Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T18:58:33.771Z Has data issue: false hasContentIssue false

ON THE SAFE STORAGE OF BAGASSE

Published online by Cambridge University Press:  23 June 2023

S. L. MITCHELL
Affiliation:
MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland; e-mail: sarah.mitchell@ul.ie
T. G. MYERS*
Affiliation:
Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain
*

Abstract

In this paper, we investigate the thermal evolution in a one-dimensional bagasse stockpile. The mathematical model involves four unknowns: the temperature, oxygen content, liquid water content and water vapour content. We first nondimensionalize the model to identify dominant terms and so simplify the system. We then calculate solutions for the approximate and full system. It is shown that under certain conditions spontaneous combustion will occur. Most importantly, we show that spontaneous combustion can be avoided by sequential building. To be specific, in a situation where, say, a $4.7\,$m stockpile can spontaneously combust, we could construct a $3\,$m pile and then some days later add another $1.7\,$m to produce a stable $4.7\,$m pile.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amin, M. N., Ashraf, M., Kumar, R., Khan, K., Saqib, D., Ali, S. S. and Khan, S., “Role of sugarcane bagasse ash in developing sustainable engineered cementitious composites”, Front. Mater 7 (2020) Article ID: 65; doi:10.3389/fmats.2020.00065.CrossRefGoogle Scholar
Chumpoo, J. and Prasassarakich, P., “Bio-oil from hydro-liquefaction of bagasse in supercritical ethanol”, Energy Fuels 24 (2010) 20712077; doi:10.1021/ef901241e.CrossRefGoogle Scholar
Dixon, T. F., “Spontaneous combustion in bagasse stockpiles”, Proc. Australian Society of Sugar Cane Technologists (Sugar Research Institute, Mackay, Queensland, Australia, 1988) 5361; http://www.catchmentsolutions.com.au/files/2015/07/ASSCT-in-Bagasse-Spontaneous-Combustion-1988_pa_g9-Dixon.pdf.Google Scholar
Fowler, A. C., Mathematical models in the applied sciences (Cambridge University Press, Cambridge, 1997).Google Scholar
Gray, B. F., Progress report to Sugar Research Institute, July 1984.Google Scholar
Gray, B. F., Griffiths, J. F. and Hasko, S. M., “Spontaneous ignition hazards in stockpiles of cellulosic materials: criteria for safe storage”, J. Chem. Tech. Biotech. 34A (1984) 453463; doi:10.1002/jctb.5040340808.Google Scholar
Gray, B. F., Sexton, M. J., Halliburton, B. and Macaskill, C., “Wetting-induced ignition in cellulosic materials”, Fire Safety J. 37 (2002) 465479; doi:10.1016/S0379-7112(02)00002-4.CrossRefGoogle Scholar
Halliburton, B. W., “Investigation of spontaneous combustion phenomenology of bagasse and calcium hypochlorite”, Ph. D. Thesis, Macquarie University, Sydney, Australia, 2002; doi:10.25949/19434962.v1.CrossRefGoogle Scholar
Juela, D., Vera, M., Cruzat, C., Alvarez, X. and Vanegas, E., “Adsorption properties of sugarcane bagasse and corn cob for the sulfamethoxazole removal in a fixed-bed column”, Sustainable Environ. Res. 31 (2021) Article ID: 27; doi:10.1186/s42834-021-00102-x.CrossRefGoogle Scholar
Luangwilai, T., Sidhu, H. S. and Nelson, M. I., “A two-dimensional, reaction-diffusion model of compost piles”, ANZIAM J. 53 (2012) C34C52; doi:10.21914/anziamj.v53i0.5083.CrossRefGoogle Scholar
Luangwilai, T., Sidhu, H. S. and Nelson, M. I., “One-dimensional spatial model for self-heating in compost piles: investigating effects of moisture and air flow”, Food Bioproducts Process 108 (2018) 1826; doi:10.1016/j.fbp.2017.12.001.CrossRefGoogle Scholar
Myers, T. G. and Mitchell, S. L., “Safe storage of sugar bagasse”. Mathematics in Industry Reports, Cambridge Open Engage, Cambridge, 2021; doi:10.33774/miir-2021-zb61c.CrossRefGoogle Scholar
Nugent, C., “Why recycling plants keep catching on fire”, Time, April 13, 2023; https://time.com/6271576/recycling-plant-fire-indiana/.Google Scholar
Patel, H., “Fixed-bed column adsorption study: a comprehensive review”, Appl. Water Sci. 9 (2019) Article ID: 45; doi:10.1007/s13201-019-0927-7.CrossRefGoogle Scholar
Pliny the elder, The natural history (Books 12–37, 1885) ToposText Web Version 3.0. Translated by H. T. Riley (1816–1878) and J. Bostock (1773–1846); https://topostext.org/work/153.Google Scholar
Ramirez, J., Brown, R. and Rainey, T., “A review of hydrothermal liquefaction bio-crude properties and prospects for upgrading to transportation fuels”, Energies 8 (2015) Article ID: 6765; doi:10.3390/en8076765.CrossRefGoogle Scholar
Schiesser, W. E., The numerical method of lines: integration of partial differential equations (Academic Press, San Diego, CA, 1991).Google Scholar
Sisson, R. A., Swift, A., Wake, G. C. and Gray, B. F., “The self-heating of damp cellulosic materials: I. High thermal conductivity and diffusivity”, IMA J. Appl. Math. 49 (1992) 273291; doi:10.1093/imamat/49.3.273.CrossRefGoogle Scholar
van’t Hoff, J. H., Studies in chemical dynamics (F. Müller and Co., Amsterdam; Williams and Norgate, London, 1896) vi + 286 pages; translated by Dr. Thomas Ewan.Google Scholar