Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T04:51:49.804Z Has data issue: false hasContentIssue false

The introduction of the European fallow deer to the northern provinces of the Roman Empire: a multi-proxy approach to the Herstal skeleton (Belgium)

Published online by Cambridge University Press:  23 November 2020

Fabienne Pigière*
Affiliation:
School of Archaeology, University College Dublin, Ireland Royal Belgian Institute of Natural Sciences, Brussels, Belgium
Denis Henrard
Affiliation:
Agence wallonne du Patrimoine, Liège, Belgium
Naomi Sykes
Affiliation:
Department of Archaeology, University of Exeter, UK
Nathalie Suarez-Gonzalez
Affiliation:
Faculté de Philosophie et Sciences Sociales, Département d' Histoire, Arts et Archéologie, Université Libre de Bruxelles, Belgium
Gontran Sonet
Affiliation:
Royal Belgian Institute of Natural Sciences, Brussels, Belgium
*
*Author for correspondence: ✉ fabienne.pigiere@ucd.ie

Abstract

Many exotic animal species were introduced to Northern Europe during the Roman period, including fallow deer (Dama dama). To date, however, finds of fallow deer bones at archaeological sites in this region have been sporadic and disarticulated, leaving uncertainty over their origins. This article presents the first known articulated fallow deer skeleton from Roman North-western Europe. Osteological, ancient DNA, radiocarbon dating and stable isotope analyses confirm that the species was established in this region by the Roman period, probably originating from translocated, rather than native, Mediterranean populations. Clarifying the origins of fallow deer in North-western Europe is critical for understanding the dynamics of species exchange around the Roman Empire.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of Antiquity Publications Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amand, M. & Mariën, M.-E.. 1976. La tombe de Herstal, Inventaria Archaeologica, Corpus des ensembles archéologiques. Belgique, Fascicule 2-B11. Brussels: Musées Royaux d'Art et d'Histoire.Google Scholar
Beglane, F., Baker, K., Carden, R.F., Hoelzel, A.R., Lamb, A.L., Fhionnghaile, R.M., Miller, H. & Sykes, N.. 2018. Ireland's fallow deer: their historical, archaeological and biomolecular records. Proceedings of the Royal Irish Academy: Archaeology, Culture, History, Literature 118C: 141–65. https://doi.org/10.3318/priac.2018.118.01CrossRefGoogle Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37: 425–30. https://doi.org/10.1017/S0033822200030903CrossRefGoogle Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43: 355–63. https://doi.org/10.1017/S0033822200038212CrossRefGoogle Scholar
Carden, R.F. & Hayden, T.J.. 2002. Epiphyseal fusion in the postcranial skeleton as an indicator of age at death of European fallow deer (Dama dama dama, Linnaeus, 1758), in Ruscillo, D. (ed.) Recent advances in ageing and sexing bones: 227–36. Oxford: Oxbow. https://doi.org/10.2307/j.ctvh1ds02.19Google Scholar
Carden, R.F., Sykes, N.J. & Hayden, T.J.. 2013. Osteological measurements from the Phoenix Park (Dublin, Ireland) population of Dama dama: a metrical baseline for investigating the ancient morphology, spread and management of European fallow deer. International Journal of Osteoarchaeology 23: 5568.Google Scholar
Chapman, N. & Chapman, D.. 1975. Fallow deer: their history, distribution and biology. Lavenham: Terence Dalton. https://doi.org/10.1111/j.1365-2907.1980.tb00234.xGoogle Scholar
Chapman, N. & Chapman, D.. 1980. The distribution of fallow deer: a worldwide review. Mammal Review 10: 61138.CrossRefGoogle Scholar
Codron, D., Brink, J.S., Rossouw, L. & Clauss, M.. 2008. The evolution of ecological specialization in southern African ungulates: competition or physical environmental turnover? Oikos 117: 344–53.CrossRefGoogle Scholar
Collart-Sacré, A. 1930. La libre seigneurie de Herstal: son histoire, ses monuments, ses rues et ses lieux-dits (tome II). Liège: G. Thone.Google Scholar
Cormie, A.B. & Schwarcz, H.P.. 1996. Effects of climate on deer bone δ15N and δ13C: lack of precipitation effects on δ15N for animals consuming low amounts of C4 plants. Geochimica et Cosmochimica Acta 60: 4161–66. https://doi.org/10.1016/S0016-7037(96)00251-7CrossRefGoogle Scholar
Davis, S. & MacKinnon, M.. 2013. Did the Romans bring fallow deer to Portugal? Environmental Archaeology 14: 1526. https://doi.org/10.1179/174963109X400646CrossRefGoogle Scholar
von den Driesch, A. 1976. A guide to the measurement of animal bone from archaeological sites (Peabody Museum Bulletin 1). Harvard: Peabody Museum of Archaeology and Ethnology.Google Scholar
Fajardo, V., González, I., López-Calleja, I., Martín, I., Rojas, M., Hernández, P.E., García, T. & Martín, R.. 2007. Identification of meats from red deer (Cervus elaphus), fallow deer (Dama dama), and roe deer (Capreolus capreolus) using polymerase chain reaction targeting specific sequences from the mitochondrial 12S rRNA gene. Meat Science 76: 234–40. https://doi.org/10.1016/j.meatsci.2006.11.004CrossRefGoogle Scholar
Frechkop, S. 1958. Faune de Belgique: Mammifères. Bruxelles: Musée royal des Sciences naturelles de Belgique.Google Scholar
Habermehl, K.-H. 1985. Alterbestimmung bei Wildune Pelztieren. Berlin: Paul Parey.Google Scholar
Henrard, D. 2013. Herstal/Herstal: suivi archéologique et fouilles préventives autour de la chapelle Saint-Lambert. Chronique de l'Archéologie wallonne 20: 179–81. https://doi.org/10.3917/rdn.378.0157Google Scholar
Henrard, D., van der Sloot, P. & Léotard, J.-M.. 2008. La villa de la place Saint-Lambert à Liège (Belgique): nouvel état des connaissances. Archéologie de la Picardie et du Nord de la France (Revue du Nord) 90: 159–74.Google Scholar
Henrard, D., Gilet, P. & Pigière, F.. 2016. Herstal/Herstal: sépultures mérovingiennes, tombe de cervidé et traces d'occupation d’époque romaine au lieu-dit ‘Sous-la-Chapelle’. Chronique de l'Archéologie wallonne 24: 195200.Google Scholar
Lepetz, S. & Yvinec, J.H.. 2002. Présence d'espèce animale d'origine méditerranéenne en France du Nord aux périodes romaine et médiévale: actions anthropiques et mouvements naturels, in Gardeisen, A. (ed.) Mouvements ou Déplacements de Populations Animales en Méditerranée au Cours de l'Holocène (British Archaeological Reports International Series 1017): 3342. Oxford: British Archaeological Reports.Google Scholar
Lister, A.M. 1996. The morphological distinction between bones and teeth of fallow deer (Dama dama) and red deer (Cervus elaphus). Journal of Osteoarchaeology 6: 119–43. https://doi.org/10.1002/(SICI)1099-1212(199603)6:2<119::AID-OA265>3.0.CO;2-83.0.CO;2-8>CrossRefGoogle Scholar
Lomolino, M.V. 1985. Body size of mammals on islands: the island rule re-examined. American Naturalist 125: 310–16. https://doi.org/10.1086/284343CrossRefGoogle Scholar
Lomolino, M.V. 2005. Body size evolution in insular vertebrates: generality of the island rule. Journal of Biogeography 32: 1683–99. https://doi.org/10.1111/j.1365-2699.2005.01314.xCrossRefGoogle Scholar
Madgwick, R., Sykes, N., Miller, H., Symmons, R., Morris, J. & Lamb, A.. 2013. Fallow deer (Dama dama dama) management in Roman south-east Britain. Archaeological and Anthropological Sciences 5: 111–22. https://doi.org/10.1007/s12520-013-0120-0CrossRefGoogle Scholar
Masseti, M. 1996. The postglacial diffusion of the genus Dama Frisch, 1775, in the Mediterranean region. Supplemento alle Ricerche di Biologia della Selvaggina 25: 729.Google Scholar
Miller, H. & Sykes, N.. 2016. Zootherapy in archaeology: the case of the fallow deer (Dama dama dama). Journal of Ethnobiology and Ethnomedicine 36: 257–67. https://doi.org/10.2993/0278-0771-36.2.257CrossRefGoogle Scholar
Miller, H., Carden, R.F., Evans, J., Lamb, A., Madgwick, R., Osborne, D., Symmons, R. & Sykes, N.. 2016. Dead or alive? Investigating long-distance transport of live fallow deer and their body parts in antiquity. Environmental Archaeology 21: 246–59. https://doi.org/10.1179/1749631414Y.0000000043CrossRefGoogle Scholar
Osborne, D. 2017. Imports and isotopes: a modern baseline study for interpreting Iron Age and Roman trade in fallow deer antlers. Papers from the Institute of Archaeology 27: 115. https://doi.org/10.5334/pia-482Google Scholar
Otte, M. 1984. Les fouilles de la Place Saint-Lambert à Liège. Liège: Eraul 18.Google Scholar
Peterson, R.O., Vucetich, J.A., Beyer, D., Schrage, M. & Räik-Könen, J.. 2011. Phenotypic variation in moose: the island rule and the moose of Isle Royale. Alces 47: 125–33.Google Scholar
Pigière, F. & Henrotay, D.. 2012. Camels in the northern provinces of the Roman Empire. Journal of Archaeological Science 39: 1531–39. https://doi.org/10.1016/j.jas.2011.11.014CrossRefGoogle Scholar
Reimer, P. et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50 000 years cal BP. Radiocarbon 55: 1869–87. https://doi.org/10.2458/azu_js_rc.55.16947.CrossRefGoogle Scholar
Renard, L. 1901. Découverte d'antiquités romaines à Herstal. Bulletin de l'Institut Archéologique liégeois 29: 167–32.Google Scholar
Schmidt, N.M. & Jensen, P.M.. 2003. Changes in mammalian body length over 175 years: adaptations to a fragmented landscape? Conservation Ecology 7: 6. https://doi.org/10.5751/ES-00520-070206CrossRefGoogle Scholar
Sponheimer, M. et al. 2003. Nitrogen isotopes in mammalian herbivores: hair δ15N values from a controlled feeding study. International Journal of Osteoarchaeology 13: 8087. https://doi.org/10.1002/oa.655CrossRefGoogle Scholar
Sykes, N. 2004. The introduction of fallow deer: a zooarchaeological perspective. Environmental Archaeology 9: 7583. https://doi.org/10.1179/env.2004.9.1.75CrossRefGoogle Scholar
Sykes, N.J., White, J., Hayes, T.E. & Palmer, M.R.. 2006. Tracking animals using strontium isotopes in teeth: the role of fallow deer (Dama dama) in Roman Britain. Antiquity 80: 948–59. https://doi.org/10.1017/S0003598X00094539CrossRefGoogle Scholar
Sykes, N.J., Baker, K.H., Carden, R.H., Higham, T.G., Hoelzel, A.R. & Stevens, R.E.. 2011. New evidence for the establishment and management of the European fallow deer (Dama dama dama) in Roman Britain. Journal of Archaeological Science 38: 156–65. https://doi.org/10.1016/j.jas.2010.08.024CrossRefGoogle Scholar
Sykes, N.J., Carden, R.H. & Harris, K.. 2013. Changes in fallow deer size and shape: evidence for the movement and management of a species. International Journal of Osteoarchaeology 23: 5568. https://doi.org/10.1002/oa.1239CrossRefGoogle Scholar
Sykes, N.J. et al. 2016. Wild to domestic and back again: the dynamics of fallow deer management in medieval England (c. 11th–16th century AD). STAR: Science and Technology of Archaeological Research 2: 113–26. https://doi.org/10.1080/20548923.2016.1208027CrossRefGoogle Scholar
Tieszen, L.L., Boutton, T.W., Tesdahl, K.G. & Slade, N.A.. 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57: 3237. https://doi.org/10.1007/BF00379558CrossRefGoogle Scholar
Uerpmann, H.-P. 1987. The ancient distribution of ungulate mammals in the Middle East (Beihefte zum Tubunger Atlas des Vorderen Orients, Reihe A Naturwissenschaften 27). Wiesbaden: Dr. Ludwig Reichert.Google Scholar
Vigne, J.-D., Daujat, J. & Monchot, H.. 2016. First introduction and early exploitation of the Persian fallow deer on Cyprus (8000–6000 cal BC). International Journal of Osteoarchaeology 26: 853–66. https://doi.org/10.1002/oa.2488CrossRefGoogle Scholar
Supplementary material: PDF

Pigière et al. supplementary material

Pigière et al. supplementary material

Download Pigière et al. supplementary material(PDF)
PDF 221.5 KB