Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T20:47:46.992Z Has data issue: false hasContentIssue false

From numerical concepts to concepts of number

Published online by Cambridge University Press:  11 December 2008

Lance J. Rips
Affiliation:
Psychology Department, Northwestern University, Evanston, IL 60208rips@northwestern.eduhttp://mental.psych.northwestern.edu
Amber Bloomfield
Affiliation:
Department of Psychology, DePaul University, Chicago, IL 60614abloomfi@depaul.edu
Jennifer Asmuth
Affiliation:
Psychology Department, Northwestern University, Evanston, IL 60208asmuth@northwestern.edu

Abstract

Many experiments with infants suggest that they possess quantitative abilities, and many experimentalists believe that these abilities set the stage for later mathematics: natural numbers and arithmetic. However, the connection between these early and later skills is far from obvious. We evaluate two possible routes to mathematics and argue that neither is sufficient: (1) We first sketch what we think is the most likely model for infant abilities in this domain, and we examine proposals for extrapolating the natural number concept from these beginnings. Proposals for arriving at natural number by (empirical) induction presuppose the mathematical concepts they seek to explain. Moreover, standard experimental tests for children's understanding of number terms do not necessarily tap these concepts. (2) True concepts of number do appear, however, when children are able to understand generalizations over all numbers; for example, the principle of additive commutativity (a+b=b+a). Theories of how children learn such principles usually rely on a process of mapping from physical object groupings. But both experimental results and theoretical considerations imply that direct mapping is insufficient for acquiring these principles. We suggest instead that children may arrive at natural numbers and arithmetic in a more top-down way, by constructing mathematical schemas.

Type
Main Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. A. (1998) Learning arithmetic with a neural network: Seven times seven is about fifty. In: Methods, models, and conceptual issues, ed. Scarborough, D. & Sternberg, S.. MIT Press.Google Scholar
Anderson, J. R. (1983) The architecture of cognition. Harvard University Press.Google Scholar
Baroody, A. J. & Gannon, K. E. (1984) The development of the commutativity principle and economical addition strategies. Cognition and Instruction 1:321–39.CrossRefGoogle Scholar
Baroody, A. J., Wilkins, J. L. M. & Tiilikainen, S. (2003) The development of children's understanding of additive commutativity: From protoquantitative concept to general concept? In: The development of arithmetic concepts and skills, ed. Baroody, A. J. & Dowker, A.. Erlbaum.Google Scholar
Barth, H., Kanwisher, N. & Spelke, E. (2003) The construction of large number representations in adults. Cognition 86:201–21.CrossRefGoogle ScholarPubMed
Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N. & Spelke, E. (2006) Non-symbolic arithmetic in adults and young children. Cognition 98:199222.CrossRefGoogle ScholarPubMed
Bemis, D. K., Franconeri, S. L. & Alvarez, G. A. (submitted). Rapid enumeration is based on a segmented visual scene.Google Scholar
Beth, E. W. & Piaget, J. (1966) Mathematical epistemology and psychology. Reidel.Google Scholar
Bloom, P. (1994) Generativity within language and other cognitive domains. Cognition 51:177–89.CrossRefGoogle ScholarPubMed
Bloom, P. (2000) How children learn the meaning of words. MIT Press.CrossRefGoogle Scholar
Bryant, P., Christie, C. & Rendu, A. (1999) Children's understanding of the relation between addition and subtraction: Inversion, identity, and decomposition. Journal of Experimental Child Psychology 74:194212.CrossRefGoogle ScholarPubMed
Buckley, P. B. & Gillman, C. B. (1974) Comparison of digits and dot patterns. Journal of Experimental Psychology: Human Perception and Performance 103:1131–36.CrossRefGoogle ScholarPubMed
Canobi, K. H., Reeve, R. A. & Pattison, P. A. (2002) Young children's understanding of addition concepts. Educational Psychology 22:513–32.CrossRefGoogle Scholar
Carey, S. (2001) Cognitive foundations of arithmetic: Evolution and ontogenesis. Mind and Language 16:3755.CrossRefGoogle Scholar
Carey, S. (2004) Bootstrapping and the origins of concepts. Daedalus Winter issue, pp. 5968.CrossRefGoogle Scholar
Carey, S. & Sarnecka, B. W. (2006) The development of human conceptual representations: A case study. In: Processes of change in brain and cognitive development, ed. Munakata, Y. & Johnson, M. H.. Oxford University Press.Google Scholar
Carston, R. (1998) Informativeness, relevance and scalar implicature. In: Relevance theory: Applications and implications, ed. Carston, R. & Uchida, S.. John Benjamins.CrossRefGoogle Scholar
Chierchia, G. & McConnell-Ginet, S. (1990) Meaning and grammar: An introduction to semantics. MIT Press.Google Scholar
Chomsky, N. (1988) Language and problems of knowledge. MIT Press.Google Scholar
Chrisomalis, S. (2004) A cognitive typology for numerical notation. Cambridge Archaeological Journal 14:3752.CrossRefGoogle Scholar
Church, R. M. & Broadbent, H. A. (1990) Alternative representations of time, number, and rate. Cognition 37:5581.CrossRefGoogle Scholar
Clearfield, M. W. & Mix, K. S. (1999) Number versus contour length in infants' discrimination of small visual sets. Psychological Science 10:408–11.CrossRefGoogle Scholar
Conrad, F., Brown, N. R. & Cashman, E. R. (1998) Strategies for estimating behavioral frequency in survey interviews. Memory 6:339–66.CrossRefGoogle ScholarPubMed
Cordes, S. & Gelman, R. (2005) The young numerical mind: When does it count? In: Handbook of mathematical cognition, ed. Campbell, J. I. D., pp. 128–42. Psychology Press.Google Scholar
Cordes, S., Gelman, R., Gallistel, C. R. & Whalen, J. (2001) Variability signatures distinguish verbal from nonverbal counting for both large and small numbers. Psychonomic Bulletin and Review 8:698707.CrossRefGoogle ScholarPubMed
Cowan, R. (2003) Does it all add up? Changes in children's knowledge of addition combinations, strategies, and principles. In: The development of arithmetic concepts and skills, ed. Baroody, A. J. & Dowker, A.. Erlbaum.Google Scholar
Cowan, R. & Renton, M. (1996) Do they know what they are doing? Children's use of economical addition strategies and knowledge of commutativity. Educational Psychology 16:407–20.CrossRefGoogle Scholar
Dedekind, R. (1888/1963) The nature and meaning of numbers. Dover. (Original work published 1888).Google Scholar
Dehaene, S. (1997) The number sense. Oxford University Press.Google Scholar
Dehaene, S. & Changeux, J. P. (1993) Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience 5:390407.CrossRefGoogle ScholarPubMed
Dehaene, S., Spelke, E., Pinel, P., Stanescu, R. & Tsivkin, S. (1999) Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science 284:970–74.CrossRefGoogle ScholarPubMed
Donlan, C., Cowan, R., Newton, E. J. & Lloyd, D. (2007) The role of language in mathematical development: Evidence from children with specific language impairments. Cognition 103:2333.CrossRefGoogle ScholarPubMed
Dummett, M. (1991) Frege: Philosophy of mathematics. Harvard University Press.Google Scholar
Enderton, H. B. (1977) Elements of set theory. Academic Press.Google Scholar
Feigenson, L. (2005) A double dissociation in infants' representation of object arrays. Cognition 95:B37B48.CrossRefGoogle ScholarPubMed
Feigenson, L. & Carey, S. (2003) Tracking individuals via object files: Evidence from infants' manual search. Developmental Science 6:568–84.CrossRefGoogle Scholar
Feigenson, L., Carey, S. & Hauser, M. (2002a) The representations underlying infants' choice of more: Object files versus analog magnitudes. Psychological Science 13:150–56.CrossRefGoogle ScholarPubMed
Feigenson, L., Carey, S. & Spelke, E. (2002b) Infants' discrimination of number vs. continuous extent. Cognitive Psychology 44:3366.CrossRefGoogle ScholarPubMed
Feigenson, L., Dehaene, S. & Spelke, E. (2004) Core systems of number. Trends in Cognitive Sciences 8:307–14.CrossRefGoogle ScholarPubMed
Feigenson, L. & Halberda, J. (2004) Infants chunk object arrays into sets of individuals. Cognition 91:173–90.CrossRefGoogle ScholarPubMed
Field, H. (1980) Science without numbers. Princeton University Press.Google Scholar
Frege, G. (1884/1974) The foundations of arithmetic. Blackwell. (Original work published 1884).Google Scholar
Freud, S. (1927/1961) The future of an illusion. Norton.Google Scholar
Fuson, K. C. (1988) Children's counting and concepts of number. Springer-Verlag.CrossRefGoogle Scholar
Gallistel, C. R. & Gelman, R. (1992) Preverbal and verbal counting and computation. Cognition 44:4374.CrossRefGoogle ScholarPubMed
Gallistel, C. R., Gelman, R. & Cordes, S. (2006) The cultural and evolutionary history of the real numbers. In: Evolution and culture, ed. Levinson, S. C. & Jaisson, P., pp. 247–74. MIT Press.Google Scholar
Gelman, R. (1972) The nature and development of early number concepts. Advances in Child Development and Behavior 7:115–67.CrossRefGoogle ScholarPubMed
Gelman, R. & Butterworth, B. (2005) Number and language: How are they related? Trends in Cognitive Sciences 9:610.CrossRefGoogle ScholarPubMed
Gelman, R. & Gallistel, C. R. (1978) The child's understanding of number. Harvard University Press/MIT Press. (Second printing, 1985. Paperback issue with new preface, 1986).Google Scholar
Gelman, R. & Greeno, J. G. (1989) On the nature of competence: Principles for understanding in a domain. In: Knowing and learning: Issues for a cognitive science of instruction: Essays in honor of Robert Glaser, ed. Resnick, L. B., pp. 125–86. Erlbaum.Google Scholar
Giaquinto, M. (2002) The search for certainty: A philosophical account of foundations of mathematics. Oxford University Press.CrossRefGoogle Scholar
Gordon, P. (2004) Numerical cognition without words: Evidence from Amazonia. Science 306:496–99.CrossRefGoogle ScholarPubMed
Grinstead, J., MacSwan, J., Curtiss, S. & Gelman, R. (submitted) The independence of language and number.Google Scholar
Gvozdanović, J. (1992) Indo-European numerals. Mouton de Gruyter.CrossRefGoogle Scholar
Halberda, J., Sires, S. F. & Feigenson, L. (2006) Multiple spatially overlapping sets can be enumerated in parallel. Psychological Science 17:572–76.CrossRefGoogle ScholarPubMed
Hamilton, A. G. (1982) Numbers, sets, and axioms. Cambridge University Press.Google Scholar
Hanlon, C. (1988) The emergence of set-relational quantifiers in early childhood. In: The development of language and language researchers: Essays in honor of Roger Brown, ed. Kessel, F. S.. Erlbaum.Google Scholar
Hartnett, P. M. (1991) The development of mathematical insight: From one, two, three to infinity. Unpublished doctoral dissertation, University of Pennsylvania.Google Scholar
Hauser, M. D., Chomsky, N. & Fitch, W. T. (2002) The faculty of language: What is it, who has it, and how did it evolve? Science 298:1569–79.CrossRefGoogle ScholarPubMed
Hilbert, D. (1922/1996) The new grounding of mathematics: first report. In: From Kant to Hilbert, ed. Ewald, W. B.. Oxford University Press. (Original work published 1922.)Google Scholar
Hilbert, D. (1926/1983) On the infinite. In: Philosophy of mathematics, ed. Benacerraf, P. & Putnam, H.. Cambridge University Press. (Original work published 1926.)Google Scholar
Hodes, H. T. (1984) Logicism and the ontological commitments of arithmetic. Journal of Philosophy 81:123–49.CrossRefGoogle Scholar
Houdé, O. & Tzourio-Mazoyer, N. (2003) Neural foundations of logical and mathematical cognition. Nature Neuroscience 4:507–14.CrossRefGoogle ScholarPubMed
Hurford, J. R. (1975) The linguistic theory of numerals. Cambridge University Press.Google Scholar
Hurford, J. R. (1987) Language and number: The emergence of a cognitive system. Blackwell.Google Scholar
Intriligator, J. & Cavanagh, P. (2001) The spatial resolution of visual attention. Cognitive Psychology 43:171216.CrossRefGoogle ScholarPubMed
Kahneman, D., Treisman, A. & Gibbs, B. J. (1992) The reviewing of object files: Object-specific integration of information. Cognitive Psychology 24:175219.CrossRefGoogle ScholarPubMed
Kaye, R. (1991) Models of Peano arithmetic. Oxford University Press.CrossRefGoogle Scholar
Klahr, D. & Wallace, J. G. (1976) Cognitive development: An information-processing view. Erlbaum.Google Scholar
Knuth, D. E. (1974) Surreal numbers. Addison-Wesley.Google Scholar
Kobayashi, T., Hiraki, K., Mugitani, R. & Hasegawa, T. (2004) Baby arithmetic: One object plus one tone. Cognition 91:B23B34.CrossRefGoogle ScholarPubMed
Lakoff, G. & Núñez, R. E. (2000) Where mathematics comes from: How the embodied mind brings mathematics into being. Basic Books.Google Scholar
Laurence, S. & Margolis, E. (2005) Number and natural language. In: The innate mind: Structure and content, ed. Carruthers, P., Laurence, S. & Stich, S.. Oxford University Press.Google Scholar
Le Corre, M. & Carey, S. (2007) One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition 105:395438.CrossRefGoogle ScholarPubMed
Le Corre, M., Van de Walle, G., Brannon, E. M. & Carey, S. (2006) Revisiting the competence/performance debate in the acquisition of counting principles. Cognitive Psychology 52(2):130–69.CrossRefGoogle ScholarPubMed
Leslie, A. M., Gallistel, C. R. & Gelman, R. (2007) Where integers come from. In: The innate mind, vol. 3: Foundations and the future, ed. Carruthers, P., Laurence, S. & Stich, S., pp. 109–38. Oxford University Press.Google Scholar
Lipton, J. S. & Spelke, E. S. (2003) Origins of number sense: Large number discrimination in human infants. Psychological Science 14:396401.CrossRefGoogle ScholarPubMed
MacGregor, M. & Stacey, K. (1997) Students' understanding of algebraic notations: 11–15. Educational Studies in Mathematics 33:119.CrossRefGoogle Scholar
Margolis, E. & Laurence, S. (2008) How to learn the natural numbers: Inductive inference and the acquisition of number concepts. Cognition 106:924–39.CrossRefGoogle ScholarPubMed
Matz, M. (1982) Towards a process model for high school algebra errors. In: Intelligent tutoring systems, ed. Sleeman, D. & Brown, J. S.. Academic Press.Google Scholar
McCloskey, M. & Lindemann, A. M. (1992) MATHNET: Preliminary results from a distributed model of arithmetic fact retrieval. In: The nature and origins of mathematical skills, ed. Campbell, J. I. D.. North-Holland.Google Scholar
Mill, J. S. (1874) A system of logic. Harper and Brothers.Google Scholar
Mix, K. S., Huttenlocher, J. & Levine, S. C. (2002a) Multiple cues for quantification in infancy: Is number one of them? Psychological Bulletin 128:278–94.CrossRefGoogle ScholarPubMed
Mix, K. S., Huttenlocher, J. & Levine, S. C. (2002b) Quantitative development in infancy and early childhood. Oxford University Press.CrossRefGoogle Scholar
Moyer, R. S. & Landauer, T. K. (1967) Time required for judgments of numerical inequality. Nature 215:1519–20.CrossRefGoogle ScholarPubMed
Musolino, J. (2004) The semantics and acquisition of number words: Integrating linguistic and developmental perspectives. Cognition 93:141.CrossRefGoogle ScholarPubMed
Newell, A. (1990) Unified theories of cognition. Harvard University Press.Google Scholar
Parkman, J. M. (1971) Temporal aspects of digit and letter inequality judgments. Journal of Experimental Psychology 91:191205.CrossRefGoogle ScholarPubMed
Parsons, C. (2008) Mathematical thought and its objects. Cambridge University Press.Google Scholar
Piaget, J. (1970) Genetic epistemology. Columbia University Press.CrossRefGoogle Scholar
Pica, P., Lemer, C., Izard, V. & Dehaene, S. (2004) Exact and approximate arithmetic in an Amazonian indigene group. Science 306:499503.CrossRefGoogle Scholar
Pollmann, T. (2003) Some principles involved in the acquisition of number words. Language Acquisition 11:131.CrossRefGoogle Scholar
Putnam, H. (1971) Philosophy of logic. Harper.Google Scholar
Pylyshyn, Z. (2001) Visual indexes, preconceptual objects, and situated vision. Cognition 80:127–58.CrossRefGoogle ScholarPubMed
Quine, W. V. O. (1960) Word and object. MIT Press.Google Scholar
Quine, W. V. O. (1973) The roots of reference. Open Court.Google Scholar
Rasmussen, C., Ho, E. & Bisanz, J. (2003) Use of the mathematical principle of inversion in young children. Journal of Experimental Child Psychology 85:89102.CrossRefGoogle ScholarPubMed
Resnick, L. B. (1992) From protoquantities to operators: Building mathematical competence on a foundation of everyday knowledge. In: Analysis of arithmetic for mathematics teaching, ed. Leinhardt, G., Putnam, R. & Hattrup, R. A., pp. 373425. Erlbaum.Google Scholar
Resnik, M. D. (1997) Mathematics as a science of patterns. Oxford University Press.Google Scholar
Rips, L. J. (1994) The psychology of proof: Deductive reasoning in human thinking. MIT Press.CrossRefGoogle Scholar
Rips, L. J. (1995) Deduction and cognition. In: Invitation to cognitive science, ed. Osherson, D. N. & Smith, E. E.. MIT Press.Google Scholar
Rips, L. J. & Asmuth, J. (2007) Mathematical induction and induction in mathematics. In: Induction, ed. Feeney, A. & Heit, E.. Cambridge University Press.Google ScholarPubMed
Rips, L. J., Asmuth, J. & Bloomfield, A. (2006) Giving the boot to the bootstrap: How not to learn the natural numbers. Cognition 101:B51B60.CrossRefGoogle Scholar
Rips, L. J., Asmuth, J. & Bloomfield, A. (2008) Do children learn the integers by induction? Cognition 106:940–51.CrossRefGoogle ScholarPubMed
Rossor, M. N., Warrington, E. K. & Cipolotti, L. (1995) The isolation of calculation skills. Journal of Neurology 242:7881.CrossRefGoogle ScholarPubMed
Russell, B. (1920) Introduction to mathematical philosophy, 2nd edition.Dover.Google Scholar
Schaeffer, B., Eggleston, V. H. & Scott, J. L. (1974) Number development in young children. Cognitive Psychology 6:357–79.CrossRefGoogle Scholar
Scholl, B. J. & Leslie, A. M. (1999) Explaining the infant's object concept: beyond the perception/cognition dichotomy. In: What is cognitive science?, ed. Lepore, E. & Pylyshyn, Z.. Blackwell.Google Scholar
Schwartz, R. (1995) Is mathematical competence innate? Philosophy of Science 62:227–40.CrossRefGoogle Scholar
Shapiro, S. (1997) Philosophy of mathematics: Structure and ontology. Oxford University Press.Google Scholar
Smith, L. (2002) Reasoning by mathematical induction in children's arithmetic. Pergamon.Google Scholar
Sophian, C., Harley, H. & Manos Martin, C. S. (1995) Relational and representational aspects of early number development. Cognition and Instruction 13:253–68.CrossRefGoogle Scholar
Spelke, E. S. (2000) Core knowledge. American Psychologist 55:1233–43.CrossRefGoogle ScholarPubMed
Spelke, E. S. (2003) What makes us smart? Core knowledge and natural language. In: Language in mind, ed. Gentner, D. & Goldin-Meadow, S.. MIT Press.Google Scholar
Spelke, E. S. & Tsivkin, S. (2001) Language and number: A bilingual training study. Cognition 78:4588.CrossRefGoogle ScholarPubMed
Starkey, P. & Gelman, R. (1982) The development of addition and subtraction abilities prior to formal schooling in arithmetic. In: Addition and subtraction: A cognitive perspective, ed. Carpenter, T. P., Moser, J. M. & Romberg, T. A.. Erlbaum.Google Scholar
Van de Walle, G. A., Carey, S. & Prevor, M. (2000) Bases for object individuation in infancy: Evidence from manual search. Journal of Cognition and Development 1:249–80.CrossRefGoogle Scholar
Varley, R. A., Klessinger, N. J. C., Romanowski, C. A. J. & Siegal, M. (2005) Agrammatic but numerate. Proceedings of the National Academy of Sciences USA 102:3519–24.CrossRefGoogle ScholarPubMed
Vilette, B. (2002) Do young children grasp the inverse relationship between addition and subtraction? Evidence against early arithmetic. Cognitive Development 17:1365–83.CrossRefGoogle Scholar
Wellman, H. & Miller, K. F. (1986) Thinking about nothing: Development of the concepts of zero. British Journal of Developmental Psychology 4:3142.CrossRefGoogle Scholar
Whalen, J., Gallistel, C. R. & Gelman, R. (1999) Nonverbal counting in humans: The psychophysics of number representation. Psychological Science 10:130–37.CrossRefGoogle Scholar
Wiese, H. (2003) Iconic and non-iconic stages in number development: The role of language. Trends in Cognitive Sciences 7:385–90.CrossRefGoogle ScholarPubMed
Wood, J. N. & Spelke, E. S. (2005) Chronometric studies of numerical cognition in five-month-old infants. Cognition 97:2339.CrossRefGoogle ScholarPubMed
Wynn, K. (1992a) Addition and subtraction by human infants. Nature 358:749–50.CrossRefGoogle ScholarPubMed
Wynn, K. (1992b) Children's acquisition of the number words and the counting system. Cognitive Psychology 24:220–51.CrossRefGoogle Scholar
Wynn, K. (1996) Infants' individuation and enumeration of actions. Psychological Science 7:164–69.CrossRefGoogle Scholar
Wynn, K., Bloom, P. & Chiang, W.-C. (2002) Enumeration of collective entities by 5-month-old infants. Cognition 83:B55B62.CrossRefGoogle ScholarPubMed
Xu, F. (2003) Numerosity discrimination in infants: Evidence for two systems of representation. Cognition 89:B15B25.CrossRefGoogle Scholar
Xu, F. & Arriaga, R. I. (2007) Number discrimination in 10-month-old infants. British Journal of Developmental Psychology 25:103108.CrossRefGoogle Scholar
Xu, F. & Spelke, E. S. (2000) Large number discrimination in 6-month-old infants. Cognition 74:B1B11.CrossRefGoogle Scholar
Xu, F., Spelke, E. S. & Goddard, S. (2005) Number sense in human infants. Developmental Science 8:88101.CrossRefGoogle ScholarPubMed
Zhang, J. & Norman, D. A. (1995) A representational analysis of numeration systems. Cognition 57:271–95.CrossRefGoogle ScholarPubMed