Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T15:44:10.876Z Has data issue: false hasContentIssue false

Comparative studies provide evidence for neural reuse

Published online by Cambridge University Press:  22 October 2010

Paul S. Katz
Affiliation:
Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030. pkatz@gsu.eduhttp://neuroscience.gsu.edu/pkatz.html

Abstract

Comparative studies demonstrate that homologous neural structures differ in function and that neural mechanisms underlying behavior evolved independently. A neural structure does not serve a particular function so much as it executes an algorithm on its inputs though its dynamics. Neural dynamics are altered by a neuromodulation, and species-differences in neuromodulation can account for behavioral differences.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbas, E. A., Meinertzhagen, I. A. & Shaw, S. R. (1991) Evolution in nervous systems. Annual Review of Neuroscience 14:938.CrossRefGoogle ScholarPubMed
Briggman, K. L. & Kristan, W. B. (2008) Multifunctional pattern-generating circuits. Annual Review of Neuroscience 31:271–94.CrossRefGoogle ScholarPubMed
Calabrese, R. L. (1998) Cellular, synaptic, network, and modulatory mechanisms involved in rhythm generation. Current Opinion in Neurobiology 8:710–17.CrossRefGoogle ScholarPubMed
Catania, K. C. (2000) Cortical organization in insectivora: The parallel evolution of the sensory periphery and the brain. Brain, Behavior, and Evolution 55:311–21.CrossRefGoogle ScholarPubMed
Cohen, L. G., Celnik, P., Pascual-Leone, A., Corwell, B., Falz, L., Dambrosia, J., Honda, M., Sadato, N., Gerloff, C., Catala, M. D. & Hallett, M. (1997) Functional relevance of cross-modal plasticity in blind humans. Nature (London) 389:180–83.CrossRefGoogle ScholarPubMed
Comer, C. M. & Robertson, R. M. (2001) Identified nerve cells and insect behavior. Progress in Neurobiology 63:409–39.CrossRefGoogle ScholarPubMed
Croll, R. P. (1987) Identified neurons and cellular homologies. In: Nervous systems in invertebrates, ed. Ali, M. A., pp. 4159. Plenum Press.CrossRefGoogle Scholar
Donaldson, Z. R., Kondrashov, F. A., Putnam, A., Bai, Y., Stoinski, T. L., Hammock, E. A. & Young, L. J. (2008) Evolution of a behavior-linked microsatellite-containing element in the 5′ flanking region of the primate AVPR1A gene. BioMed Central Evolutionary Biology 8:180.CrossRefGoogle ScholarPubMed
Donaldson, Z. R. & Young, L. J. (2008) Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322:900904.CrossRefGoogle ScholarPubMed
Hammock, E. A. & Young, L. J. (2005) Microsatellite instability generates diversity in brain and sociobehavioral traits. Science 308:1630–34.CrossRefGoogle ScholarPubMed
Jarvis, E. D., Gunturkun, O., Bruce, L., Csillag, A., Karten, H., Kuenzel, W., Medina, L., Paxinos, G., Perkel, D. J., Shimizu, T., Striedter, G., Wild, J. M., Ball, G. F., Dugas-Ford, J., Durand, S. E., Hough, G. E., Husband, S., Kubikova, L., Lee, D. W., Mello, C. V., Powers, A., Siang, C., Smulders, T. V., Wada, K., White, S. A., Yamamoto, K., Yu, J., Reiner, A. & Butler, A. B. (2005) Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews Neuroscience 6:151–59.CrossRefGoogle Scholar
Kaas, J. H. (2005) The future of mapping sensory cortex in primates: Three of many remaining issues. Philosophical Transactions of the Royal Society of London, B: Biological Sciences 360:653–64.CrossRefGoogle ScholarPubMed
Kalivas, P. W. & Volkow, N. D. (2005) The neural basis of addiction: A pathology of motivation and choice. American Journal of Psychiatry 162:1403–13.CrossRefGoogle ScholarPubMed
Katz, P. S. (1999) Beyond neurotransmission: Neuromodulation and its importance for information processing. Oxford University Press.CrossRefGoogle Scholar
Katz, P. S. & Calin-Jageman, R. (2008) Neuromodulation. In: New encyclopedia of neuroscience, ed. Squire, L. R., pp. 497503. Academic Press.Google Scholar
Katz, P. S. & Harris-Warrick, R. M. (1999) The evolution of neuronal circuits underlying species-specific behavior. Current Opinion in Neurobiology 9:628–33.CrossRefGoogle ScholarPubMed
Katz, P. S. & Newcomb, J. M. (2007) A tale of two CPGs: Phylogenetically polymorphic networks. In: Evolution of nervous systems, ed. Kaas, J. H., pp. 367–74. Academic Press.CrossRefGoogle Scholar
Krubitzer, L. (2007) The magnificent compromise: Cortical field evolution in mammals. Neuron 56:201208.CrossRefGoogle ScholarPubMed
Krubitzer, L. (2009) In search of a unifying theory of complex brain evolution. Annals of the New York Academy of Sciences 1156:4467.CrossRefGoogle ScholarPubMed
Lim, M. M., Wang, Z., Olazabal, D. E., Ren, X., Terwilliger, E. F. & Young, L. J. (2004) Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. Nature (London) 429:754–57.CrossRefGoogle Scholar
Marder, E. & Thirumalai, V. (2002) Cellular, synaptic and network effects of neuromodulation. Neural Networks 15:479–93.CrossRefGoogle ScholarPubMed
McGraw, L. A. & Young, L. J. (2010) The prairie vole: An emerging model organism for understanding the social brain. Trends in Neurosciences 32:103109.CrossRefGoogle Scholar
Meier, T., Chabaud, F. & Reichert, H. (1991). Homologous patterns in the embryonic development of the peripheral nervous system in the grasshopper Schistocerca gregaria and the fly Drosophila melanogaster. Development 112:241–53.CrossRefGoogle ScholarPubMed
Meyrand, P., Faumont, S., Simmers, J., Christie, A. E. & Nusbaum, M. P. (2000) Species-specific modulation of pattern-generating circuits. European Journal of Neuroscience 12:2585–96.CrossRefGoogle ScholarPubMed
Newcomb, J. M. & Katz, P. S. (2007) Homologues of serotonergic central pattern generator neurons in related nudibranch molluscs with divergent behaviors. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 193:425–43.CrossRefGoogle ScholarPubMed
Newcomb, J. M. & Katz, P. S. (2008) Different functions for homologous serotonergic interneurons and serotonin in species-specific rhythmic behaviours. Proceedings of the Royal Society of London, B: Biological Sciences 276:99108.Google Scholar
Owen, R. (1843) Lectures on the comparative anatomy and physiology of the invertebrate animals, delivered at the Royal College of Surgeons, in 1843. Longman, Brown, Green, and Longmans.Google Scholar
Padberg, J., Franca, J. G., Cooke, D. F., Soares, J. G., Rosa, M. G., Fiorani, M. Jr., Gattass, R. & Krubitzer, L. (2007) Parallel evolution of cortical areas involved in skilled hand use. Journal of Neuroscience 27:10106–15.CrossRefGoogle ScholarPubMed
Perkel, D. J. (2004) Origin of the anterior forebrain pathway. Annals of the New York Academy of Sciences 1016:736–48.CrossRefGoogle ScholarPubMed
Schultz, W., Dayan, P. & Montague, P. R. (1997) A neural substrate of prediction and reward. Science 275:1593–99.CrossRefGoogle ScholarPubMed
Sur, M., Garraghty, P. E. & Roe, A. W. (1988) Experimentally induced visual projections into auditory thalamus and cortex. Science 242:1437–41.CrossRefGoogle ScholarPubMed
von Melchner, L., Pallas, L. L. & Sur, M. (2000) Visual behavior mediated by retinal projections directed to the auditory pathway. Nature (London) 404:871–76.CrossRefGoogle Scholar
Wright, W. G., Kirschman, D., Rozen, D. & Maynard, B. (1996) Phylogenetic analysis of learning-related neuromodulation in molluscan mechanosensory neurons. Evolution 50:2248–63.Google ScholarPubMed
Young, L. J. (1999) Oxytocin and vasopressin receptors and species-typical social behaviors. Hormones and Behavior 36:212–21.CrossRefGoogle ScholarPubMed
Yuste, R., MacLean, J. N., Smith, J. & Lansner, A. (2005) The cortex as a central pattern generator. Nature Reviews Neuroscience 6:477–83.CrossRefGoogle ScholarPubMed