Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T02:09:24.314Z Has data issue: false hasContentIssue false

Body size, population density and factors regulatingsuspension-cultured blue mussel (Mytilus spp.) populations

Published online by Cambridge University Press:  24 December 2010

Marcel Fréchette*
Affiliation:
Institut Maurice-Lamontagne, Ministère des Pêches et des Océans, CP 1000, Mont-Joli, Québec, Canada G5H 3Z4
Myriam Lachance-Bernard
Affiliation:
Institut Maurice-Lamontagne, Ministère des Pêches et des Océans, CP 1000, Mont-Joli, Québec, Canada G5H 3Z4
Gaétan Daigle
Affiliation:
Département de Mathématiques et de Statistique, Faculté des sciences et de génie, Pavillon Alexandre-Vachon, Université Laval, Québec, QC, G1V 0A6, Canada
*
a Corresponding author:marcel.frechette@dfo-mpo.gc.ca
Get access

Abstract

We sampled 27 month-old mussel populations grown on collector ropes in Cascapédia Bay,Quebec, to test whether density-dependent growth was present concomitantly toself-thinning, a process which was previously shown to occur in this system and thought tobe driven by spatial constraints. Biomass-density curves of raw samples were curvilinear,suggesting density-dependent growth. However, at least two cohorts were present.Fractionating the samples on the basis of age yielded a linear relationship for the main,2 year-old cohort. This implies density-independent growth and rules out food regulationin these populations. Therefore, our results are consistent with inferences drawnpreviously from the values of the self-thinning exponent, that is, space-regulatedself-thinning. Our results suggest that curvilinearity of the raw biomass-density curvesresulted from a bias caused by including the 1 year-old cohort and spat of the year in theanalysis. This conclusion is supported by a model showing that samples with mixed cohortscan yield linear, concave or convex biomass-density curves without density-dependentgrowth. The shape of the curves depends on the scaling relationships between cohortabundances. It appears that the shape of biomass-density curves may be a usefulcomplementary criterion – in addition to the value of self-thinning exponents – for theidentification of food or space as factors regulating cultured populations.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Alunno-Bruscia, M., Petraitis, P.S., Bourget, E., Fréchette, M., 2000, Body size-density relationships for Mytilus edulis in an experimental food-regulated situation. Oikos 90, 28-42. CrossRefGoogle Scholar
Bi, H., 2004, Stochastic frontier analysis of a classic self-thinning experiment. Aust. Ecol. 29, 408-417. CrossRefGoogle Scholar
Bilodeau F., Lachance-Bernard M., Wilson J.R., Fréchette M., 2008, Étude de la rentabilité de la production de moules sur collecteur autogéré à Carleton, Québec. Report No. 282
Boyd, A.J., Heasman, K.G., 1998, Shellfish mariculture in the Benguela system: Water flow patterns within a mussel farm in Saldanha Bay, South Africa. J. Shellfish Res. 17, 25-32. Google Scholar
Brichette, I., Reyero, M.I., Garcia, C., 2001, A genetic analysis of intraspecific competition for growth in mussel cultures. Aquaculture 192, 155-169. CrossRefGoogle Scholar
Burnham K.P., Anderson D.R., 2002, Model selection and multimodel inference: a practical information-theoretic approach, Vol. Springer-Verlag, New York.
Clarke, M.R.B., 1980, The reduced major axis of a bivariate sample. Biometrika 67, 441-446. CrossRefGoogle Scholar
Commito, J.A., Rusignuolo, B.R., 2000, Structural complexity in mussel beds: the fractal geometry of surface topography. J. Exp. Mar. Biol. Ecol. 255, 133-152. CrossRefGoogle ScholarPubMed
Dolmer, P., 2000, Feeding activity of mussels Mytilus edulis related to near-bed currents and phytoplankton biomass. J. Sea Res. 44, 221-231. CrossRefGoogle Scholar
Dolmer, P., Stenalt, E., 2010, The impact of adult blue mussel (Mytilus edulis) population on settling of conspecific larvae. Aquac. Internat. 18, 3-17. CrossRefGoogle Scholar
Drapeau, A., Comeau, L.A., Landry, T., Stryhn, H., Davidson, J., 2006, Association between long-line design and mussel productivity in Prince Edward Island, Canada. Aquaculture 261, 879-889. CrossRefGoogle Scholar
Enquist, B.J., Brown, J.H., West, G.B., 1998, Allometric scaling of plant energetics and population density. Nature 395, 163-165. CrossRefGoogle Scholar
Filgueira, R., Peteiro, L.G., Labarta, U., Fernández-Reiriz, M.J., 2008, The self-thinning rule applied to cultured populations in aggregate growth matrices. J. Molluscan Stud. 74, 415-418. CrossRefGoogle Scholar
Frandsen, R.P., Dolmer, P., 2002, Effects of substrate type on growth and mortality of blue mussels (Mytilus edulis) exposed to the predator Carcinus maenas . Mar. Biol. 141, 253-262. Google Scholar
Fréchette, M., Alunno-Bruscia, M., Dumais, J.-F., Daigle, G., Sirois, R., 2005, Incompleteness and statistical uncertainty in competition/stocking experiments. Aquaculture 246, 209-225. CrossRefGoogle Scholar
Fréchette, M., Bergeron, P., Gagnon, P., 1996, On the use of self-thinning relationships in stocking experiments. Aquaculture 145, 91-112. CrossRefGoogle Scholar
Fréchette, M., Despland, E., 1999, Impaired shell gaping and food depletion as mechanisms of asymmetric competition in mussels. Écoscience 6, 1-11. Google Scholar
Fréchette, M., Gaudet, M., Vigneau, S., 2000, Estimating optimal population density for intermediate culture of scallops in spat collector bags. Aquaculture 183, 105-124. CrossRefGoogle Scholar
Fréchette, M., Lefaivre, D., 1990, Discriminating between food and space limitation in benthic suspension feeders using self-thinning relationships. Mar. Ecol. Prog. Ser. 65, 15-23. CrossRefGoogle Scholar
Fuentes, J., Gregorio, V., Giráldez, R., Molares, J., 2000, Within-raft variability of the growth rate of mussels, Mytilus galloprovincialis, cultivated in the Ría de Arousa (NW Spain). Aquaculture 189, 39-52. CrossRefGoogle Scholar
Guiñez, R., 2005, A review of self-thinning in mussels. Rev. Biol. Mar. Oceanogr. 40, 1-6. CrossRefGoogle Scholar
Guiñez, R., Castilla, J.C., 1999, A tridimensional self-thinning model for multilayered intertidal mussels. Am. Nat. 154, 341-357. Google ScholarPubMed
Guiñez, R., Castilla, J.C., 2001, An allometric tridimensional model of self-thinning for a gregarious tunicate. Ecology 82, 2331-2341. CrossRefGoogle Scholar
Guiñez, R., Petraitis, P.S., Castilla, J.C., 2005, Layering, the effective density of mussels and mass-density boundary curves. Oikos 110, 186-190. CrossRefGoogle Scholar
Heasman, K.G., Pitcher, G.C., McQuaid, C.D., Hecht, T., 1998, Shellfish mariculture in the Benguela system: raft culture of Mytilus galloprovincialis and the effect of rope spacing on food extraction, growth rate, production, and condition of mussels. J. Shellfish Res. 17, 33-39. Google Scholar
Hughes, R.N., Griffiths, C.L., 1988, Self-thinning in barnacles and mussels: the geometry of packing. Am. Nat. 132, 484-491. CrossRefGoogle Scholar
Jørgensen, C.B., Larsen, P.S., Møhlenberg, F., Riisgård, H.U., 1988, The mussel pump: properties and modelling. Mar. Ecol. Prog. Ser. 45, 205-216. CrossRefGoogle Scholar
Keeley, E.R., 2003, An experimental analysis of self-thinning in juvenile steelhead trout. Oikos 102, 543-550. CrossRefGoogle Scholar
Lachance-Bernard M., 2008, Relation biomasse-densité et phénomène d’autoréduction chez la moule bleue (Mytilus edulis) élevée sur collecteur autogéré. M.Sc., Université Laval.
Lachance-Bernard, M., Himmelman, J.H., Daigle, G., Fréchette, M., 2010, Biomass-density relationships and self-thinning of blue mussels (Mytilus spp.) reared on self-regulated long lines. Aquaculture 308, 34-43. CrossRefGoogle Scholar
Lauzon-Guay J.-S., Barbeau M., Watmough J., Hamilton D.J., 2006, A model for growth and survival of mussels, Mytilus edulis, reared in Prince Edward Island, Canada. Mar. Ecol. Prog. Ser. 171-182.
Lauzon-Guay, J.-S., Dionne, M., Barbeau, M., Hamilton, D.J., 2005, Effects of seed size and density on growth, tissue-to-shell ratio and survival of cultivated mussels (Mytilus edulis) in Prince Edward Island, Canada. Aquaculture 250, 652-665. CrossRefGoogle Scholar
Lesser, M.P., Shumway, S.E., Cucci, T., Smith, J., 1992, Impact of fouling organisms on mussel rope culture: interspecific competition for food among suspension-feeding invertebrates. J. Exp. Mar. Biol. Ecol. 165, 91-102. CrossRefGoogle Scholar
Lonsdale, W.M., 1990, The self-thinning rule: dead or alive? Ecology 71, 1373-1388. CrossRefGoogle Scholar
Mallet, A.L., Carver, C.E., 1991, An assessment of strategies for growing mussels in suspended culture. J. Shellfish Res. 10, 471-477. Google Scholar
Mazerolle, M.J., 2006, Improving data analysis in herpetology: using Akaike’s Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169-180. CrossRefGoogle Scholar
McGrorty, S., Clarke, R.T., Reading, C.J., Goss-Custard, J.D., 1990, Population dynamics of the mussel Mytilus edulis: density changes and regulation of the population in the Exe estuary, Devon. Mar. Ecol. Prog. Ser. 67, 157-169. CrossRefGoogle Scholar
McGrorty, S., Goss-Custard, J.D., 1993, Population dynamics of the mussel Mytilus edulis along environmental gradients: spatial variations in density-dependent mortalities. J. Anim. Ecol. 62, 415-427. CrossRefGoogle Scholar
Moreau, V., Tremblay, R., Bourget, E., 2005, Distribution of Mytilus edulis and M. trossulus on the Gaspé coast in relation to spatial scale. J. Shellfish Res. 24, 545-551. Google Scholar
Mueller, K.W., 1996, A preliminary study of the spatial variation in growth of raft-cultured blue mussels Mytilus trossulus in Northern Puget Sound, Washington. J. World Aquac. Soc. 27, 240-246. CrossRefGoogle Scholar
Navarro, E., Iglesias, J.I.P., Pérez Camacho, A., Labarta, U., Beiras, R., 1991, The physiological energetics of mussels (Mytilus galloprovincialis Lmk) from different cultivation rafts in the Ria de Arosa (Galicia, N.W. Spain). Aquaculture 94, 197-212. CrossRefGoogle Scholar
Newell, C.R., Wildish, D.J., MacDonald, B., 2001, The effect of velocity and seston concentration on the exhalent siphon area, valve gape and filtration rate of the mussel Mytilus edulis . J. Exp. Mar. Biol. Ecol. 262, 91-111. CrossRefGoogle Scholar
Norberg R.Å. 1988, Self-thinning of plant populations dictated by packing density and individual growth geometry and relationships between animal population density and body mass governed by metabolic rate. In: Ebenman B., Persson L. (Eds.) Size-structured populations. Ecology and Evolution. Springer-Verlag, Berlin, Heidelberg, pp. 259-279.
Petraitis, P.S., 1990, Direct and indirect effects of predation, herbivory and surface rugosity on mussel recruitment. Oecologia 83, 405-413. CrossRefGoogle ScholarPubMed
Petraitis, P.S., 1995, The role of growth in maintaining spatial dominance by mussels (Mytilus edulis). Ecology 76, 1337-1346. CrossRefGoogle Scholar
Reynolds, J.H., Ford, E.D., 2005, Improving competition representation in theoretical models of self-thinning: a critical review. J. Ecol. 93, 362-372. CrossRefGoogle Scholar
Riisgård, H.U., Lassen, J., Kittner, C., 2006, Valve-gape response times in mussels (Mytilus edulis)—Effects of laboratory preceding-feeding conditions and in situ tidally induced variation in phytoplankton biomass. J. Shellfish Res. 25, 901-911. Google Scholar
Sénéchal, J., Grant, J., Archambault, M.-C., 2008, Experimental manipulation of suspended culture socks: Growth and behavior of juvenile mussels (Mytilus spp.). J. Shellfish Res. 27, 811-826. CrossRefGoogle Scholar
Smith, A., Nikora, V., Ross, A., Wake, G., 2006, A lattice-Boltzmann-based model of plankton-flow interaction around a mussel cluster. Ecol. Model. 192, 645-657. CrossRefGoogle Scholar
Weise, A.M., Cromey, C.J., Callier, M.D., Archambault, P., Chamberlain, J., McKindsey, C.W., 2009, Shellfish-DEPOMOD: Modelling the biodeposition from suspended shellfish aquaculture and assessing benthic effects. Aquaculture 288, 239-253. CrossRefGoogle Scholar
Weller, D.E., 1987a, A reevaluation of the -3/2 power rule of plant self-thinning. Ecol. Monogr. 57, 23-43. CrossRefGoogle Scholar
Weller, D.E., 1987b, Self-thinning exponent correlated with allometric measures of plant geometry. Ecology 68, 813-821. CrossRefGoogle Scholar
Westoby, M., 1984, The self-thinning rule. Adv. Ecol. Res. 14, 167-225. CrossRefGoogle Scholar
White, J., 1981, The allometric interpretation of the self-thinning rule. J. Theor. Biol. 89, 475-500. CrossRefGoogle Scholar
Yoda, K., Kira, T., Ogawa, H., Hozumi, K., 1963, Self-thinning in overcrowded pure stands under cultivated and natural conditions (Intraspecific competition among higher plants XI). J. Biol. Osaka City Univ. 14, 107-129. Google Scholar