Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T15:13:28.380Z Has data issue: false hasContentIssue false

Impact of an invasive species, Crepidula fornicata,on the hydrodynamics and transport properties of the benthic boundary layer

Published online by Cambridge University Press:  17 May 2007

Frédéric Y. Moulin
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), UMR 5502, 1 allée du Professeur Camille Soula, 31400 Toulouse, France
Katell Guizien
Affiliation:
Université Pierre et Marie Curie-Paris 6, CNRS UMR 7621, 66650 Banyuls-sur-Mer, France
Gérard Thouzeau
Affiliation:
UMR 6539 CNRS – LEMAR, Institut Universitaire Européen de la Mer, Place N. Copernic, 29280 Plouzané, France
Georges Chapalain
Affiliation:
UMR 6539 CNRS – LEMAR, Institut Universitaire Européen de la Mer, Place N. Copernic, 29280 Plouzané, France
Karen Mülleners
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), UMR 5502, 1 allée du Professeur Camille Soula, 31400 Toulouse, France
Catherine Bourg
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), UMR 5502, 1 allée du Professeur Camille Soula, 31400 Toulouse, France
Get access

Abstract

We investigated the impact of an invasive species, Crepidula fornicataon the hydrodynamics and transport properties of the benthic boundary layer. We present results obtainedby three different approaches: 1) in-situ measurements of near-bottom current and suspended sediment concentration on two sites in the Bay of Brest (Brittany, France), 2) velocity measurements in controlled laboratory experiments of flows over a bed of artificial Crepidula shells, and 3) numerical simulations of the flow over two-dimensional shell-like bed forms.Numerical and laboratory experiments showed that both the bed erosion and the exchange velocitybetween the canopy and the outer flow decrease as the roughness density increases. These results suggest a sheltering effect by the Crepidula shells increasing with the surface density of shells. This trend was also found in field measurements: during spring tides, higher particle resuspension was observed on the muddy sand bottom with few chains of slipper limpets compared with the high-density area. However, other processes may explain these data; their importance is thus discussed in this study.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bale, A.J., Barrett, C.D., 1995, A bottom-landing water sampling system for the benthic boundary layer. Neth. J. Sea Res. 34, 259-266. CrossRef
Bayazit, M., 1976, Free surface flow in a channel of large relative roughness. J. Hydraul. Res. 14, 115-125. CrossRef
Bentham, T., Britter, R., 2003, Spatially averaged flow within obstacle arrays. Atmos. Environ. 37, 2037-2043. CrossRef
Berg, P., Røy, H., Janssen, F., Meyer, V., Jørgensen, B.B., Huettel, M., de Beer, D., 2003, Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique. Mar. Ecol. Prog. Ser. 261, 75-83. CrossRef
Blanchard, M., 1997, Spread of the slipper limpet, Crepidula fornicata (L. 1758) in Europe. Current state and consequences. Scient. Mar. 61, 109-118.
Castro, I.P., Cheng, H., Reynolds, R., 2006, Turbulence over urban-type roughness: deductions from wind-tunnel measurements. Bound. Layer Meteorol. 118, 1, 109-131. CrossRef
Chapalain, G., Thais, L., 2000, Tide, turbulence and suspended sediment modelling in the eastern English Channel. Coast. Eng. 41, 295-316. CrossRef
Chauvaud L., 1998, La coquille Saint-Jacques en rade de Brest: un modèle biologique d'étude des réponses de la faune benthique aux fluctuations de l'environnement. Thèse doctorat Univ. Bretagne occidentale, Brest.
Chauvaud, L., Jean, F., Ragueneau, O., Thouzeau, G., 2000, Long-term variation of the Bay of Brest ecosystem: benthic-pelagic coupling revisited. Mar. Ecol. Prog. Ser. 200, 35-48. CrossRef
Cheng, H., Castro, I.P., 2002, Near wall flow over urban-like roughness. Bound. Layer Meteorol. 104, 229-259. CrossRef
Coceal G.O., Thomas T.G., Castro I.P., Belcher S.E., 2006, Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Bound. Layer Meteorol., 121, 491-519.
Crimaldi, J.P., Thompson, J.K., Rosman, J.H., Lowe, R.J., Koseff, J.R., 2002, Physical-biological coupling in spore dispersal of kelp forest macroalgae. Limnol. Oceanogr. 47, 1137-1151. CrossRef
Engelund, F., Fredsøe, J., 1976, A sediment transport model for straight alluvial channels. Nordic Hydrol. 7, 293-306.
Fincham, A., Delerce, G., 2000, Advanced optimization of correlation imaging velocimetry algorithms. Exp. Fluids 29, S013-S022. CrossRef
Fredsøe, J., Andersen, K.H., Sumer, B.M., 1999, Wave plus current over a ripple-covered bed. Coast. Eng. 38, 177-221. CrossRef
Frésard, M., Boncoeur, J., 2006, Costs and benefits of stock enhancement and biological invasion control: the case of the Bay of Brest scallop fishery. Aquat. Living Resour. 19, 299-305. CrossRef
Gaylord, B., Reed, D.C., Washburn, L., Raimondic, P.T., 2004, Physical-biological coupling in spore dispersal of kelp forest macroalgae. J. Mar. Syst. 20, 49, 19-39.
Godillot, R., Caussade, B., Ameziane, T., Capblanq, J., 2001, Interplay between turbulence and periphyton in rough open-channel flow. J. Hydraul. Res. 39, 3, 227-239. CrossRef
Grant, W.D., Madsen, O.S., 1982, Moveable bed roughness in unsteady oscillatory flows. J. Geophys. Res. 87, 469-481. CrossRef
Guérin L., 2004, La crépidule en rade de Brest: un modèle biologique d'espèce introduite proliférante en réponse aux fluctuations de l'environnement. Thèse doctorat, Univ. Bretagne occidentale, Brest.
Guizien K., Dohmen-Janssen M., Vittori G., 2003, 1DV bottom boundary layer modeling under combined wave and current: suspension ejection events and phase lag effects. J. Geophys. Res. 108(C1), 3016, 1-15.
Guizien K., 2005, Equilibrium bottom roughness of ripples derived from a 2DHV ripple model, In: L.C. van Rijn, R.L. Soulsby, P. Hoekstra, A.G. Davies (eds.), SANDPIT, Sand Transport and Morphology of Offshore Sand Mining Pits, Aqua Publications, The Netherlands, AB 1-9.
Hamlyn, D., Britter, R., 2005, A numerical study of the flow field and exchange processes within a canopy of urban-type roughness. Atmos. Environ. 39, 3243-3254. CrossRef
Hughes, S.A., Schwichtenberg, B.R., 1998, Current-induced scour along a breakwater at Ventura Harbor. Coast. Eng. 34, 1-22. CrossRef
Jackson, P.S., 1981, On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 15-25. CrossRef
Kamphuis, J.W., 1974, Determination of sand roughness for fixed beds. J. Hydraul. Res. 12, 193-203. CrossRef
Kastner-Klein, P., Plate, E., Fedorovich, E., 1997, Gaseous pollutant dispersion around urban-canopy elements: Wind tunnel case studies. Internat. J. Environ. Pollut. 8, 727-737.
Kemp, P.H., Simons, R.R., 1982, The interaction between waves and a turbulent current: waves propagating with the current. J. Fluid Mech. 116, 227-250. CrossRef
Kemp, P.H., Simons, R.R., 1983, The interaction between waves and a turbulent current: waves propagating against the current. J. Fluid Mech. 130, 73-890. CrossRef
Kitaya, Y., Shibuya, T., Yoshida, M., Kiyota, M., 2004, Effects of air velocity on photosynthesis of plant canopies under elevated CO2 levels in a plant culture system. Adv. Space Res. 34, 1466-1469. CrossRef
Kuo A. Y., Shen J., Hamrick J. M., 1996, Effect of acceleration on bottom shear stress in tidal estuaries. J. Waterway, Port, Coastal, Ocean Eng. 122, 75-83.
Martin, S., Thouzeau, G., Chauvaud, L., Jean, F., Guérin, L., Clavier, J., 2006, Respiration, calcification, and excretion of the invasive limpet, Crepidula fornicata L.: Implications for carbon, carbonate, and nitrogen fluxes. Limnol. Oceanogr. 51, 5, 1996-2007.
Martin S., Thouzeau G., Richard M., Chauvaud L., Jean F., Clavier J. Benthic community metabolism in areas impacted by the invasive species, Crepidula fornicata L., Mar. Ecol. Prog. Series, in press.
McDonald, R.W., 2000, Modelling the mean velocity profile in the urban canopy layer. Bound. Layer Meteorol. 97, 25-45. CrossRef
Orlandi, P., Leonardi, S., Antonia, R.A., 2006, Turbulent channel flow with either transverse or longitudinal roughness elements on one wall. J. Fluid Mech. 561, 279305. CrossRef
Peterson, E.L., 1999, Benthic shear stress and sediment condition. Aquac. Eng. 21, 85-111. CrossRef
Prandtl, L., 1925, Über die ausgebildete Turbulenz. ZAMM 5, 136-139.
Ragueneau, O., Chauvaud, L., Leynaert, A., Thouzeau, G., Paulet, Y.-M., Bonnet, S., Lorrain, A., Grall, J., Corvaisier, R., Le Hir, M., Jean, F., Clavier, J., 2002, Direct evidence of a biologically active coastal silicate pump: ecological implications. Limnol. Oceanogr. 47, 6, 1849-1854. CrossRef
Ragueneau, O., Chauvaud, L., Moriceau, B., Leynaert, A., Thouzeau, G., Donval, A., Le Loc'h, F., Jean, F., 2005, Biodeposition by an invasive suspension feeder impacts the biogeochemical cycle of Si in a coastal ecosystem (Bay of Brest, France). Biogeochemistry 75, 19-41. CrossRef
Richard J., 2005, Crepidula fornicata L. : un modèle biologique pour l'étude du rôle de la variabilité des caractères phénotypiques (reproduction, croissance et nutrition) sur les processus de colonisation en milieu marin. Thèse doctorat Université Bretagne occidentale, Brest.
Saffman, P.G., 1970, A model for inhomogeneous turbulent flow. Proc. R. Soc. Lond. A 317, 417-433. CrossRef
Schlichting H., Gersten K., 2001, Boundary layer theory (Springer).
Thouzeau G., Chauvaud L., Grall J., Guérin L., 2000, Rôle des interactions biotiques sur le devenir du pré-recrutement et la croissance de Pecten maximus (L.) en rade de Brest. C. R. Acad. Sci. Paris, Sciences de la vie 323, 815-825.
Thouzeau, G., Chauvaud, L., Durand, G., Patris, T., Glémarec, M., 2003, Impact des polluants d'origine anthropique sur les organismes benthiques marins: notions d'indicateurs biologiques de perturbation et de réseaux de surveillance. Océanis 27, 177-214.