Hostname: page-component-857557d7f7-9f75d Total loading time: 0 Render date: 2025-12-03T10:02:55.802Z Has data issue: false hasContentIssue false

Beyond the cortex–integrating hippocampal function into the Social Brain Hypothesis to explain advanced cognition

Published online by Cambridge University Press:  27 November 2025

Edward Ruoyang Shi*
Affiliation:
Mental Health Education Center, Pearl River College, Tianjin University of Finance and Economics, 301811 Tianjin, China edwardshiruoyangend@gmail.com
*
*Corresponding author.

Abstract

The Social Brain Hypothesis (SBH) connects primate brain size to social complexity but faces empirical limitations. We propose expanding the SBH by incorporating hippocampal functions across species, demonstrating how cognition emerges from both social and ecological pressures. This extended framework moves beyond cortical-centric models, providing a comprehensive understanding of brain evolution and the origins of human cognitive abilities, including language.

Information

Type
Open Peer Commentary
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Amodio, P., Boeckle, M., Schnell, A. K., Ostojíc, L., Fiorito, G., & Clayton, N. S. (2019). Grow smart and die young: Why did cephalopods evolve intelligence? Trends in Ecology and Evolution, 34(1), 4556.CrossRefGoogle ScholarPubMed
Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45(13), 28832901.CrossRefGoogle ScholarPubMed
Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., & Zdravkovic, V. (2008). Empirical investigation of starling flocks: A benchmark study in collective animal behavior. Animal Behaviour, 76(1), 201215.CrossRefGoogle Scholar
Bayern, A. V., Danel, S., Auersperg, A. M. I., Mioduszewska, B., & Kacelnik, A. (2018). Compound tool construction by New Caledonian crows. Scientific Reports, 8(1), 15676.CrossRefGoogle ScholarPubMed
Boeg Thomsen, D., Theakston, A., Kandemirci, B., & Brandt, S. (2021). Do complement clauses really support false-belief reasoning? A longitudinal study with Englishspeaking 2-to 3-year-olds. Developmental Psychology, 57(8), 1210.CrossRefGoogle ScholarPubMed
Brown, C. R., & Brown, M. B. (1996). Coloniality in the cliff swallow: The effect of group size on social behavior. University of Chicago Press.Google Scholar
Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11(2), 4957.CrossRefGoogle ScholarPubMed
Clary, D., & Kelly, D. M. (2011). Cache protection strategies of a non-social food-caching corvid, Clark’s nutcracker (Nucifraga columbiana). Animal Cognition, 14, 735744.CrossRefGoogle ScholarPubMed
DeCasien, A. R., Williams, S. A., & Higham, J. P. (2017). Primate brain size is predicted by diet but not sociality. Nature Ecology and Evolution, 1(5), 0112.CrossRefGoogle Scholar
De Villiers, J. G., & Pyers, J. E. (2002). Complements to cognition: A longitudinal study of the relationship between complex syntax and false-belief-understanding. Cognitive Development, 17(1), 10371060.CrossRefGoogle Scholar
Dunbar, R. I. M. (2024). Structural and cognitive mechanisms of group cohesion in primates. Behavioral and Brain Sciences, 180.CrossRefGoogle Scholar
Edelson, M. G., & Hare, T. A. (2023). Goal-dependent hippocampal representations facilitate self-control. Journal of Neuroscience, 43(46), 78227830.CrossRefGoogle ScholarPubMed
Eichenbaum, H. (2017). Memory: Organization and control. Annual Review of Psychology, 68(1), 1945.CrossRefGoogle ScholarPubMed
Garland, E. C., & Carroll, E. L. (2022). Culture and social learning in Baleen Whales. In Clark, C. W., & Garland, E. C. (Eds.), Ethology and behavioral ecology of mysticetes (pp. 177191). Springer International Publishing.CrossRefGoogle Scholar
Gruber, R., Schiestl, M., Boeckle, M., Frohnwieser, A., Miller, R., Gray, R. D., Clayton, N. S., & Taylor, A. H. (2019). New Caledonian crows use mental representations to solve metatool problems. Current Biology, 29(4), 686692.CrossRefGoogle ScholarPubMed
Hausberger, M., Richard-Yris, M. A., Henry, L., Lepage, L., & Schmidt, I. (1995). Song sharing reflects the social organization in a captive group of European starlings (Sturnus vulgaris). Journal of Comparative Psychology, 109(3), 222.CrossRefGoogle Scholar
Holzhaider, J. C., Sibley, M. D., Taylor, A. H., Singh, P. J., Gray, R. D., & Hunt, G. R. (2011). The social structure of New Caledonian crows. Animal Behaviour, 81(1), 8392.CrossRefGoogle Scholar
Kopp, K. S., & Liebal, K. (2018). Conflict resolution in socially housed Sumatran orangutans (Pongo abelii). PeerJ, 6, e5303.CrossRefGoogle ScholarPubMed
Mettke-Hofmann, C. (2014). Cognitive ecology: Ecological factors, life-styles, and cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 5(3), 345360.Google ScholarPubMed
Patel, D., & Bhatt, N. (2020). Nesting, protective and foraging behavior of Oecophylla smaragdina (Weaver Ants) in Anand, Gujarat. Advances in Zoology and Botany, 8(4), 351357.CrossRefGoogle Scholar
Pinto, A., Oates, J., Grutter, A., & Bshary, R. (2011). Cleaner wrasses Labroides dimidiatus are more cooperative in the presence of an audience. Current Biology, 21(13), 11401144.CrossRefGoogle ScholarPubMed
Ridgway, S. H., Carlin, K. P., Van Alstyne, K. R., Hanson, A. C., & Tarpley, R. J. (2017). Comparison of dolphins’ body and brain measurements with four other groups of cetaceans reveals great diversity. Brain Behavior and Evolution, 88(3-4), 235257.CrossRefGoogle Scholar
Rubin, R. D., Watson, P. D., Duff, M. C., & Cohen, N. J. (2014). The role of the hippocampus in flexible cognition and social behavior. Frontiers in Human Neuroscience, 8, 742.CrossRefGoogle ScholarPubMed
Shi, E. R. (2024). Across the boundary: The formalization of the interface between episodic memory and narrow syntax computation of human language. Biolinguistics, 18, 124.CrossRefGoogle Scholar
Spencer, K. A., Buchanan, K. L., Goldsmith, A. R., & Catchpole, C. K. (2004). Developmental stress, social rank and song complexity in the European starling (Sturnus vulgaris). Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(3), S121S123.CrossRefGoogle Scholar
Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99(2), 195.CrossRefGoogle ScholarPubMed
Tibbetts, E. A. (2002). Visual signals of individual identity in the wasp Polistes fuscatus. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1499), 14231428.CrossRefGoogle ScholarPubMed
Todorov, O. S., Weisbecker, V., Gilissen, E., Zilles, K., & De Sousa, A. A. (2019). Primate hippocampus size and organization are predicted by sociality but not diet. Proceedings of the Royal Society B, 286(1914), 20191712.CrossRefGoogle Scholar
Van Schaik, C. P., & Van Hooff, J. A. R. A. M. (1996). Toward an understanding of the orangutan’s social system. In McGrew, W. C., Marchant, L. F., & Nishida, T. (Eds.), Great ape societies (pp. 315). Cambridge University Press.CrossRefGoogle Scholar
Warren, D. E., & Duff, M. C. (2014). Not so fast: Hippocampal amnesia slows word learning despite successful fast mapping. Hippocampus, 24(8), 920933.CrossRefGoogle ScholarPubMed
Zhang, Q., & Shi, E. R. (2021). Why language survives as the dominant communication tool: A neurocognitive perspective. Behavioral & Brain Sciences, 44, e94.CrossRefGoogle Scholar