Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T03:23:48.708Z Has data issue: false hasContentIssue false

A multi-agent ecosystem model for studying changes in atropical estuarine fish assemblage within a marine protected area

Published online by Cambridge University Press:  28 November 2012

Timothée Brochier*
Affiliation:
Institut de Recherche pour le Développement (IRD), UMR LEMAR 195/6539 (CNRS/IRD/UBO/Ifremer), BP 1386 Dakar, Senegal
Jean Marc Ecoutin
Affiliation:
Institut de Recherche pour le Développement (IRD), UMR LEMAR 195/6539 (CNRS/IRD/UBO/Ifremer), BP 1386 Dakar, Senegal
Luis Tito de Morais
Affiliation:
Institut de Recherche pour le Développement (IRD), UMR LEMAR 195/6539 (CNRS/IRD/UBO/Ifremer), BP 1386 Dakar, Senegal
David M. Kaplan
Affiliation:
Institut de Recherche pour le Développement (IRD), UMR 212 EME (IRD, Ifremer, U. Montpellier II), av. Jean Monnet, BP 171, 34203 Sète Cedex, France
Raymond Lae
Affiliation:
Institut de Recherche pour le Développement (IRD), UMR LEMAR 195/6539 (CNRS/IRD/UBO/Ifremer), BP 1386 Dakar, Senegal
*
a Corresponding author: timothee.brochier@gmail.com
Get access

Abstract

As marine protected areas (MPAs) are increasingly being utilised as a tool for fisherymanagement, their impact on the food web needs to be fully understood. However, little isknown about the effect of MPAs on fish assemblages, especially in the presence ofdifferent life history and ecological traits. Modelling the observed changes in fishpopulation structures may provide a mechanistic understanding of fish assemblage dynamics.In addition, modelling allows a quantitative estimate of MPA spill-over. To achieve thispurpose, we adapted an existing ecosystem model, OSMOSE (Object-oriented simulator ofmarine biodiversity exploitation), to the specific case of the presence of fish withmultiple life histories. The adapted model can manage 4 main categories of life historyidentified in an estuary MPA: fish that (1) spend their entire life cycle locally, (2) arepresent only as juveniles, (3) enter the area as juveniles and stay permanently exceptduring reproduction periods, which occur outside the estuary, and (4) are presentoccasionally and for a short time for foraging purposes. To take into account thesespecific life-history traits, the OSMOSE code was modified. This modelling approach wasdeveloped in the context of the Bamboung Bolong MPA, located in a mangrove area in theSine-Saloum Delta, Senegal. This was the ideal case to develop our approach as there hasbeen scientific monitoring of the fish population structure inside the MPA before fisheryclosure, providing a reference state, and continuous monitoring since the closure.Ecologically similar species were pooled by trophic traits into 15 groups that represented97% of the total biomass. Lower trophic levels (LTL) were represented by 6 compartments.The biomass of the model species was calibrated to reproduce the reference situationbefore fishery closure. Model predictions of fish assemblage changes after fishery closurecorresponding to the Bamboung MPA creation scenario were compared to field observations;in most cases the model reproduces observed changes in biomass (at least in direction). Wesuggest the existence of a “sanctuary effect”, that was not taken into account in themodel, this could explain the observed increase in biomass of top predators not reproducedby the model. Finally, the annual MPA fish spill-over was estimated at 11 tons (~33% ofthe fish biomass) from the model output, mainly due to diffusive effects.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Albaret, J.J., Simier, M., Darboe, F.S., Ecoutin, J.M., Raffray, J., de Morais, L.T., 2004, Fish diversity and distribution in the Gambia Estuary, West Africa, in relation to environmental variables. Aquat. Living Resour. 17, 3546. CrossRefGoogle Scholar
Apostolaki, P., Milner-Gulland, E.J., McAllister, M.K., Kirkwood, G.P., 2002, Modelling the effects of establishing a marine reserve for mobile fish species. Can. J. Fish. Aquat. Sci. 59, 405415. CrossRefGoogle Scholar
Ball I.R., Possingham H.P., Watts M., 2009, Marxan and relatives : software for spatial conservation prioritisation. Spatial conservation prioritisation : quantitative methods and computational tools. Oxford University Press, Oxford, pp.185–195.
Christensen, V., Ferdaña, Z., Steenbeek, J., 2009, Spatial optimization of protected area placement incorporating ecological, social and economical criteria. Ecol. Model. 220, 25832593. CrossRefGoogle Scholar
Christensen V., Walters C.J., Pauly D., et al., 2000, Ecopath with Ecosim : a user’s guide. University of British Columbia, Fisheries Centre, Vancouver, Canada and ICLARM, Penang, Malaysia.
Claudet, J., Osenberg, C.W., Benedetti-Cecchi, L., Domenici, P., García-Charton, J., Pérez-Ruzafa, A., Badalamenti, F., Bayle-Sempere, J., Brito, A., Bulleri, F., Culioli, J., Dimech, M., Falcón, J.M., Guala, I., Milazzo, M., Sánchez-Meca, J., Somerfield, P.J., Stobart, B., Vandeperre, F., Valle, C., Planes, S., 2008, Marine reserves : size and age do matter. Ecol. Lett. 11, 481489. CrossRefGoogle ScholarPubMed
Claudet, J., Osenberg, C.W., Domenici, P., Badalamenti, F., Milazzo, M., Falcón, J.M., Bertocci, I., Benedetti-Cecchi, L., García-Charton, J.-A., Goñi, R., Borg, J.A., Forcada, A., de Lucia, G.A., Pérez-Ruzafa, Á., Afonso, P., Brito, A., Guala, I., Diréach, L.L., Sanchez-Jerez, P., Somerfield, P.J., Planes, S., 2010, Marine reserves : Fish life history and ecological traits matter. Ecol. Appl. 20, 830839. CrossRefGoogle ScholarPubMed
Colléter, M., Gascuel, D., Ecoutin, J.M., Tito de Morais, L., 2012, Modelling trophic flows in ecosystems to assess the efficiency of marine protected area (MPA), a case study on the coast of Senegal. Ecol. Model. 232, 113. CrossRefGoogle Scholar
Denney, N.H., Jennings, S., Reynolds, J.D., 2002, Life–history correlates of maximum population growth rates in marine fishes. Proc. R. Soc. Lond. B 269, 22292237. CrossRefGoogle ScholarPubMed
Duboz, R., Versmisse, D., Travers, M., Ramat, E., Shin, Y.J., 2010, Application of an evolutionary algorithm to the inverse parameter estimation of an individual-based model. Ecol. Model. 221, 840849. CrossRefGoogle Scholar
Ecoutin, J.M., Simier, M., Albaret, J.J., Laë, R., Tito de Morais, L., 2010, Changes over a decade in fish assemblages exposed to both environmental and fishing constraints in the Sine Saloum estuary (Senegal). Estuar. Coast. Shelf Sci. 87, 284292. CrossRefGoogle Scholar
Froese R., Pauly D., 2000, FishBase 2000 : concepts, design and data sources. ICLARM Contribution 1594.
Grüss, A., Kaplan, D.M., Guénette, S., Roberts, C.M., Botsford, L.W., 2011, Consequences of adult and juvenile movement for marine protected areas. Biol. Conserv. 144, 692702. CrossRefGoogle Scholar
Johannes, R.E.Freeman, M.M.R.Hamilton, R.J., 2000, Ignore fishers’ knowledge and miss the boat. Fish Fish. 1, 257271. CrossRefGoogle Scholar
Kaplan, D.M., Planes, S., Fauvelot, C., Brochier, T., Lett, C., Bodin, N., Le Loc'h, F., Tremblay, Y., Georges, J.Y., 2010, New tools for the spatial management of living marine resources. Curr. Opinion Environ. Sustain. 2, 8893. CrossRefGoogle Scholar
Kellner, J.B., Tetreault, I., Gaines, S.D., Nisbet, R.M., 2007, Fishing the line near marine reserves in single and multispecies fisheries. Ecol. Appl. 17, 10391054. CrossRefGoogle ScholarPubMed
McClanahan, T.R., Marnane, M.J., Cinner, J.E., Kiene, W.E., 2006, A comparison of marine protected areas and alternative approaches to coral-reef management. Curr. Biol. 16, 14081413. CrossRefGoogle ScholarPubMed
Moreno-Báez, M., Orr, B.J., Cudney-Bueno, R., Shaw, W.W., 2010, Using fishers’ local knowledge to aid management at regional scales : spatial distribution of small-scale fisheries in the northern Gulf of California, Mexico. Bull. Mar. Sci. 86, 339353. Google Scholar
Moustakas, A., Silvert, W., 2011, Spatial and temporal effects on the efficacy of marine protected areas : implications from an individual based model. Stoch. Environ. Res. Risk Assessm. 25, 403413. CrossRefGoogle Scholar
Pauly, D., Christensen, V., Guenette, S., Pitcher, T.J., Sumaila, U.R., Walters, C.J., Watson, R., Zeller, D., 2002, Towards sustainability in world fisheries. Nature 418, 689695. CrossRefGoogle ScholarPubMed
Pelletier, D., Claudet, J., Ferraris, J., Benedetti-Cecchi, L., Garcìa-Charton, J.A., 2008, Models and indicators for assessing conservation and fisheries-related effects of marine protected areas. Can. J. Fish. Aquat. Sci. 65, 765779. CrossRefGoogle Scholar
Plagányi E.E., 2007, Models for an ecosystem approach to fisheries. Food & Agriculture Org.
Roberts, C.M., Hawkins, J.P., Gell, F.R., 2005, The role of marine reserves in achieving sustainable fisheries. Phil. Trans. R. Soc. B 360, 123132. CrossRefGoogle ScholarPubMed
Russ, G.R., Alcala, A.C., Maypa, A.P., Calumpong, H.P., White, A.T., 2004, Marine reserve benefits local fisheries. Ecol. Appl. 14, 597606. CrossRefGoogle Scholar
Shin, Y.J., Cury, P., 2001a, Exploring fish community dynamics through size-dependent trophic interactions using a spatialized individual-based model. Aquat. Living Resour. 14, 6580. CrossRefGoogle Scholar
Shin Y.J., Cury P., 2001b, Simulation of the effects of marine protected areas on yield and diversity using a multispecies, spatially explicit, individual-based model. Spat. Process. Manage. Mar. Popul. 627–641.
Simier, M., Blanc, L., Aliaume, C., Diouf, P., Albaret, J., 2004, Spatial and temporal structure of fish assemblages in an. Estuar. Coast. Shelf Sci. 59, 6986. CrossRefGoogle Scholar
Villanueva, M.C., Laleye, P., Albaret, J.J., Lae, R., de Morais, L.T., Moreau, J., 2006, Comparative analysis of trophic structure and interactions of two tropical lagoons. Ecol. Model. 197, 461477. CrossRefGoogle Scholar
White, J.W., Botsford, L.W., Baskett, M.L., Barnett, L.A., Barr, R.J., Hastings, A., 2011, Linking models with monitoring data for assessing performance of no-take marine reserves. Front. Ecol. Environ. 9, 390399. CrossRefGoogle Scholar
White, J.W., Botsford, L.W., Moffitt, E.A., Fischer, D.T., 2010, Decision analysis for designing marine protected areas for multiple species with uncertain fishery status. Ecol. Appl. 20, 15231541. CrossRefGoogle ScholarPubMed
Yemane, D., Shin, Y.J., Field, J.G., 2009, Exploring the effect of marine protected areas on the dynamics of fish communities in the southern Benguela : an individual-based modelling approach. ICES J. Mar. Sci. 66, 378387. CrossRefGoogle Scholar