924. [aWAP]Google Scholar
Von der Malsburg, C. & Schneider, W. (1986) A neural cocktail-party processor. Biological Cybernetics 54:2940. [aWAP]Google Scholar
Von Stein, A., Chiang, C. & Konig, P. (2000) Top-down processing mediated by interareal synchronization. Proceedings of the National Academy of Sciences USA 97:14748–53. [rSMS]Google Scholar
Waberski, T. D., Kreitschmann-Andermahr, I., Kawohl, W., Darvas, F., Ryang, Y., Gobbele, R. & Buchner, H. (2001) Spatio-temporal source imaging reveals subcomponents of the human auditory mismatch negativity in the cingulum and right inferior temporal gyrus. Neuroscience Letters 308:107–10. [GSS]Google Scholar
Walker, E. F. & DiForio, D. (l996) Schizophrenia: A neural diathesis-stress model. Psychological Review 104:667–85. [DCG]Google Scholar
Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F. S., Santos, M. D., Thomas, C. R. & Miller, B. L. (1999) A system for relational reasoning in human prefrontal cortex. Psychological Science 10(2):119–25. [DL]Google Scholar
Wang, X. J. (1999) Synaptic basis of cortical persisent actyivity; the importance of NMDA receptors to working memory. Journal of Neuroscience 19:9587–603. [aWAP]Google Scholar
Warren, D. (1994) Blindness and children: An individual differences approach. Cambridge University Press. [GSS]Google Scholar
Watanabe, M., Inoue, Y., Sakimura, K. & Mishina, M. (1992) Developmental changes in distribution of NMDA receptor channel subunit mRNAs. NeuroReport 3:1138–40. [aWAP]Google Scholar
Watt, R. J. & Phillips, W. A. (2000) The function of dynamic grouping in vision. Trends in Cognitive Sciences 4:447454. [aWAP, rSMS]Google Scholar
Weiler, M. A., Thaker, G. K., Lahti, A. C. & Tamminga, C. A. (2000). Ketamine effects on eye movements. Neuropsychopharmacology 23:645–53. [aWAP]Google Scholar
Whittington, M. A., Stanford, I. M., Colling, S. B., Jefferys, J. G. & Traub, R. D. (1997) Spatiotemporal patterns of gamma frequency oscillations tetanically induced in the rat hippocampal slice. Journal of Physiology 502:591607. [aWAP]Google Scholar
Whittington, M. A., Traub, R. D. & Jefferys, J. G. R. (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373:612–15. [aWAP]Google Scholar
Winter, J. C., Fiorella, D. J., Timinieri, D. M., Filipink, R. A., Helsley, S. E. & Rabin, R. A. (1999) Serotonergic receptor subtypes and hallucinogen-induced stimulus control. Pharmacology, Biochemistry and Behavior 64:283–93. [RDO]Google Scholar
Winterer, G., Egan, M. F., Radler, T., Hyde, T., Coppola, R. & Weinberger, D. R. (2001) An association between reduced interhemispheric EEG coherence in the temporal lobe and genetic risk for schizophrenia. Schizophrenia Research 49:129–43. [rSMS]Google Scholar
Wooley, D. W. & Shaw, W. (1954) A biochemical and pharmacological suggestion about certain mental disorders. Proceedings of the National Academy of Sciences USA 40:228–31. [rSMS]Google Scholar
Wörgötter, F. & Eysel, U. F. (2000) Context, state and the receptive fields of striatal cortex cells. Trends in the Neurosciences 23:497503. [aWAP]Google Scholar
Wright, J. J., Robinson, P. A., Rennie, C. J., Gordon, E., Bourke, P. D., Chapman, C. J., Hawthorn, N., Lees, G. J. & Alexander, D. (2001) Toward an integrated continuum model of cerebral dynamics: The cerebral rhythms, synchronous oscillation and cortical stability. Biosystems 63:7188. [aWAP]Google Scholar
Xing, J. & Heeger, D. J. (2000) Center-surround interactions in foveal and peripheral vision. Vision Research 40(22):3065–72. [YC]Google Scholar
Yamaguchi, K., Nabeshima, T., Ishikawa, K., Yoshida, S. & Kameyama, T. (1987) Phencylidine-induced head-weaving and head-twitch through interaction with 5-HT2A receptors in reserpinized rats. Neuropharmacology 26:1489–97. [rSMS]Google Scholar
Yung, A. R., Phillips, L. J., Yuen, H. P., Francey, S. M., McFarlane, C. A., Hallgren, M. & McGorry, P. D. (2003) Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophrenia Research 60:2132. [rSMS]Google Scholar
Zipser, K., Lamme, V. A. F. & Schiller, P. H. (1996) Contextual modulation in primary visual cortex. Journal of Neuroscience 16:7376–89. [aWAP, PPR, rSMS]Google Scholar
Zukin, S. R., Fitz-Syage, M. L., Nichtenhauser, R. & Zukin, R. S. (1983) Specific binding of [3H]phencyclidine in rat central nervous tissue: Further characterization and technical considerations. Brain Research 258:277–84. [rSMS]Google Scholar
Zukin, S. R. & Zukin, R. S. (1979) Specific [3H]phencyclidine binding in rat central nervous system. Proceedings of the National Academy of Sciences USA 76:5372–76. [rSMS]Google Scholar