Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T01:21:03.154Z Has data issue: false hasContentIssue false

Physiological and biochemical indicators of mussel seed quality in relation to temperatures

Published online by Cambridge University Press:  01 July 2011

Réjean Tremblay*
Affiliation:
Institut des sciences de la mer– UQAR, 310 allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
Thomas Landry
Affiliation:
Department of Fisheries and Oceans, Aquaculture and Coastal Ecosystem Section, Gulf Fisheries Centre, Moncton, NB, E1C 9B6, Canada
Neil Leblanc
Affiliation:
National Veterinary Institute (SVA), Ullsväg 2B, 75189 Uppsala, Sweden
Fabrice Pernet
Affiliation:
IFREMER, Laboratoire Environnement Ressources en Languedoc-Roussillon, Pôle “Mer et Lagunes”, Bd Jean Monnet, BP 171, 34203 Sète Cedex, France
Carla Barkhouse
Affiliation:
Department of Fisheries and Oceans, Aquaculture and Coastal Ecosystem Section, Gulf Fisheries Centre, Moncton, NB, E1C 9B6, Canada
Jean-Marie Sévigny
Affiliation:
Pêches et Océans Canada, Direction des sciences halieutiques et aquaculture, Institut Maurice-Lamontagne, 850 Route de la Mer, Mont-Joli, Québec, G5H 3Z4, Canada
*
a Corresponding author: rejean_tremblay@uqar.qc.ca
Get access

Abstract

The bivalve’s aquaculture industry is an important component of the economy in Eastern Canada. Seed collection is an initial and critical activity in most bivalve aquaculture industries including mussel farming in Prince Edward Island, production is entirely dependent on natural spat collection. Although seed supply is not a concern from a quantitative standpoint, there are growing concerns about the quality of natural seed. The general objective of this study was to identify and assess mussel seed quality criteria on the basis of physiological and biochemical status under laboratory and field conditions. The performance, as estimated by metabolic measurements, lipid class composition, multi-locus heterozygosity (MLH) and survival to stressful environment of seed from 6 different stocks sources was first compared under laboratory conditions at 12 °C and 25 °C. Results showed that MLH varied among the six sources of mussels in a way which is consistent with the physiological and biochemical indicators of seed quality. Mussels from Shippagan (New Brunswick) and Tracadie (Prince Edward Island) were found to have the highest quality scores and the best adaptive capacity to extreme water temperature under laboratory conditions. The results of the stock-site reciprocal field studies are in general agreement with those of the laboratory experiments with higher survival of mussels from Shippagan, Tracadie and St. Peters Bays in the various study sites. Our results suggest that the measure of MLH and survival curves at stressful temperature could be a good criteria combination to identify the improved survival potential of mussels stocks.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayne, B.L., 1973, Aspects of the metabolism of Mytilus edulis during starvation. Neth. J. Sea Res. 37, 399410. CrossRefGoogle Scholar
Beaumont, A.R., Hawkins, M.P., Doig, F.L., Davies, I.M., Snow, M., 2008, Three species of Mytilus and their hybrids identified in a Scottish Loch: natives, relicts and invaders? J. Exp. Mar. Biol. Ecol. 367, 100110. CrossRefGoogle Scholar
Beaumont, A.R., Toro, J., 1996, Allozyme genetics of Mytilus edulis subjected to copper and nutritive stress. J. Mar. Biol. Assoc. UK 76, 10611071. CrossRefGoogle Scholar
Belkhir K., Borsa P., Goudet J., Chikhi L., Bonhomme F., 1998, Genetix, logiciel sous WindowsMT pour la génétique des populations. Laboratoire génome et populations, CNRS UPR 9060, Université de Montpellier II.
Britten, H.B., 1996, Meta-analyses of the association between multilocus heterozygosity and fitness. Evolution 50, 21582164. CrossRefGoogle ScholarPubMed
Brokordt, K., Leiva, N., Jeno, K., Martínez, G., Winkler, F., 2009, Effect of allozyme heterozygosity on basal and induced levels of heat shock protein (Hsp70), in juvenile Concholepas concholepas (Mollusca). J. Exp. Mar. Biol. Ecol. 370, 1826. CrossRefGoogle Scholar
Comeau, L.A., Drapeau, A., Landry, T., Davidson, J., 2008, Development of longline mussel farming and the influence of sleeve spacing in Prince Edward Island, Canada. Aquaculture 281, 5662. CrossRefGoogle Scholar
Crockett, E.L., 1998, Cholesterol function in plasma membranes from ectotherms: membrane-specific roles in adaptation to temperature. Am. Zool. 38, 291304. CrossRefGoogle Scholar
Folch, J., Lees, M., Sloane-Stanlez, G.H., 1957, A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497509. Google ScholarPubMed
Freites, L., Fernandez-Reiriz, M.J., Labarta, U., 2002, Lipid classes of mussel seeds Mytilus galloprovincialis of subtidal and rocky shore origin. Aquaculture 207, 97111. CrossRefGoogle Scholar
Fuentes, J., Reyero, I., Zapata, C., Alvarez, G., 1992, Influence of stock and culture site on growth rate and mortality of mussels (Mytilus galloprovincialis Lmk.) in Galicia, Spain. Aquaculture 105, 131142. CrossRefGoogle Scholar
Gallager, S.M., Mann, R., Sasaki, G.C., 1986, Lipid as an index of growth and viability in three species of bivalve larvae. Aquaculture 56, 81103. CrossRefGoogle Scholar
Gentili, M.R., Beaumont, A.R., 1988, Environmental stress, heterozygosity, and growth rate in Mytilus edulis L. J. Exp. Mar. Biol. Ecol. 120, 145153. CrossRefGoogle Scholar
Gosling E., 1992, Systematics and geographic distribution of Mytilus. In: Gosling E. (Ed.), The mussel Mytilus: ecology, physiology, genetics and culture, Amsterdam, Elsevier, pp. 1–20.
Hawkins, A.J.S., J. Widdows, A.R., Bayne, B.L., 1989, The relevance of whole-body protein metabolism to measured costs of maintenance and growth in Mytilus edulis. Physiol. Zool. 62, 745763. CrossRefGoogle Scholar
Heath, D.D., Rawson, P.D., Hilbish, T.J., 1995, PCR-based nuclear markers identify alien blue mussel (Mytilus spp.) genotypes on the west coast of Canada. Can. J. Fish. Aquat. Sci. 52, 26212627. CrossRefGoogle Scholar
Johnson, S.B., Geller, J.B., 2006, Larval settlement can explain the adult distribution of Mytilus californianus Conrad but not of M. galloprovincialis Lamarck or M. trossulus Gould in Moss Landing, central California: evidence from genetic identification of spat. J. Exp. Mar. Biol. Ecol. 328, 136145. CrossRefGoogle Scholar
Koehn, R.K., Gaffney, P.M., 1984, Genetic heterozygosity and growth rate in Mytilus edulis. Mar. Biol. 82, 17. CrossRefGoogle Scholar
Lane, D.J.W., Beaumont, A.R., Hunter, J.R., 1985, Byssus drifting and the drifting threads of the young post-larval mussel Mytilus edulis. Mar. Biol. 84, 301308. CrossRefGoogle Scholar
Lang, R.P., Langdon, C.J., Taris, N.G., Camara, M.D., 2010, Use of laboratory assays to predict subsequent growth and survival of Pacific oyster (Crassostrea gigas) families planted in coastal waters. Aquaculture 306, 6879. CrossRefGoogle Scholar
LeBlanc, N., Landry, T., Stryhn, H., Tremblay, R., McNiven, M., Davidson, J., 2005, The effect of high air and water temperature on juvenile Mytilus edulis in Prince Edward Island, Canada. Aquaculture 243, 185194. CrossRefGoogle Scholar
LeBlanc, N., Tremblay, R., Davidson, J., Landry, T., McNiven, M., 2008, The effect of selection treatments on Mytilus edulis, modifications of genetic and physiological characteristics. Mar. Biol. 153, 11421152. CrossRefGoogle Scholar
Lesbarreres, D., Primmer, C., Laurila, A., Juha, M., 2005, Environmental and population dependency of genetic variability-fitness correlations in Rana temporaria. Mol. Ecol. 14, 311323. CrossRefGoogle ScholarPubMed
Mallet A., Myrand B., 1995, The culture of the blue mussel in Atlantic Canada. In: Boghen A.D. (Ed.), Cold-Water Aquaculture in Atlantic Canada, 2nd edn., Moncton, Canada, Canadian Institute for Research on Regional Development, pp. 255–296.
Mallet, A.L., Carver, C.E.A., Freeman, K.R., 1990, Summer mortality of the blue mussel in eastern Canada: spatial, temporal, stock and age variation. Mar. Ecol. Prog. Ser. 67, 3541. CrossRefGoogle Scholar
Moreau, V., Tremblay, R., Bourget, E., 2005, Distribution of Mytilus edulis and M. trossulus on the Gaspe coast in relation to spatial scale. J. Shellfish Res. 24, 545551. Google Scholar
Myrand, B., Gaudreault, J., 1995, Summer mortality of blue mussels (Mytilus edulis Linneaus, 1758) in the Magdalen Islands (southern Gulf of St Lawrence, Canada). J. Shellfish Res. 14, 395404. Google Scholar
Myrand, B., Tremblay, R., Sévigny, J.-M., 2002, Selection against blue mussels (Mytilus edulis L.) homozygotes under various stressful conditions. J. Hered. 93, 238248. CrossRefGoogle ScholarPubMed
Nicastro, K.R., Zardi, G.I., McQuaid, C.D., Teske, P.R., Barker, N.P., 2008, Coastal topography drives genetic structure in marine mussels. Mar. Ecol. Prog. Ser. 368, 189195. CrossRefGoogle Scholar
Palumbi, S.R., 1992, Marine speciation on a small planet. Trends Ecol. Evol. 7, 114118. CrossRefGoogle Scholar
Parrish C.C., 1999, Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In: Arts M.T., Wainman B.C. (Eds.), Lipids in freshwater ecosystems, New York, Springer-Verlag, pp. 4–20.
Pernet, F., Tremblay, R., Comeau, L., Guderley, H., 2007, Temperature adaptation in two bivalve species from different thermal habitat: energetics and remodeling of membrane lipids. J. Exp. Biol. 210, 29993014. CrossRefGoogle Scholar
Pernet, F., Tremblay, R., Gionet, C., Landry, T., 2006, Lipid remodeling in wild and selectively bred hard clams at low temperatures in relation to genetic and physiological parameters. J. Exp. Biol. 209, 46634675. CrossRefGoogle ScholarPubMed
Prato, E., Danieli, A., Maffia, M., Biandolino, F., 2010, Lipid and fatty acid compositions of Mytilus galloprovincialis cultured in the Mar Grande of Taranto (Southern Italy): feeding strategies and trophic relationships. Zool. Stud. 49, 211219. Google Scholar
Rayssac, N., Pernet, F., Lacasse, O., Tremblay, R., 2010, Temperature effect on survival, growth, and triacylglycerol content during the early ontogeny of Mytilus edulis and M. trossulus. Mar. Ecol. Prog. Ser. 417, 183191. CrossRefGoogle Scholar
Rice, W.R., 1989, Analyzing tables of statistical tests. Evolution 43, 223225. CrossRefGoogle ScholarPubMed
Ridgway, G., 2001, Interpopulation variation in blue mussels, Mytilus edulis L., over short distances. Sarsia 86, 157161. CrossRefGoogle Scholar
Rousset, F., 2008, GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Notes 8, 103106. CrossRefGoogle ScholarPubMed
Siegel, D.A., Kinlan, B.P., Gaylord, B., Gaines, S.D., 2003, Lagrangian descriptions of marine larval dispersion. Mar. Ecol. Prog. Ser. 260, 8396. CrossRefGoogle Scholar
Siegel, D.A., Mitarai, S., Costello, C.J., Gaines, S.D., Kendall, B.E., Warner, R.R., Winters, K.B., 2008, The stochastic nature of larval connectivity among nearshore marine populations. Proc. Nat. Acad. Sci. USA 105, 89748979. CrossRefGoogle Scholar
Smith G., 2009, P E I Mussel Monitoring Program. Technical Report No. 243.
Star, B., Apte, S., Gardner, J.P.A., 2003, Genetic structuring among populations of the greenshell mussel Perna canaliculus revealed by analysis of randomly amplified polymorphic DNA. Mar. Ecol. Prog. Ser. 249, 171182. CrossRefGoogle Scholar
Suckling, K.E., Blair, H.A.F., Boyd, G.S., Craig, I.F., Malcolm, B.R., 1979, The importance of the phospholipid bilayer and the length of the cholesterol molecule in membrane structure. Biochim. Biophys. Acta 551, 1021. CrossRefGoogle ScholarPubMed
Thompson, R.J., Bayne, B.L., 1972, Active metabolism associated with feeding in the mussel Mytilus edulis L. J. Exp. Mar. Biol. Ecol. 9, 111124. CrossRefGoogle Scholar
Toro, J.E., Ojeda, J.A., Vergara, A.M., 2004, The genetic structure of Mytilus chilensis (Hupe, 1854) populations along the Chilean coast based on RAPDs analysis. Aquac. Res. 35, 14661471. CrossRefGoogle Scholar
Tremblay, R., Cartier, S., Miner, P., Pernet, F., Quéré, C., Moal, J., Muzellec, , Mazuret, M., Samain, J.-F., 2007, Effect of Rhodomonas salina addition to a standard hatchery diet during the early ontogeny of the scallop Pecten maximus. Aquaculture 262, 410418. CrossRefGoogle Scholar
Tremblay, R., Myrand, B., Sevigny, J.-M., 1998a, Genetic characterization of wild and suspension-cultured blue mussels (Mytilus edulis Linnaeus, 1758) in the Magdalen Islands (southern Gulf of St. Lawrence, Canada). J. Shellfish Res. 17, 11911202. Google Scholar
Tremblay, R., Myrand, B., Sévigny, J.-M., Blier, P., Guderley, H., 1998b, Bioenergetic and genetic parameters in relation to susceptibility of blue mussels, Mytilus edulis (L.) to summer mortality. J. Exp. Mar. Biol. Ecol. 221, 2758. CrossRefGoogle Scholar
Waite, L., Grant, J., Davidson, J., 2005, Bay-scale spatial growth variation of mussels Mytilus edulis in suspended culture, Prince Edward Island, Canada. Mar. Ecol. Prog. Ser. 297, 157167. CrossRefGoogle Scholar
Weir, B.S., Cockerham, C.C., 1984, Estimating F-statistics for the analysis of population structure. Evolution 38, 13581370. Google ScholarPubMed
Zehmer, J.K., Hazel, J.R., 2003, Plasma membrane rafts of rainbow trout are subject to thermal acclimation. J. Exp. Biol. 206, 16571667. CrossRefGoogle ScholarPubMed