Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T05:29:56.276Z Has data issue: false hasContentIssue false

Impulsivity, dual diagnosis, and the structure of motivated behavior in addiction

Published online by Cambridge University Press:  29 July 2008

R. Andrew Chambers
Affiliation:
Department of Psychiatry, Indiana University School of Medicine, Institute of Psychiatric Research, Indianapolis, IN 46202. robchamb@iupui.edu

Abstract

Defining brain mechanisms that control and adapt motivated behavior will not only advance addiction treatment. It will help society see that addiction is a disease that erodes free will, rather than representing a free will that asks for or deserves consequences of drug-use choices. This science has important implications for understanding addiction's comorbidity in mental illness and reducing associated public health and criminal justice burdens.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bardo, M. T., Donohew, R. L. & Harrington, N. G. (1996) Psychobiology of novelty seeking and drug seeking behavior. Behavioral Brain Research 77(1–2):2343.CrossRefGoogle ScholarPubMed
Belin, D. & Everitt, B. J. (2008) Cocaine-seeking habits depend upon dopamine-dependent serial connectivity linking the ventral and dorsal striatum. Neuron 57:432–41.CrossRefGoogle ScholarPubMed
Chambers, R. A. (2007) Animal modeling and neurocircuitry of dual diagnosis. Journal of Dual Diagnosis 3(2):1929.CrossRefGoogle ScholarPubMed
Chambers, R. A., Bickel, W. K. & Potenza, M. N. (2007) A scale-free systems theory of motivation and addiction. Neuroscience and Biobehavioral Reviews 31(7):1017–45.CrossRefGoogle ScholarPubMed
Chambers, R. A., Jones, R. M., Brown, S. & Taylor, J. R. (2005) Natural reward related learning in rats with neonatal ventral hippocampal lesions and prior cocaine exposure. Psychopharmacology 179(2):470–78.CrossRefGoogle ScholarPubMed
Chambers, R. A. & Potenza, M. N. (2003) Neurodevelopment, impulsivity, and adolescent gambling. Journal of Gambling Studies 19(1):5384.CrossRefGoogle ScholarPubMed
Chambers, R. A. & Self, D. W. (2002) Motivational responses to natural and drug rewards in rats with neonatal ventral hippocampal lesions: An animal model of dual diagnosis schizophrenia. Neuropsychopharmacology 27(6):889905.CrossRefGoogle ScholarPubMed
Chambers, R. A., Taylor, J. R. & Potenza, M. N. (2003) Developmental neurocircuitry of motivation in adolescence: A critical period of addiction vulnerability. American Journal of Psychiatry 160(6):1041–52.CrossRefGoogle ScholarPubMed
Charney, D. S., Nestler, E. J. & Bunney, B. S., eds. (1999) Neurobiology of mental illness. Oxford University Press.Google Scholar
Dixon, L. (1999) Dual diagnosis of substance abuse in schizophrenia: Prevalence and impact on outcomes. Schizophrenia Research 35 (Suppl.):S93100.CrossRefGoogle ScholarPubMed
Everitt, B. J. & Robbins, T. W. (2005) Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nature Neuroscience 8(11):1481–89.CrossRefGoogle ScholarPubMed
Finlay, J. M. & Zigmond, M. J. (1997) The effects of stress on central dopaminergic neurons: Possible clinical implications. Neurochemical Research 22(11):1387–94.CrossRefGoogle ScholarPubMed
Gerdeman, G. L., Partridge, J. G., Lupica, C. R. & Lovinger, D. M. (2003) It could be habit forming: Drugs of abuse and striatal synaptic plasticity. Trends in Neuroscience 26(4):184–92.CrossRefGoogle ScholarPubMed
Goto, Y. & Grace, A. A. (2005a) Dopamine-dependent interactions between limbic and prefrontal cortical plasticity in the nucleus accumbens: Disruption by cocaine sensitization. Neuron 47(2):255–66.CrossRefGoogle ScholarPubMed
Goto, Y. & O'Donnell, P. (2002) Delayed mesolimbic system alteration in a developmental animal model of schizophrenia. Journal of Neuroscience 22(20):9070–77.CrossRefGoogle Scholar
Graybiel, A. M. (1998) The basal ganglia and chunking of action repertoires. Neurobiology of Learning and Memory 70(1–2):119–36.CrossRefGoogle ScholarPubMed
Groenewegen, H. J., Wright, C. I., Beijer, A. V. & Voorn, P. (1999) Convergence and segregation of ventral striatal inputs and outputs. Annals of the New York Academy of Sciences 877:4963.CrossRefGoogle ScholarPubMed
Haber, S. N. (2003) The primate basal ganglia: Parallel and integrative networks. Journal of Chemical Neuroanatomy 26:317–30.CrossRefGoogle ScholarPubMed
Haber, S. N., Fudge, J. L. & McFarland, N. R. (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. Journal of Neuroscience 20(6):2369–82.CrossRefGoogle ScholarPubMed
Hyman, S. E. & Malenka, R. C. (2001) Addiction and the brain: The neurobiology of compulsion and its persistence. Nature Reviews Neuroscience 2:695703.CrossRefGoogle ScholarPubMed
Kelley, A. E. (2004b) Ventral striatal control of appetitive motivation: Role in ingestive behavior and reward related learning. Neuroscience and Biobehavioral Reviews 27:765–76.CrossRefGoogle ScholarPubMed
Kessler, R. C. (2004) The epidemiology of dual diagnosis. Biological Psychiatry 56:730–37.CrossRefGoogle ScholarPubMed
Lasser, K., Boyd, J. W., Woolhandler, S., Heimmerlstein, D., McCormick, D. & Bor, D. (2000) Smoking in mental illness: A population-based prevalence study. Journal of the American Medical Association 284(20):2606–10.CrossRefGoogle ScholarPubMed
Lipska, B. K., Lerman, D. N., Khaing, Z. Z. & Weinberger, D. R. (2003) The neonatal ventral hippocampal lesion model of schizophrenia: Effects on dopamine and GABA mRNA markers in the rat midbrain. European Journal of Neuroscience 18:30973104.CrossRefGoogle ScholarPubMed
O'Donnell, P., Greene, J., Pabello, N., Lewis, B. L. & Grace, A. A. (1999) Modulation of cell firing in the nucleus accumbens. Annals of the New York Academy of Sciences 877:157–75.CrossRefGoogle ScholarPubMed
RachBeisel, J., Scott, J. & Dixon, L. (1999) Co-occurring severe mental illness and substance use disorders: A review of recent research. Psychiatric Services 50(11):1427–34.CrossRefGoogle ScholarPubMed
Rosen, M. I., Rosenheck, R. A., Shaner, A., Eckman, T., Gamache, G. & Krebs, C. (2002) Veterans who may need a payee to prevent misuse of funds for drugs. Psychiatric Services 53(8):9951000.CrossRefGoogle Scholar
Schmetzer, A. D. (2006) Deinstitutionalization and dual diagnosis. Journal of Dual Diagnosis 3:95101.CrossRefGoogle Scholar
Spanagel, R. & Weiss, F. (1999) The dopamine hypothesis of reward: Past and current status. Trends in Neurosciences 22(11):521–27.CrossRefGoogle ScholarPubMed
Swanson, L. W. (2000) Cerebral hemisphere regulation of motivated behavior. Brain Research 886(1–2):113–64.CrossRefGoogle ScholarPubMed
Tseng, K. Y., Lewis, B. L., Lipska, B. K. & O'Donnell, P. (2007) Post-pubertal disruption of medial prefrontal cortical dopamine-glutamate interactions in a developmental animal model of schizophrenia. Biological Psychiatry 62:730–38.CrossRefGoogle Scholar
Vanderschuren, L. J. M. J. & Kalivas, P. (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: A critical review of preclinical studies. Psychopharmacology 151:99120.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Telang, F., Fowler, J. S., Logan, J., Childress, A. R., Jayne, M., Ma, Y. & Wong, C. (2006) Cocaine cues and dopamine in dorsal striatum: Mechanism of craving in cocaine addiction. Journal of Neuroscience 26:6583–88.CrossRefGoogle ScholarPubMed
Yin, H. H. & Knowlton, B. J. (2006) The role of the basal ganglia in habit formation. Nature Reviews Neuroscience 7:464–76.CrossRefGoogle ScholarPubMed