Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T01:38:43.009Z Has data issue: false hasContentIssue false

RAYLEIGH–TAYLOR INSTABILITIES IN AXI-SYMMETRIC OUTFLOW FROM A POINT SOURCE

Published online by Cambridge University Press:  05 July 2012

LAWRENCE K. FORBES*
Affiliation:
School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, Tasmania 7001, Australia (email: Larry.Forbes@utas.edu.au)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper studies outflow of a light fluid from a point source, starting from an initially spherical bubble. This region of light fluid is embedded in a heavy fluid, from which it is separated by a thin interface. A gravitational force directed radially inward toward the mass source is permitted. Because the light inner fluid is pushing the heavy outer fluid, the interface between them may be unstable to small perturbations, in the Rayleigh–Taylor sense. An inviscid model of this two-layer flow is presented, and a linearized solution is developed for early times. It is argued that the inviscid solution develops a point of infinite curvature at the interface within finite time, after which the solution fails to exist. A Boussinesq viscous model is then presented as a means of quantifying the precise effects of viscosity. The interface is represented as a narrow region of large density gradient. The viscous results agree well with the inviscid theory at early times, but the curvature singularity of the inviscid theory is instead replaced by jet formation in the viscous case. This may be of relevance to underwater explosions and stellar evolution.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2012

References

[1]Abramowitz, M. and Stegun (eds.), I. A., Handbook of mathematical functions: with formulas, graphs and mathematical tables (Dover Publications, New York, 1972).Google Scholar
[2]Amendt, P., “Bell–Plesset effects for an accelerating interface with contiguous density gradients”, Phys. Plasmas 13 (2006) 042702; doi:10.1063/1.2174718.CrossRefGoogle Scholar
[3]Andrews, M. J. and Dalziel, S. B., “Small Atwood number Rayleigh–Taylor experiments”, Phil. Trans. R. Soc. A 368 (2010) 16631679; doi:10.1098/rsta.2010.0007.CrossRefGoogle ScholarPubMed
[4]Atkinson, K. A., An introduction to numerical analysis (John Wiley & Sons, New York, 1978).Google Scholar
[5]Baker, G. R. and Beale, J. T., “Vortex blob methods applied to interfacial motion”, J. Comput. Phys. 196 (2004) 233258; doi:10.1016/j.jcp.2003.10.023.CrossRefGoogle Scholar
[6]Baker, G., Caflisch, R. E. and Siegel, M., “Singularity formation during Rayleigh–Taylor instability”, J. Fluid Mech. 252 (1993) 5178; doi:10.1017/S0022112093003660.CrossRefGoogle Scholar
[7]Baker, G. R. and Pham, L. D., “A comparison of blob methods for vortex sheet roll-up”, J. Fluid Mech. 547 (2006) 297316; doi:10.1017/S0022112005007305.CrossRefGoogle Scholar
[8]Baker, G. R. and Xie, C., “Singularities in the complex physical plane for deep water waves”, J. Fluid Mech. 685 (2011) 83116; doi:10.1017/jfm.2011.283.CrossRefGoogle Scholar
[9]Batchelor, G. K., An introduction to fluid dynamics (Cambridge University Press, Cambridge, 1967).Google Scholar
[10]Berthoud, G., “Vapor explosions”, Ann. Rev. Fluid Mech. 32 (2000) 573611; doi:10.1146/annurev.fluid.32.1.573.CrossRefGoogle Scholar
[11]Calder, A. C.et al., “On validating an astrophysical simulation code”, Astrophys. J. Suppl. Ser. 143 (2002) 201229; doi:10.1086/342267.CrossRefGoogle Scholar
[12]Chambers, K. and Forbes, L. K., “The magnetic Rayleigh–Taylor instability for inviscid and viscous fluids”, Phys. Plasmas 18 (2011) 052101; doi:10.1063/1.3574370.CrossRefGoogle Scholar
[13]Chené, A.-N. and St-Louis, N., “Large-scale periodic variability of the wind of the Wolf–Rayet star WR 1 (HD 4004)”, Astrophys. J. 716 (2010) 929941; doi:10.1088/0004-637X/716/2/929.CrossRefGoogle Scholar
[14]Cook, A. W. and Dimotakis, P. E., “Transition stages of Rayleigh–Taylor instability between miscible fluids”, J. Fluid Mech. 443 (2001) 6999; doi:10.1017/S0022112001005377.CrossRefGoogle Scholar
[15]Cowley, S. J., Baker, G. R. and Tanveer, S., “On the formation of Moore curvature singularities in vortex sheets”, J. Fluid Mech. 378 (1999) 233267; doi:10.1017/S0022112098003334.CrossRefGoogle Scholar
[16]Davidson, K. and Humphries, R. M., “Eta Carinae and its environment”, Ann. Rev. Astron. Astrophys. 35 (1997) 132; doi:10.1146/annurev.astro.35.1.1.CrossRefGoogle Scholar
[17]Dgani, R. and Soker, N., “Instabilities in moving planetary nebulae”, Astrophys. J. 495 (1998) 337345; doi:10.1086/305257.CrossRefGoogle Scholar
[18]Epstein, R., “On the Bell–Plesset effects: the effects of uniform compression and geometrical convergence on the classical Rayleigh–Taylor instability”, Phys. Plasmas 11 (2004) 51145124; doi:10.1063/1.1790496.CrossRefGoogle Scholar
[19]Farrow, D. E. and Hocking, G. C., “A numerical model for withdrawal from a two-layer fluid”, J. Fluid Mech. 549 (2006) 141157; doi:10.1017/S0022112005007561.CrossRefGoogle Scholar
[20]Fontelos, M. A. and de la Hoz, F., “Singularities in water waves and the Rayleigh–Taylor problem”, J. Fluid Mech. 651 (2010) 211239; doi:10.1017/S0022112009992710.CrossRefGoogle Scholar
[21]Forbes, L. K., “The Rayleigh–Taylor instability for inviscid and viscous fluids”, J. Eng. Math. 65 (2009) 273290; doi:10.1007/s10665-009-9288-9.CrossRefGoogle Scholar
[22]Forbes, L. K., “A cylindrical Rayleigh–Taylor instability: radial outflow from pipes or stars”, J. Eng. Math. 70 (2011) 205224; doi:10.1007/s10665-010-9374-z.CrossRefGoogle Scholar
[23]Forbes, L. K., Chen, M. J. and Trenham, C. E., “Computing unstable periodic waves at the interface of two inviscid fluids in uniform vertical flow”, J. Comput. Phys. 221 (2007) 269287; doi:10.1016/j.jcp.2006.06.010.CrossRefGoogle Scholar
[24]Forbes, L. K. and Hocking, G. C., ‘Unsteady plumes in planar flow of viscous and inviscid fluids’, IMA J. Appl. Math., to appear; doi:10.1093/imamat/hxr045.CrossRefGoogle Scholar
[25]Forbes, L. K. and Hocking, G. C., “Unsteady draining flows from a rectangular tank”, Phys. Fluids 19 (2007) 082104; doi:10.1063/1.2759891.CrossRefGoogle Scholar
[26]Gradshteyn, I. S. and Ryzhik, I. M., Tables of integrals, series and products, 6th edn (Academic Press, San Diego, CA, 2000).Google Scholar
[27]Hou, T. Y., Lowengrub, J. S. and Shelley, M. J., “Boundary integral methods for multicomponent fluids and multiphase materials”, J. Comput. Phys. 169 (2001) 302362; doi:10.1006/jcph.2000.6626.CrossRefGoogle Scholar
[28]Inogamov, N. A., The role of Rayleigh–Taylor and Richtmyer–Meshkov instabilities in astrophysics: an introduction, Volume 10 of Astrophysics and Space Physics Reviews (Harwood Academic, Amsterdam, 1999).Google Scholar
[29]Krasny, R., “Desingularization of periodic vortex sheet roll-up”, J. Comput. Phys. 65 (1986) 292313; doi:10.1016/0021-9991(86)90210-X.CrossRefGoogle Scholar
[30]Kreyszig, E., Advanced engineering mathematics, 9th edn (John Wiley & Sons, Hoboken, NJ, 2006).Google Scholar
[31]Kull, H. J., “Theory of the Rayleigh–Taylor instability”, Phys. Rep. 206 (1991) 197325; doi:10.1016/0370-1573(91)90153-D.CrossRefGoogle Scholar
[32]Kuranz, C. C., Drake, R. P., Grosskopf, M. J., Fryxell, B., Budde, A., Hansen, J. F., Miles, A. R., Plewa, T., Hearn, N. and Knauer, J., “Spike morphology in blast-wave driven instability experiments”, Phys. Plasmas 17 (2010) 052709; doi:10.1063/1.3389135.CrossRefGoogle Scholar
[33]Lazier, J., Pickart, R. and Rhines, P., “Deep convection”, in: Ocean circulation and climate: observing and modelling the global ocean, Volume 77 of International Geophysics Series (eds Siedler, G., Church, J. and Gould, J.), (Academic Press, San Diego, CA, 2001) 387400.CrossRefGoogle Scholar
[34]Lin, H., Storey, B. D. and Szeri, A. J., “Rayleigh–Taylor instability of violently collapsing bubbles”, Phys. Fluids 14 (2002) 29252928; doi:10.1063/1.1490138.CrossRefGoogle Scholar
[35]Lovelace, R. V. E., Romanova, M. M., Ustyugova, G. V. and Koldoba, A. V., “One-sided outflows/jets from rotating stars with complex magnetic fields”, Mon. Not. R. Astron. Soc. 408 (2010) 20832091; doi:10.1111/j.1365-2966.2010.17284.x.CrossRefGoogle Scholar
[36]Mac Low, M.-M. and McCray, R., “Superbubbles in disk galaxies”, Astrophys. J. 324 (1988) 776785; doi:10.1086/165936.CrossRefGoogle Scholar
[37]Matsuoka, C. and Nishihara, K., “Analytical and numerical study on a vortex sheet in incompressible Richtmyer–Meshkov instability in cylindrical geometry”, Phys. Rev. E 74 (2006) 066303; doi:10.1103/PhysRevE.74.066303.CrossRefGoogle Scholar
[38]McClure-Griffiths, N. M., Dickey, J. M., Gaensler, B. M. and Green, A. J., “Loops, drips, and walls in the galactic chimney GSH 277+00+36”, Astrophys. J. 594 (2003) 833843; doi:10.1086/377152.CrossRefGoogle Scholar
[39]Mikaelian, K. O., “Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells”, Phys. Fluids 17 (2005) 094105; doi:10.1063/1.2046712.CrossRefGoogle Scholar
[40]Moore, D. W., “The spontaneous appearance of a singularity in the shape of an evolving vortex sheet”, Proc. R. Soc. A 365 (1979) 105119; doi:10.1098/rspa.1979.0009.Google Scholar
[41]Neil, E. A. and Houseman, G. A., “Rayleigh–Taylor instability of the upper mantle and its role in intraplate orogeny”, Geophys. J. Int. 138 (1999) 89107; doi:10.1046/j.1365-246x.1999.00841.x.CrossRefGoogle Scholar
[42]Ramaprabhu, P., Dimonte, G., Young, Y.-N., Calder, A. C. and Fryxell, B., “Limits of the potential flow approach to the single-mode Rayleigh–Taylor problem”, Phys. Rev. E 74 (2006) 066308; doi:10.1103/PhysRevE.74.066308.CrossRefGoogle Scholar
[43]Rayleigh, L., “Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density”, Proc. Lond. Math. Soc. 14 (1882) 170177; doi:10.1112/plms/s1-14.1.170.CrossRefGoogle Scholar
[44]Reipurth, B. and Bally, J., “Herbig–Haro flows: probes of early stellar evolution”, Ann. Rev. Astron. Astrophys. 39 (2001) 403455; doi:10.1146/annurev.astro.39.1.403.CrossRefGoogle Scholar
[45]Scardovelli, R. and Zaleski, S., “Direct numerical simulation of free-surface and interfacial flow”, Ann. Rev. Fluid Mech. 31 (1999) 567603; doi:10.1146/annurev.fluid.31.1.567.CrossRefGoogle Scholar
[46]Shariff, K., “Fluid mechanics in disks around young stars”, Ann. Rev. Fluid Mech. 41 (2009) 283315; doi:10.1146/annurev.fluid.010908.165144.CrossRefGoogle Scholar
[47]Sharp, D. H., “An overview of Rayleigh–Taylor instability”, Physica D 12 (1984) 318; doi:10.1016/0167-2789(84)90510-4.Google Scholar
[48]Shi, J., Zhang, Y.-T. and Shu, C.-W., “Resolution of high order WENO schemes for complicated flow structures”, J. Comput. Phys. 186 (2003) 690696; doi:10.1016/S0021-9991(03)00094-9.CrossRefGoogle Scholar
[49]Stahler, S. W. and Palla, F., The formation of stars (Wiley-VCH, Weinheim, 2004).CrossRefGoogle Scholar
[50]Taylor, G., “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I”, Proc. R. Soc. A 201 (1950) 192196; doi:10.1098/rspa.1950.0052.Google Scholar
[51]Tryggvason, G., Dahm, W. J. A. and Sbeih, K., “Fine structure of vortex sheet rollup by viscous and inviscid simulation”, J. Fluids Eng. 113 (1991) 3136; doi:10.1115/1.2926492.CrossRefGoogle Scholar
[52]von Winckel, G., “Legendre–Gauss quadrature weights and nodes”, 2004, http://www.mathworks.com/matlabcentral/fileexchange/4540.Google Scholar
[53]Ye, W.-H., Wang, L.-F. and He, X.-T., “Jet-like long spike in nonlinear evolution of ablative Rayleigh–Taylor instability”, Chin. Phys. Lett. 27 (2010) 125203; doi:10.1088/0256-307X/27/12/125203.CrossRefGoogle Scholar
[54]Young, Y.-N. and Ham, F. E., “Surface tension in incompressible Rayleigh–Taylor mixing flow”, J. Turbulence 7 (2006) 123; doi:10.1080/14685240600809979.CrossRefGoogle Scholar
[55]Yu, H. and Livescu, D., “Rayleigh–Taylor instability in cylindrical geometry with compressible fluids”, Phys. Fluids 20 (2008) 104103; doi:10.1063/1.2991431.CrossRefGoogle Scholar
[56]Zinnecker, H. and Yorke, H. W., “Toward understanding massive star formation”, Ann. Rev. Astron. Astrophys. 45 (2007) 481563; doi:10.1146/annurev.astro.44.051905.092549.CrossRefGoogle Scholar