Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T08:06:39.277Z Has data issue: false hasContentIssue false

Coupling changes in fatty acid and protein compositionofArtemia salina with environmental factors in the Sfax solar saltern (Tunisia)

Published online by Cambridge University Press:  09 February 2008

Wassim Guermazi
Affiliation:
Université de Sfax, Faculté des Sciences, Département des Sciences de la Vie, Unité de recherche 00/UR/0907 Ecobiologie, Planctonologie et Microbiologie des Ecosystèmes marins, Route Soukra Km 3,5 BP 802, CP 3018 Sfax, Tunisia
Jannet Elloumi
Affiliation:
Université de Sfax, Faculté des Sciences, Département des Sciences de la Vie, Unité de recherche 00/UR/0907 Ecobiologie, Planctonologie et Microbiologie des Ecosystèmes marins, Route Soukra Km 3,5 BP 802, CP 3018 Sfax, Tunisia
Habib Ayadi
Affiliation:
Université de Sfax, Faculté des Sciences, Département des Sciences de la Vie, Unité de recherche 00/UR/0907 Ecobiologie, Planctonologie et Microbiologie des Ecosystèmes marins, Route Soukra Km 3,5 BP 802, CP 3018 Sfax, Tunisia
Abderrahmen Bouain
Affiliation:
Université de Sfax, Faculté des Sciences, Département des Sciences de la Vie, Unité de recherche 00/UR/0907 Ecobiologie, Planctonologie et Microbiologie des Ecosystèmes marins, Route Soukra Km 3,5 BP 802, CP 3018 Sfax, Tunisia
Lotfi Aleya
Affiliation:
Laboratoire de Biologie environnementale, INRA 3184, UMR CNRS 6565, Université de Franche-Comté, Place Leclerc, 25030 Besançon Cedex, France
Get access

Abstract

The biochemical composition and biometry of different Artemia salina stages were determined in four ponds of increasing salinity (M1, M2, M3 and B1) in the Sfax solar saltern (Tunisia). Results showed the dominance of saturated fatty acids, which made up 48 to 57% of total fatty acids (FAs). Polyunsaturated fatty acids (PUFAs) 22:6(n-3) docosahexaenoic acid (DHA) and 20:5(n-3) eicosapentaenoic acid (EPA) represented on average only 3.1 and 4.0% of total FAs respectively. A. salina nauplii, cysts and metanauplii, in ponds M1, M2 and B1 respectively, were found to have optimal DHA/EPA ratios (>2) for use as live feed for invertebrate and fish larvae. Significant inter-pond variation in DHA/EPA levels was also recorded. The predominant FAs in Artemia were negatively correlated with both temperature and salinity. FA and protein contents were strongly affected by high temperatures (>30 °C) and probably by food sources (e.g., Dunaliella salina) (r = 0.9, n = 27). The density of Artemiasalina was positively correlated with protein content in pond B1. The high DHA/EPA ratios (1 to 3.3) found in this study indicate that Sfax Artemia could be a valuable food source for larvae in large marine hatcheries and also for some aquarium species.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abatzopoulos, T.J., Baxevanis, A.D., Triantaphyllidis, G.V., Criel, G., Pador, E.L., Van Stappen, G., Sorgeloos, P., 2006, Quality evaluation of Artemia urmiana Günther (Urmia Lake, Iran) with special emphasis on its particular cyst characteristics (International study on Artemia LXIX). Aquaculture 254, 442-454. CrossRef
Amat, F., Hontoria, F., Olga, R., Green, A.J., Sanchez, M.I., Figuerola, J., Hortas, F., 2005, The American brine shrimp as an exotic invasive species in the western Mediterranean. Biol. Inv. 7, 37-47. CrossRef
Amat F.D., 1979, Diferenciación y distribución de las poblaciones de Artemia (Crustáceo branquiópodo) de España. Tesis Doctoral, Universidad Barcelona.
Ando, Y., Oomi, Y., Narukawa, K., 2002, Regiospecific distribution of fatty acids in triacylglycerols of Artemia franciscana nauplii enriched with fatty acid ethyl esters. Comp. Biochem. Phys. B. 133, 191-199. CrossRef
Arts, M.T., Ackman, R.G., Holub, B.J., 2001, “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 58, 122-137. CrossRef
Ayadi, H., Abid, O., Elloumi, J., Bouain, A., Sime-Ngando, T., 2004, Structure of the phytoplankton communities in two lagoons of different salinity in the Sfax saltern (Tunisia). J. Plankton Res. 26, 669-679. CrossRef
Barata C., Hontoria F., Amat F., 1996, Estimation of the biomass production of Artemia With regard to its use in aquaculture: temperature and strain effects. Aquaculture142, 171-189.
Baxevanis, A.D., El-Bermawi, N., Abatzopoulos, T.J., Sorgeloos, P., 2004, Salinity effects on maturation, reproductive and life span characteristics of four Egyptian populations (International Study on Artemia, LXVIII). Hydrobiologia 513, 87-100. CrossRef
Browne R.A., Wanigasekera G. 2000, Combined effects of salinity and temperature on survival and reproduction of five species of Artemia. J. Exp. Mar. Biol. Ecol. 244, 29-44.
Camargo W.N., Duran G.C., Hernandez L.C., Rada O.C., Linero J.C.G., Muelle I.M., Sorgeloos P., 2005, Determination of biological and physico-chemical parameters of Artemia franciscana (Kellogg, 1906) strains in hypersaline environments for aquaculture in the Colombian Caribbean. Sal. Syst. 1-9.
Chessel D., Doledec S., 1992, ADE Software (Version 3.6). Multivariate Analyses and Graphical Display for Environmental Data. User's Manual.
Cho, J.Y., Lim, H.J., Jin, H.J., Hong, Y.K., Whyte, J.N.C., Hong, Y.K., 1999, Growth activation of the microalga (Isochrysis galbana) by the aqueous extract of the seaweed (Monostroma nitidum). J. Appl. Phycol. 10, 561-567. CrossRef
Dhont J., Sorgeloos P., 2002, Applications of Artemia. In: Abatzopoulos T.J., Beardmore J.A., Clegg J.S., Sorgeloos P. (Eds.) Artemia: Basic and Applied Biology, Kluwer Academic Publishers, Dordrecht, pp. 251-277.
El-Bermawi, N., Baxevanis, A.D., Abatzopoulos, T.J., Van Stappen, G., Sorgeloos, P., 2004, Salinity effects on survival, growth and morphometry of four Egyptian Artemia populations (International Study on Artemia. LXVII). Hydrobiologia 523, 175-188. CrossRef
Elloumi, J., Carrias, J.F., Ayadi, H., Sime-Ngando, T., Boukhris, M., Bouain, A., 2006, Composition and distribution of planktonic ciliates from ponds of different salinity in the solar saltwork of Sfax, Tunisia. Estuar. Coast. Shelf Sci. 67, 21-29. CrossRef
Elloumi, J., Guermazi, W., Ayadi, H., Bouain, A., Aleya, L., 2008, Detection of water and sediments pollution of an arid saltern (Sfax, Tunisia) by coupling the distribution of microorganisms with hydrocarbons. Water Air Soil Pollut. 187, 157-171. CrossRef
Espinosa-Fuentes, A., Ortega-Salas, A., Laguarda-Figueras, A., 1997, Two experimental assays to produce biomass of Artemia franciscana (Anostraca). Rev. Biol. Trop. 44, 565-572.
Estevez, A., Kaneko, T., Seikai, T., Tagawa, M., Tanaka, M., 2001, ACTH and MSH production in Japanese flounder (Paralichthys olivaceus) larvae fed arachidonic acid-enriched live prey. Aquaculture 192, 309-319. CrossRef
Evjemo, J.O., Coutteau, P., Olsen, Y., Sorgeloos, P., 1997, The stability of docosahexaenoic acid in two Artemia species following enrichment and subsequent starvation. Aquaculture 155, 135-148. CrossRef
Folch, J., Lees, M., Stanley, G.H., 1957, A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497-509.
Frontier, S., 1973, Etude statistique de la dispersion du zooplancton. J. Exp. Mar. Biol. Ecol. 12, 229-262. CrossRef
Furuita, H., Tanaka, H., Yamamoto, T., Shiraishi, M., Takeuchi, T., 2000, Effects of n-3 HUFA levels in broodstock diet on the reproductive performance and egg and larval quality of the Japanese flounder (Paralichthys olivaceus). Aquaculture 187, 387-398. CrossRef
Hamazaki, T., Thienprasert, A., Kheovichai, K., Samuhaseneetoo, S., Nagasawa, T., Watanabe, S., 2002, The effect of docosahexaenoic acid on aggression in elderly Thai subjects-A placebo-controlled doubleblind study. Nutr. Neurosci. 5, 37-41. CrossRef
Han, K., Guerdon, I., Sorgeloos, P., 2000, Comparison of docosahexaenoic acid (22:6n-3) levels in various Artemia strains during enrichment and subsequent starvation. J. World. Aquacult. Soc. 31, 469-475. CrossRef
Han K., Geurden I., Sorgeloos P., 2001, Fatty acid changes in enriched and subsequently starved Artemia franciscana nauplii enriched with different essential fatty acids. Aquaculture199, 93-105.
Ito, M.K., Simpson, K.L., 1996, The biosynthesis of omega-3 fatty acids from 18:2w6 in Artemia spp. Comp. Biochem. Phys. B 115, 69-76. CrossRef
Kainz, M., Arts, M.T., Mazumder, A., 2004, Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnol. Oceanogr. 49, 1784-1793. CrossRef
Kara, M.H., Bengraine, K.A., Derbal, F., Chaoui, L., Amarouayache, M., 2004, Quality evaluation of a new strain of Artemia from Chott Marouane (Northeast Algeria). Aquaculture 235, 361-369. CrossRef
Lavens, P., Sorgeloos, P., 1996, Manual on the production and use of live food for aquaculture. FAO Fisheries Tech. Pap. 361, 175-180.
Lavens, P., Coutteau, P., Sorgeloos, P., 1995, Laboratory and field variation in HUFA enrichment of Artemia nauplii. In: Lavens P., Jaspers E., Roelants I. (Eds.) Larvi'95 Fish and Shellfish Larviculture, Eur. Aquacult. Soc. Spec. Publ. Gent 24, 137-140.
Lepage, G., Roy, C.C., 1984, Improved recovery of fatty acids through direct transesterification without prior extraction or purification. J. Lipid Res. 16, 593600.
Litchfield, C.D., Irby, A., Kis-Papo, T., Oren, A., 2000, Comparisons of the polar lipid and pigment profiles of two solar salterns located in Newark, California, & Eilat. Extremophiles 4, 259-265. CrossRef
Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951, Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
Malpica Sanchez, A., Castro Barrera, T., Sandoval Trujillo, H., Castro Mejía, J., DeLara Andrade, R., Castro Mejía, G., 2004, Composición del contenido de ácidos grasos en tres poblaciones mexicanas de (Artemia franciscana) de aguas epicontinentales. Rev. Biol. Trop. 52, 297-300. CrossRef
Moraiti-Ioannidou, M., Castritsi-Catharios, J., Miliou, H., Kotzamanis, Y.P., 2007, Fatty acid composition and biometry of five Greek Artemia populations suitable for aquaculture purposes. Aquac. Res. 38, 1664-1672. CrossRef
Mostofsky D.I., Yehuda S., Salem Jr.N., 2001, Fatty acids-physiological and behavioural functions. Humana Press.
Mura, G., Brecciaroli, B., 2004, Use of morphological characters for species separation within the genus Artemia (Crustacea, Branchiopoda). Hydrobiologia 520, 179-188. CrossRef
Navarro, J.C., Amat, F., Sargent, J.R., 1991, A study of the variations in lipid levels, lipid class composition and fatty acid composition in the first stage of Artemia sp. Mar. Biol. 111, 461-465. CrossRef
Ostrowski, A.C., Divakaran, S., 1990, Survival and bioconversion of n-3 fatty acids during early development of dolphin (Coryphaena hippurus) larvae fed oil enriched rotifers. Aquaculture 89, 273-285. CrossRef
Ozkizilcik, S., Chu, F.E., 1994, Evaluation of omega-3 fatty acid enrichment of Artemia nauplii as food for striped bass (Morone saxatilis) Walbaum larvae. J. World Aquacult. Soc. 25, 147-154. CrossRef
Pedrós-Alió, C., Calderon-Paz, J.I., MacLean, M.H., Medina, G., Marrasé, C., Gasol, J.M., Guixa-Boixereu, N., 2000, The microbial food web along salinity gradients. FEMS. Microbiol. Ecol. 32, 143-155. CrossRef
Perez, M.L., Valverde, J.R., Batuecas, B., Amat, F., Marco, R., Garesse, R., 1994, Speciation in the Artemia genus: mitochondrial DNA analysis of bisexual and parthenogenetic brine shrimps. J. Mol. Evol. 38, 156-168. CrossRef
Sargent, J., Bell, G., McEvoy, L., Tocher, D., Estevez, A., 1999, Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177, 191-199. CrossRef
Sorgeloos P., Lavens P., Leger P., Tackaert W., Versichele D., 1986, Manual for the culture and use of brine shrimp (Artemia) in aquaculture. FAO, Univ. Ghent, Facult. Agricult.
Sorgeloos, P., Dhert, P., Candreva, P., 2001, Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 200, 147-159. CrossRef
Triantaphyllidis, G.V., Abatzopoulos, T.J., Sorgeloos, P., 1998, Review of the biogeography of the genus Artemia (Crustacea Anostraca). J. Biogeogr. 25, 213-226. CrossRef
Triantaphyllidis, G.V., Poulopoulou, K., Abatzopoulos, T.J., Perez, C.A.P., Sorgeloos, P., 1995, International study on Artemia XLIX. Salinity effects in survival, maturity, biometrics, reproductive and lifespan characteristics of a bisexual and a parthenogenetic population of Artemia. Hydrobiologia 302, 215-227. CrossRef
Vanhaecke P., Sorgeloos P., 1980, International study on Artemia: IV. The biometrics of Artemia strains from different geographical origin. In: Persoone G., Sorgeloos P., Roels O., Jaspers E. (Eds.) The Brine Shrimp Artemia: Ecology, Culturing, Use in Aquaculture (niversa Press, Wetteren), 3, 393-405.
Vismara, R., Vestri, S., Barsanti, L., Gualtieri, P., 2003, Diet induced variations in fatty acid content and composition of two on-grown stages of Artemia salina. J. Appl. Phycol. 15, 477-483. CrossRef
Waldock, M.J., Holland, D.L., 1984, Fatty acid metabolism in young oysters, (Crassostrea gigas ): polyunsaturated fatty acids. Lipids 19, 332-336. CrossRef
Webster, C.D., Lovell, R.T., 1991, Lipid composition of three geographical sources of brine shrimp nauplii (Artemia sp.). Comp. Biochem. Phys. B. 100, 555-559. CrossRef
Wickins J.F., Lee D.O'C., 2002, Crustacean Farming Ranching and Culture, 2 nd edn. Blackwell Science Ltd, Oxford.
Williams, J.P., Maissan, E., Mitchell, K., Mobashsher, U.K., 1990, The manipulation of the fatty acid composition of glycerolipids in cyanobacteria using exogenous fatty acids. Plant. Cell. Physiol. 31, 495-503.
Wouters R., Gomez L., Lavens P., Calderon J., 1998, The role of Artemia biomass and its enrichment on P. vannamei broodstock. World Aquaculture Society, Aquaculture `98' 15-19 February 1998, Las Vegas.
Zhukova, N.V., Imbs, A.B., Yi, L.F., 1998, Diet-induced changes in lipid and fatty acid composition of Artemia salina. Comp. Biochem. Phys. B. 120, 499-506. CrossRef