Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T06:14:02.380Z Has data issue: false hasContentIssue false

Orthography and speech production in children with good or poor reading skills

Published online by Cambridge University Press:  22 April 2019

Meredith Saletta*
Affiliation:
University of Iowa
*
*Corresponding author. Email: meredith-saletta@uiowa.edu

Abstract

Speech production is influenced by the orthographic representation of the spoken word. Although previous work has shown that inconsistencies between the word’s sound and spelling may facilitate or disrupt processing (e.g., Alario, Perre, Castel, & Ziegler, 2007; Saletta, Goffman, & Brentari, 2015; Saletta, Goffman, & Hogan, 2016; Ventura, Morais, Pattamadilok, & Kolinsky, 2004), the developmental course of this effect on new readers remains unclear. The current study examines how children’s production of nonwords changes as a function of exposure to the nonwords’ orthography. We tested nonword repetition in 17 children with typical reading skills and 17 children with poor reading skills. Participants heard and repeated nonword stimuli, or read them aloud when the stimuli were written in either a relatively transparent or an opaque spelling. We quantified participants’ segmental accuracy and speech movement stability both before and after their exposure to the nonwords’ orthography. The children improved only in segmental accuracy (and not speech movement stability) and only as a consequence of practice (and not because of exposure to the nonwords’ spellings). Children with poorer reading skills demonstrated a greater change in accuracy from pretest to posttest than children with stronger reading skills. Thus, one’s automaticity in reading and the reorganization of his/her literacy skills throughout development influence speech production.

Type
Original Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alario, F. X., Perre, L., Castel, C., & Ziegler, J. C. (2007). The role of orthography in speech production revisited. Cognition, 102, 464475. doi: 10.1016/j.cognition.2006.02.002CrossRefGoogle ScholarPubMed
Blythe, H. I., Pagan, A., & Dodd, M. (2014). Beyond decoding: Phonological processing during silent reading in beginning readers. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41, 19.Google ScholarPubMed
Bolger, D. J., Hornickel, J., Cone, N. E., Burman, D. D., & Booth, J. R. (2008). Neural correlates of orthographic and phonological consistency effects in children. Human Brain Mapping, 29, 14161429. doi: 10.1002/hbm.20476CrossRefGoogle ScholarPubMed
Borgwaldt, S. R., Hellwig, F. M., & de Groot, A. M. B. (2004). Word-initial entropy in five languages. Written Language and Literacy, 7, 165184.Google Scholar
Brumbach, A. C. D., & Goffman, L. (2014). Interaction of language processing and motor skill in children with specific language impairment. Journal of Speech, Language, and Hearing Research, 57, 158171.CrossRefGoogle Scholar
Brown, L., Sherbenou, R. J., & Johnsen, S. K. (2010). Test of Nonverbal Intelligence—Fourth Edition. Austin, TX: Pro-Ed.Google Scholar
Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects models: A tutorial. Journal of Cognition, 1, 9. doi: 10.5334/joc.10CrossRefGoogle Scholar
Burgos, P., Cucchiarini, C., van Hout, R., & Strik, H. (2014). Phonology acquisition in Spanish learners of Dutch: Error patterns in pronunciation. Language Sciences, 41, 129142. doi: 10.1016/j.langsci.2013.08.015CrossRefGoogle Scholar
Castro-Caldas, A., Petersson, K. M., Reis, A., Stone-Elander, S., & Ingvar, M. (1998). The illiterate brain. Learning to read and write during childhood influences the functional organization of the adult brain. Brain, 121, 10531063.CrossRefGoogle ScholarPubMed
Castro-Caldas, A., & Reis, A. (2003). The knowledge of orthography is a revolution of the brain. Reading and Writing, 16, 8197.CrossRefGoogle Scholar
Chall, J. S. (1983). Stages of reading development. New York: McGraw-Hill.Google Scholar
Chyl, K., Kossowski, B., Dębska, A., Łuniewska, M., Banaszkiewicz, A., Żelechowska, A., … Pugh, K. R. (2018). Prereader to beginning reader: Changes induced by reading acquisition in print and speech brain networks. Journal of Child Psychology and Psychiatry, 59, 7687.CrossRefGoogle ScholarPubMed
Ciancio, D., Thompson, K., Schall, M., Skinner, C., & Foorman, B. (2015). Accurate reading comprehension rate as an indicator of broad reading in students in first, second, and third grades. Journal of School Psychology, 53, 393407. doi: 10.1016/j.jsp.2015.07.003CrossRefGoogle ScholarPubMed
Damian, M. F., & Bowers, J. S. (2003). Effects of orthography on speech production in a form-preparation paradigm. Journal of Memory and Language, 49, 119132. doi: 10.1016/S0749-596X(03)00008-1CrossRefGoogle Scholar
Damian, M. F., & Bowers, J. S. (2009). Assessing the role of orthography in speech perception and production: Evidence from picture–word interference tasks. European Journal of Cognitive Psychology, 21, 581598.CrossRefGoogle Scholar
Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., … Cohen, L. (2010). How learning to read changes the cortical networks for vision and language. Science, 330, 13591364.CrossRefGoogle Scholar
Dich, N. (2011). Individual differences in the size of orthographic effects in spoken word recognition: The role of listeners’ orthographic skills. Applied Psycholinguistics, 32, 169186. doi: 10.1017/S0142716410000330CrossRefGoogle Scholar
Dodd, B., & Gillon, G. (2001). Exploring the relationship between phonological awareness, speech impairment, and literacy. Advances in Speech-Language Pathology, 3, 139147.CrossRefGoogle Scholar
Ehri, L. C., & Wilce, L. S. (1980). The influence of orthography on readers’ conceptualization of the phonemic structure of words. Applied Psycholinguistics, 1, 371385.CrossRefGoogle Scholar
Frith, U. (1998). Literally changing the brain. Brain, 121, 10111012. doi: 10.1093/brain/121.6.1011CrossRefGoogle Scholar
Goffman, L., & Smith, A. (1999). Development and phonetic differentiation of speech movement patterns. Journal of Experimental Psychology: Human Perception and Performance, 25, 649660.Google ScholarPubMed
Goffman, L., Gerken, L., & Lucchesi, J. (2007). Relations between segmental and motor variability in prosodically complex nonword sequences. Journal of Speech, Language, and Hearing Research, 50, 444458. doi: 1092-4388/07/5002-0444CrossRefGoogle ScholarPubMed
Goldrick, M., Baker, H. R., Murphy, A., & Baese-Berk, M. (2011). Interaction and representational integration: Evidence from speech errors. Cognition, 121, 5872. doi: 10.1016/j.cognition.2011.05.006CrossRefGoogle ScholarPubMed
Goswami, U., Ziegler, J. C., Dalton, L., & Schneider, W. (2001). Pseudohomophone effects and phonological recoding procedures in reading development in English and German. Journal of Memory and Language, 45, 648664.CrossRefGoogle Scholar
Green, J. R., Moore, C. A., Higashikawa, M., & Steeve, R. W. (2000). The physiologic development of speech motor control: Lip and jaw coordination. Journal of Speech, Language, and Hearing Research, 43, 239255.CrossRefGoogle ScholarPubMed
Halle, P. A., Chereau, C., & Segui, J. (2000). Where is the /b/ in “absurde” [apsyrd]? It is in French listeners’ minds. Journal of Memory and Language, 43, 618639. doi: 10.1006/jmla.2000.2718CrossRefGoogle Scholar
Heisler, L., Goffman, L., & Younger, B. (2010). Lexical and articulatory interactions in children’s language production. Developmental Science, 13, 722730. doi: 10.1111/j.1467-7687.2009.00930.xCrossRefGoogle ScholarPubMed
Hickok, G. (2012). Computational neuroanatomy of speech production. Nature Reviews Neuroscience, 13, 135145. doi: 10.1038/nrn3158CrossRefGoogle ScholarPubMed
Holm, A., & Dodd, B. (1996). The effect of first written language on the acquisition of English literacy. Cognition, 59, 119147.CrossRefGoogle ScholarPubMed
Hoover, W. A., & Gough, P. B. (1990). The simple view of reading. Reading and Writing, 2, 127160.CrossRefGoogle Scholar
Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22, 175.CrossRefGoogle ScholarPubMed
Li, C., & Wang, M. (2017). The influence of orthographic experience on the development of phonological preparation in spoken word production. Memory & Cognition, 45, 956973.CrossRefGoogle ScholarPubMed
Li, C., Wang, M., & Idsardi, W. (2015). The effect of orthographic form-cuing on the phonological preparation unit in spoken word production. Memory & Cognition, 43, 563578.CrossRefGoogle ScholarPubMed
Kamhi, A. G., & Catts, H. W. (2012). Reading development. In Kamhi, A. G., and Catts, H. W. (Eds.), Language and reading disabilities (3rd ed., pp. 2444). Boston: Allyn & Bacon.Google Scholar
Katz, L., & Frost, R. (1992). Reading in different orthographies: The orthographic depth hypothesis. In Frost, R., and Katz, L. (Eds.), Orthography, phonology, morphology, and meaning (pp. 6784). Amsterdam: North-Holland.CrossRefGoogle Scholar
Kleinow, J., & Smith, A. (2000). Influences of length and syntactic complexity on the speech motor stability of the fluent speech of adults who stutter. Journal of Speech, Language, and Hearing Research, 43, 548559.CrossRefGoogle ScholarPubMed
Masonheimer, P., Drum, P., & Ehri, L. (1984). Does environmental print identification lead children into word learning? Journal of Reading Behavior, 16, 257271.CrossRefGoogle Scholar
McMillan, C. T., Corley, M., & Lickley, R. J. (2009). Articulatory evidence for feedback and competition in speech production. Language and Cognitive Processes, 24, 4466. doi: 10.1080/01690960801998236CrossRefGoogle Scholar
Miller, K. M., & Swick, D. (2003). Orthography influences the perception of speech in alexic patients. Journal of Cognitive Neuroscience, 15, 981990.CrossRefGoogle ScholarPubMed
Morais, J., Cary, L., Alegria, J., & Bertelson, P. (1979). Does awareness of speech as a sequence of phones arise spontaneously? Cognition, 7, 323331.CrossRefGoogle Scholar
Nassaji, H. (2014). The role and importance of lower-level processes in second language reading. Language Teaching, 47, 137. doi: 10.1017/S0261444813000396CrossRefGoogle Scholar
Nation, K., & Hulme, C. (2011). Learning to read changes children’s phonological skills: Evidence from a latent variable longitudinal study of reading and nonword repetition. Developmental Science, 14, 649659.CrossRefGoogle ScholarPubMed
Nip, I. S., & Green, J. R. (2013). Increases in cognitive and linguistic processing primarily account for increases in speaking rate with age. Child Development, 84, 13241337.CrossRefGoogle ScholarPubMed
Ohala, D. K. (1996). Cluster reduction and constraints on acquisition (Unpublished doctoral dissertation, University of Arizona, Tucson).Google Scholar
Oney, B., & Goldman, S. R. (1984). Decoding and comprehension skills in Turkish and English: Effects of the regularity of grapheme-phoneme correspondences. Journal of Educational Psychology, 76, 557568.CrossRefGoogle Scholar
Oney, B., Peter, M., & Katz, L. (1997). Phonological processing in printed word recognition: Effects of age and writing system. Scientific Studies of Reading, 1, 6583.CrossRefGoogle Scholar
Pattamadilok, C., Perre, L., Dufau, S., & Ziegler, J. (2009). On-line orthographic influences on spoken language in a semantic task. Journal of Cognitive Neuroscience, 21, 169179. doi: 10.1162/ jocn.2009.21014CrossRefGoogle Scholar
Perre, L., Pattamadilok, C., Montant, M., & Ziegler, J. C. (2009). Orthographic effects in spoken language: On-line activation or phonological restructuring? Brain Research, 1275, 7380.CrossRefGoogle ScholarPubMed
Poldrack, R. A., Prabhakaran, V., Seger, C. A., & Gabrieli, J. D. (1999). Striatal activation during acquisition of a cognitive skill. Neuropsychology, 13, 564574.CrossRefGoogle ScholarPubMed
Preston, J. L., Molfese, P. J., Frost, S. J., Mencl, W. E., Fulbright, R. K., Hoeft, F., … Pugh, K. R. (2016). Print-speech convergence predicts future reading outcomes in early readers. Psychological Science, 27, 7584.CrossRefGoogle ScholarPubMed
Rastle, K., McCormick, S. F., Bayliss, L., & Davis, C. J. (2011). Orthography influences the perception and production of speech. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 15881594. doi: 10.1037/a0024833Google Scholar
Read, C., Zhang, Y. F., Nie, H. Y., & Ding, B. Q. (1986). The ability to manipulate speech sounds depends on knowing alphabetic spelling. Cognition, 24, 3144.CrossRefGoogle Scholar
Roelefs, A. (2006). The influence of spelling on phonological encoding in word reading, object naming, and word generation. Psychonomic Bulletin and Review, 13, 3337.CrossRefGoogle Scholar
Saletta, M. (2015). Literacy transforms speech production. Frontiers in Psychology, 6, 1458. doi: 10.3389/fpsyg.2015.01458CrossRefGoogle ScholarPubMed
Saletta, M., Goffman, L., & Brentari, D. (2015). Reading skill and exposure to orthography influence speech production. Applied Psycholinguistics, 36, 124. doi: 10.1017/S0142716415000053Google Scholar
Saletta, M., Goffman, L., & Hogan, T. (2016). Orthography and modality influence speech production in skilled and poor readers. Journal of Speech, Language, and Hearing Research, 59, 14211435. doi: 10.1044/2016_JSLHR-L-15-0242CrossRefGoogle Scholar
Saletta, M., Goffman, L., Ward, C., & Oleson, J. (2018). Influence of language load on speech motor control in children with specific language impairment. Journal of Speech, Language, and Hearing Research, Advance online publication.CrossRefGoogle Scholar
Seidenberg, M. S., & Tanenhaus, M. K. (1979). Orthographic effects on rhyme monitoring. Journal of Experimental Psychology: Human Learning and Memory, 5, 546554.Google Scholar
Semel, E., Wiig, E. H., & Secord, W. A. (2003). Clinical Evaluation of Language Fundamentals—Fourth Edition. San Antonio, TX: Pearson.Google Scholar
Serrano, F., & Defior, S. (2008). Dyslexia speed problems in a transparent orthography. Annals of Dyslexia, 58, 8195. doi: 10.1007/s11881-008-0013-6CrossRefGoogle Scholar
Shankweiler, D., Mencl, W. E., Braze, D., Tabor, W., Pugh, K. R., & Fulbright, R. K. (2008). Reading differences and brain: Cortical integration of speech and print in sentence processing varies with reader skill. Developmental Neuropsychology, 33, 745775. doi: 10.1080/87565640802418688CrossRefGoogle ScholarPubMed
Share, D. L. (1999). Phonological recoding and orthographic learning: A direct test of the self-teaching hypothesis. Journal of Experimental Child Psychology, 72, 95129.CrossRefGoogle ScholarPubMed
Share, D. L. (2004). Orthographic learning at a glance: On the time course and developmental onset of self-teaching. Journal of Experimental Child Psychology, 87, 267298. doi: 10.1016/j.jecp.2004.01.001CrossRefGoogle Scholar
Smith, A., & Goffman, L. (1998). Stability and patterning of speech movement sequences in children and adults. Journal of Speech, Language, and Hearing Research, 41, 1830.CrossRefGoogle ScholarPubMed
Smith, A., Goffman, L., Zelaznik, H. N., Ying, G., & McGillem, C. (1995). Spatiotemporal stability and patterning of movement sequences. Experimental Brain Research, 104, 493501.CrossRefGoogle ScholarPubMed
Smith, A., Johnson, M., McGillem, C., & Goffman, L. (2000). On the assessment of stability and patterning of speech movements. Journal of Speech, Language, and Hearing Research, 43, 277286.CrossRefGoogle ScholarPubMed
Smith, A., & Zelaznik, H. N. (2004). Development of functional synergies for speech motor coordination in childhood and adolescence. Developmental Psychobiology, 45, 2233. doi: 10.1002/dev.2000.9CrossRefGoogle ScholarPubMed
Taft, M. (2006). Orthographically influenced abstract phonological representation: Evidence from non-rhotic speakers. Journal of Psycholinguistic Research, 35, 6778.CrossRefGoogle ScholarPubMed
Taft, M. (2011). Orthographic influences when processing spoken pseudowords: Theoretical implications. Frontiers in Psychology, 2, 140.CrossRefGoogle ScholarPubMed
Thomas, K. M., Hunt, R. H., Vizueta, N., Sommer, T., Durston, S., Yang, Y., & Worden, M. S. (2004). Evidence of developmental differences in implicit sequence learning: An fMRI study of children and adults. Journal of Cognitive Neuroscience, 16, 13391351.CrossRefGoogle ScholarPubMed
Tomblin, J. B., Mainela-Arnold, E., & Zhang, X. (2007). Procedural learning in adolescents with and without specific language impairment. Language Learning and Development, 3, 269293. doi: 10.1080/15475440701377477CrossRefGoogle Scholar
Torgesen, J., Wagner, R., & Rashotte, C. (2011). Test of Word Reading Efficiency—Second Edition. San Antonio, TX: Pearson.Google Scholar
Ventura, P., Kolinsky, R., Brito-Mendes, C., & Morais, J. (2001). Mental representations of the syllable internal structure are influenced by orthography. Language and Cognitive Processes, 16, 393418. doi: 10.1080/01690960042000184CrossRefGoogle Scholar
Ventura, P., Morais, J., & Kolinsky, R. (2007). The development of the orthographic consistency effect in speech recognition: From sublexical to lexical involvement. Cognition, 105, 547576. doi: 10.1016/j.cognition.2006.12.005CrossRefGoogle ScholarPubMed
Ventura, P., Morais, J., Pattamadilok, C., & Kolinsky, R. (2004). The locus of the orthographic consistency effect in auditory word recognition. Language and Cognitive Processes, 19, 5795.CrossRefGoogle Scholar
Vitevitch, M. S., Luce, P. A., Charles-Luce, J., & Kemmerer, D. (1997). Phonotactics and syllable stress: Implications for the processing of spoken nonsense words. Language and Speech, 40, 4762.CrossRefGoogle ScholarPubMed
Walsh, B., & Smith, A. (2011). Linguistic complexity, speech production, and comprehension in Parkinson’s disease: Behavioral and physiological indices. Journal of Speech, Language, and Hearing Research, 54, 787802.CrossRefGoogle ScholarPubMed
Weber-Fox, C., Spencer, R., Cuadrado, E., & Smith, A. (2003). Development of neural processes mediating rhyme judgments: Phonological and orthographic interactions. Developmental Psychobiology, 43, 128145. doi: 10.1002/dev.10128CrossRefGoogle ScholarPubMed
Woodcock, R. W. (2011). Woodcock Reading Mastery Tests—Revised [2011 Normative Update]. San Antonio, TX: Pearson.Google Scholar
Ziegler, J. C., Ferrand, L., & Montant, M. (2004). Visual phonology: The effects of orthographic consistency on different auditory word recognition tasks. Memory & Cognition, 32, 732741.CrossRefGoogle ScholarPubMed
Ziegler, J. C., & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: A psycholinguistic grain size theory. Psychological Bulletin, 131, 329.CrossRefGoogle ScholarPubMed
Ziegler, J. C., Jacobs, A. M., & Klueppel, D. (2001). Pseudohomophone effects in lexical decision: Still a challenge for current word recognition models. Journal of Experimental Psychology: Human Perception and Performance, 27, 547559.Google Scholar
Ziegler, J. C., & Muneaux, M. (2007). Orthographic facilitation and phonological inhibition in spoken word recognition: A developmental study. Psychonomic Bulletin & Review, 14, 7580.CrossRefGoogle ScholarPubMed
Ziegler, J. C., Muneaux, M., & Grainger, J. (2003). Neighborhood effects in auditory word recognition: Phonological competition and orthographic facilitation. Journal of Memory and Language, 48, 779793.CrossRefGoogle Scholar
Zoccolotti, P., De Luca, M., Di Pace, E., Judica, A., Orlandi, M., & Spinelli, D. (1999). Markers of developmental surface dyslexia in a language (Italian) with high grapheme-phoneme correspondence. Applied Psycholinguistics, 20, 191216.CrossRefGoogle Scholar
Supplementary material: File

Saletta supplementary material

Saletta supplementary material 1

Download Saletta supplementary material(File)
File 46.4 KB