Published online by Cambridge University Press: 08 February 2013
A theoretical investigation of the unsteady flow of a Newtonian fluid through a channel is presented using an alternative boundary condition to the standard no-slip condition, namely the Navier boundary condition, independently proposed over a hundred years ago by both Navier and Maxwell. This boundary condition contains an extra parameter called the slip length, and the most general case of a constant but different slip length on each channel wall is studied. An analytical solution for the velocity distribution through the channel is obtained via a Fourier series, and is used as a benchmark for numerical simulations performed utilizing a finite element analysis modified with a penalty method to implement the slip boundary condition. Comparison between the analytical and numerical solution shows excellent agreement for all combinations of slip lengths considered.