Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T23:56:57.681Z Has data issue: false hasContentIssue false

BILINEAR OPTIMAL CONTROL OF THE VELOCITY TERM IN A VON KÁRMÁN PLATE EQUATION

Published online by Cambridge University Press:  29 July 2013

JONG YEOUL PARK
Affiliation:
Department of Mathematics, Pusan National University, Busan 609-735, South Korea
SUN HYE PARK*
Affiliation:
Department of Mathematics, Pusan National University, Busan 609-735, South Korea
YONG HAN KANG
Affiliation:
Institute of Liberal Education, Catholic University of Daegu, Gyeongsan 712-702, South Korea
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider a bilinear optimal control problem for a von Kármán plate equation. The control is a function of the spatial variables and acts as a multiplier of the velocity term. We first state the existence of solutions for the von Kármán equation and then derive optimality conditions for a given objective functional. Finally, we show the uniqueness of the optimal control.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Society 

References

Adams, R., Sobolev spaces (Academic Press, New York, 1975).Google Scholar
Boutet de Monvel, A. and Chueshov, I., “Uniqueness theorem for weak solutions of von Kármán evolution equations”, J. Math. Anal. Appl. 221 (1998) 419429; doi:10.1006/jmaa.1997.5681.CrossRefGoogle Scholar
Bradley, M. E. and Lasiecka, I., “Global decay rates for the solutions to a von Kármán plate without geometric conditions”, J. Math. Anal. Appl. 181 (1994) 254276; doi:10.1006/jmaa.1994.1019.CrossRefGoogle Scholar
Bradley, M. E. and Lenhart, S., “Bilinear spatial control of the velocity term in a Kirchhoff plate equation”, Electron. J. Differential Equations 2001 (2001) 115; http://emis.maths.adelaide.edu.au/journals/EJDE/Volumes/2001/27/abstr.html.Google Scholar
Bradley, M. E., Lenhart, S. and Yong, J., “Bilinear optimal control of the velocity term in a Kirchhoff plate equation”, J. Math. Anal. Appl. 238 (1999) 451467; doi:10.1006/jmaa.1999.6524.CrossRefGoogle Scholar
Chueshov, I. and Lasiecka, I., “Inertial manifolds for von Kármán plate equations”, Appl. Math. Optim. 46 (2002) 179206; doi:10.1007/s00245-002-0741-7.Google Scholar
Chueshov, I. and Lasiecka, I., “Global attractors for von Kármán evolutions with a nonlinear boundary dissipation”, J. Differential Equations 198 (2004) 196231; doi:10.1016/j.jde.2003.08.008.CrossRefGoogle Scholar
Favini, A., Horn, M. A., Lasiecka, I. and Tataru, D., “Global existence, uniqueness and regularity of solutions to a von Kármán system with nonlinear boundary dissipation”, Differential Integral Equations 9 (1996) 267294; http://projecteuclid.org/euclid.die/1367603346.CrossRefGoogle Scholar
Horn, M. A. and Lasiecka, I., “Uniform decay of weak solutions to a von Kármán plate with nonlinear boundary dissipation”, Differential Intergral Equations 7 (1994) 885908.Google Scholar
Lagnese, J., Boundary stabilization of thin plates (SIAM, Philadelphia, 1989).CrossRefGoogle Scholar
Lasiecka, I., “Finite dimensionality and compactness of attractors for von Kármán equations with nonlinear dissipation”, NoDEA Nonlinear Differential Equations Appl. 6 (1999) 437472; doi:10.1007/s000300050012.CrossRefGoogle Scholar
Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires (Dunod, Paris, 1969).Google Scholar
Lions, J. L. and Magenes, E., Problèmes aux Limites non homogènes et applications (Dunod, Paris, 1968).Google Scholar
Park, J. Y. and Park, S. H., “Uniform decay for a von Kármán plate equation with a boundary memory condition”, Math. Methods Appl. Sci. 28 (2005) 22252240; doi:10.1002/mma.663.CrossRefGoogle Scholar
Puel, J.-P. and Tucsnak, M., “Boundary stabilization for the von Kármán equations”, SIAM. J. Control Optim. 33 (1995) 255273; doi:10.1137/S0363012992228350.CrossRefGoogle Scholar