Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T03:41:55.209Z Has data issue: false hasContentIssue false

A MODIFIED PROJECTED CONJUGATE GRADIENT ALGORITHM FOR UNCONSTRAINED OPTIMIZATION PROBLEMS

Published online by Cambridge University Press:  09 April 2013

SHUAI HUANG
Affiliation:
School of Mathematics and Statistics, Central South University, Changsha, China email 295663626@qq.comdsonghai@163.com
ZHONG WAN*
Affiliation:
School of Mathematics and Statistics, Central South University, Changsha, China email 295663626@qq.comdsonghai@163.com
SONGHAI DENG
Affiliation:
School of Mathematics and Statistics, Central South University, Changsha, China email 295663626@qq.comdsonghai@163.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We propose a modified projected Polak–Ribière–Polyak (PRP) conjugate gradient method, where a modified conjugacy condition and a method which generates sufficient descent directions are incorporated into the construction of a suitable conjugacy parameter. It is shown that the proposed method is a modification of the PRP method and generates sufficient descent directions at each iteration. With an Armijo-type line search, the theory of global convergence is established under two weak assumptions. Numerical experiments are employed to test the efficiency of the algorithm in solving some benchmark test problems available in the literature. The numerical results obtained indicate that the algorithm outperforms an existing similar algorithm in requiring fewer function evaluations and fewer iterations to find optimal solutions with the same tolerance.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Society 

References

An, X.-M., Li, D.-H. and Xiao, Y., “Sufficient descent directions in unconstrained optimization”, Comput. Optim. Appl. 48 (2011) 515532; doi:10.1007/s10589-009-9268-z.CrossRefGoogle Scholar
Dai, Y.-H. and Liao, L.-Z., “New conjugate conditions and related nonlinear conjugate gradient methods”, Appl. Math. Optim. 43 (2001) 87101; doi:10.1007/s002450010019.CrossRefGoogle Scholar
Fletcher, R. and Reeves, C. M., “Function minimization by conjugate gradients”, Comput. J. 7 (1964) 149154; doi:10.1093/comjnl/7.2.149.CrossRefGoogle Scholar
Hager, W. W. and Zhang, H., “A survey of nonlinear conjugate gradient methods”, Pac. J. Optim. 2 (2006) 3558.Google Scholar
Hestenes, M. R. and Stiefel, E., “Methods of conjugate gradients for solving linear systems”, J. Res. Natl. Bur. Stand. B 49 (1952) 409432; doi:10.6028/jres.049.044.CrossRefGoogle Scholar
Jiang, H., Deng, S., Zheng, X. and Wan, Z., “Global convergence of a modified spectral conjugate gradient method”, J. Appl. Math. (2012) Article ID 641276; doi:10.1155/2012/641276.CrossRefGoogle Scholar
Li, S. and Huang, Z., “Guaranteed descent conjugate gradient methods with modified secant condition”, J. Indust. Manag. Optim. 4 (2008) 739755; doi:10.3934/jimo.2008.4.739.CrossRefGoogle Scholar
Moré, J. J., Garbow, B. S. and Hillstrome, K. E., “Testing unconstrained optimization software”, ACM Trans. Math. Software 7 (1981) 1741; doi:10.1145/355934.355936.CrossRefGoogle Scholar
Polyak, B. T., “The conjugate gradient method in extremal problems”, USSR Comput. Math. Math. Phys. 9 (1969) 94112; doi:10.1016/0041-5553(69)90035-4.CrossRefGoogle Scholar
Wan, Z., Hu, C. and Yang, Z., “A spectral PRP conjugate gradient methods for nonconvex optimization problem based on modified line search”, Discrete Contin. Dyn. Syst. Ser. B 16 (2011) 11571169; doi:10.3934/dcdsb.2011.16.1157.Google Scholar
Wan, Z., Teo, K. L., Shen, X. and Hu, C., “New BFGS method for unconstrained optimization problem based on modified Armijo line search”, Optimization (2012) Article ID 644284; doi:10.1080/02331934.2011.644284.Google Scholar
Wan, Z., Yang, Z. and Wang, Y., “New spectral PRP conjugate gradient method for unconstrained optimization”, Appl. Math. Lett. 24 (2011) 1622; doi:10.1016/j.aml.2010.08.002.CrossRefGoogle Scholar
Wang, C. Y. and Li, M. X., “Convergence property of the Fletcher–Reeves conjugate gradient method with errors”, J. Indust. Manag. Optim. 1 (2005) 193200; doi:10.3934/jimo.2005.1.193.CrossRefGoogle Scholar
Zhang, L., Zhou, W. and Li, D.-H., “A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence”, IMA J. Numer. Anal. 26 (2006) 629640;doi:10.1093/imanum/drl016.CrossRefGoogle Scholar
Zhang, L., Zhou, W. and Li, D.-H., “Global convergence of a modified Fletcher–Reeves conjugate gradient method with Armijo-type line search”, Numer. Math. 104 (2006) 561572; doi:10.1007/s00211-006-0028-z.CrossRefGoogle Scholar