Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T22:22:36.608Z Has data issue: false hasContentIssue false

Developments in radiocarbon calibration for archaeology

Published online by Cambridge University Press:  02 January 2015

Christopher Bronk Ramsey
Affiliation:
1Research Laboratory for Archaeology and the History of Art, University of Oxford, UK
Caitlin E. Buck
Affiliation:
2Department of Probability and Statistics, University of Sheffield, UK
Sturt W. Manning
Affiliation:
3Department of Classics and The Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology, Cornell University, USA; School of Human and Environmental Sciences, University of Reading, UK
Paula Reimer
Affiliation:
414CHRONO Centre for Climate, the Environment and Chronology, Queen's University Belfast, Belfast, Northern Ireland
Hans van der Plicht
Affiliation:
5Centre for Isotope Research, Rijksuniversiteit Groningen, Netherlands; Faculty of Archaeology, Leiden University, Netherlands

Extract

This update on radiocarbon calibration results from the 19th International Radiocarbon Conference at Oxford in April 2006, and is essential reading for all archaeologists. The way radiocarbon dates and absolute dates relate to each other differs in three periods: back to 12400 cal BP, radiocarbon dates can be calibrated with tree rings, and the calibration curve in this form should soon extend back to 18000 cal BP. Between 12400 and 26000 cal BP, the calibration curves are based on marine records, and thus are only a best estimate of atmospheric concentrations. Beyond 26000 cal BP, dates have to be based on comparison (rather than calibration) with a variety of records. Radical variations are thus possible in this period, a highly significant caveat for the dating of middle and lower Paleolithic art, artefacts and animal and human remains.

Type
Research
Copyright
Copyright © Antiquity Publications Ltd. 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bard, E., Arnold, M., Hamelin, B., Tisnerat-Laborde, N. & Cabioch, G.. 1998. Radiocarbon calibration by means of mass spectrometric Th-230/U-234 and C-14 ages of corals: An updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40 (3): 1085–92.CrossRefGoogle Scholar
Bard, E., Rostek, F. & Menot-Combes, G.. 2004. Radiocarbon calibration beyond 20 000 C-14 yr BP by means of planktonic foraminifera of the Iberian Margin. Quaternary Research 61 (2): 204–14.Google Scholar
Beck, J.W., Richards, D.A., Edwards, R.L., Silverman, B.W., Smart, P.L., Donahue, D.J., Hererra-Osterheld, S., Burr, G.S., Calsoyas, L., Jull, A.J.T. & Biddulph, D.. 2001. Extremely large variations of atmospheric C-14 concentration during the last glacial period. Science 292 (5526): 2453–58.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I. & Bonani, G.. 2001. Persistent solar influence on north Atlantic climate during the Holocene. Science 294 (5549): 2130–36.CrossRefGoogle ScholarPubMed
Bond, G.C. & Lotti, R.. 1995. Iceberg Discharges into the North-Atlantic on Millennial Time Scales during the Last Glaciation. Science 267 (5200): 1005–10.Google Scholar
Bondevik, S., Mangerud, J., Birks, H.H., Gulliksen, S. & Reimer, P.. 2006. Changes in North Atlantic radiocarbon reservoir ages during the Allerod and Younger Dryas. Science 312 (5779): 1514–17.Google Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program OxCal. Radiocarbon 43 (2A): 355–63.Google Scholar
Buck, C.E. & Blackwell, P.G.. 2004. Formal statistical models for estimating radiocarbon calibration curves. Radiocarbon 46 (3): 10931102.Google Scholar
Buck, C.E., Christen, J.A. & James, G.N.. 1999. BCal: an on-line Bayesian radiocarbon calibration tool. Internet Archaeology 7: http://intarch.ac.uk/journal/issue7/buck_index.html.Google Scholar
Chiu, T.C., Fairbanks, R.G., Mortlock, R.A., Cao, L., Fairbanks, T.W. & Bloom, A.L.. 2006. Redundant 230Th/234U/238U, 231Pa/235U and 14C dating of fossil corals for accurate radiocarbon age calibration. Quaternary Science Reviews 25 (17–18): 2431–40.Google Scholar
Cutler, K.B., Gray, S.C., Burr, G.S., Edwards, R.L., Taylor, F.W., Cabioch, G., Beck, J.W., Cheng, H. & Moore, J.. 2004. Radiocarbon calibration and comparison to 50 kyr BP with paired C-14 and Th-230 dating of corals from Vanuatu and Papua New Guinea. Radiocarbon 46 (3): 1127–60.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahljensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjornsdottir, A.E., Jouzel, J. & Bond, G.. 1993. Evidence for General Instability of Past Climate from a 250-Kyr Ice-Core Record. Nature 364 (6434): 218–20.CrossRefGoogle Scholar
Fairbanks, R.G., Mortlock, R.A., Chiu, T.C., Cao, L., Kaplan, A., Guilderson, T.P., Fairbanks, T.W., Bloom, A.L., Grootes, P.M. & Nadeau, M.J.. 2005. Radiocarbon calibration curve spanning 0 to 50 000 years BP based on paired Th-230/U-234/U-238 and C-14 dates on pristine corals. Quaternary Science Reviews 24 (16–17): 1781–96.Google Scholar
Gravina, B., Mellars, P. & Bronk Ramsey, C.. 2005. Radiocarbon dating of interstratified Neanderthal and early modern human occupations at the Chatelperronian type-site. Nature 438 (7064): 51–6.Google Scholar
Hughen, K.A., Baillie, M.G.L., Bard, E., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Kromer, B., McCormac, G., Manning, S., Bronk Ramsey, C., Reimer, P.J., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J. & Weyhenmeyer, C.E.. 2004a. Marine04 marine radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46 (3): 1059–86.Google Scholar
Hughen, K.A., Lehman, S., Southon, J., Overpeck, J., Marchal, O., Herring, C. & Turnbull, J.. 2004b. C-14 activity and global carbon cycle changes over the past 50 000 years. Science 303 (5655): 202–7.Google Scholar
Hughen, K.A., Overpeck, J.T., Lehman, S.J., Kashgarian, M. & Southon, J.R.. 1998. A new C-14 calibration data set for the last deglaciation based on marine varves. Radiocarbon 40 (1): 483–94.Google Scholar
Hughen, K.A., Southon, J.R., Bertrand, C.J.H., Frantz, B. & Zermeno, P.. 2004c. Cariaco basin calibration update: Revisions to calendar and C-14 chronologies for core PL07-58PC. Radiocarbon 46 (3): 1161–87.Google Scholar
Joris, O. & Weninger, B.. 1998. Extension of the C-14 calibration curve to ca. 40 000 cal BC by synchronizing Greenland O-18/O-16 ice core records and North Atlantic foraminifera profiles: A comparison with U/Th coral data. Radiocarbon 40 (1): 495504.Google Scholar
Kitagawa, H. & van der Plicht, J.. 1998. Atmospheric radiocarbon calibration to 45 000 yr BP: Late glacial fluctuations and cosmogenic isotope production. Science 279 (5354): 1187–90.Google Scholar
Kitagawa, H. & van der Plicht, J.. 2000. Atmospheric radiocarbon calibration beyond 11 900 cal BP from Lake Suigetsu laminated sediments. Radiocarbon 42 (3): 369–80.CrossRefGoogle Scholar
Kromer, B., Friedrich, M., Hughen, K.A., Kaiser, F., Remmele, S., Schaub, M. & Talamo, S.. 2004. Late glacial C-14 ages from a floating, 1382-ring pine chronology. Radiocarbon 46 (3): 1203–9.CrossRefGoogle Scholar
Kromer, B., Manning, S.W., Kuniholm, P.I., Newton, M.W., Spurk, M. & Levin, I.. 2001. Regional (CO2)-C-14 offsets in the troposphere: Magnitude, mechanisms, and consequences. Science 294 (5551): 2529–32.Google Scholar
McCormac, F.G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G. & Reimer, P.J.. 2004. SHCal04 Southern Hemisphere calibration, 0-11.0 cal kyr BP. Radiocarbon 46 (3): 1087–92.Google Scholar
Mellars, P. 2006. A new radiocarbon revolution and the dispersal of modern humans in Eurasia. Nature 439 (7079): 931–5.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J. & Weyhenmeyer, C.E.. 2004. IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46 (3): 1029–58.Google Scholar
Richards, D.A. & Beck, J.W.. 2001. Dramatic shifts in atmospheric radiocarbon during the last glacial period. Antiquity 75 (289): 482–5.CrossRefGoogle Scholar
Roig, F.A., Le-Quesne, C., Boninsegna, J.A., Briffa, K.R., Lara, A., Grudd, H., Jones, P.D. & Villagran, C.. 2001. Climate variability 50 000 years ago in mid-latitude Chile as reconstructed from tree rings. Nature 410 (6828): 567–70.Google Scholar
Simpson, J.A. & Weiner, E.S.C.. 1989. The Oxford English dictionary. 2nd ed. 20 vols. Oxford: Clarendon Press.Google Scholar
Southon, J. 2004. A radiocarbon perspective on Greenland ice-core chronologies: Can we use ice cores for C-14 calibration? Radiocarbon 46 (3): 1239–59.Google Scholar
Stein, M., Migowski, C., Bookman, R. & Lazar, B.. 2004. Temporal changes in radiocarbon reservoir age in the dead sealake Lisan system. Radiocarbon 46 (2): 649–55.Google Scholar
Stuiver, M. 1986. Proceedings of the 12th International Radiocarbon Conference – Held at Trondheim Norway 24-28 June 1985. Radiocarbon 28 (2B): R2R2.Google Scholar
Stuiver, M. & Braziunas, T.F.. 1998. Anthropogenic and solar components of hemispheric C-14. Geophysical Research Letters 25 (3): 329–32.Google Scholar
Stuiver, M. & Reimer, P.J.. 1993. Extended C-14 Data-Base and Revised Calib 3.0 C-14 Age Calibration Program. Radiocarbon 35 (1): 215–30.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Van der Plicht, J. & Spurk, M.. 1998. INTCAL98 radiocarbon age calibration, 24 000-0 cal BP. Radiocarbon 40 (3): 1041–83.Google Scholar
Stuiver, M., Reimer, P.J. & Braziunas, T.F.. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40 (3): 1127–51.CrossRefGoogle Scholar
Turney, C.S.M., Roberts, R.G. & Jacobs, Z.. 2006. Progress and pitfalls in radiocarbon dating. Nature 443: E3E4.Google Scholar
Valladas, H., Clottes, J., Geneste, J.M., Garcia, M.A., Arnold, M., Cachier, H. & Tisnerat-Laborde, N.. 2001. Palaeolithic paintings – Evolution of prehistoric cave art. Nature 413 (6855): 479.CrossRefGoogle ScholarPubMed
van Andel, T.H. 2005. The ownership of time: approved C-14 calibration or freedom of choice? Antiquity 79 (306): 944–8.Google Scholar
van der Plicht, J. 1993. The Groningen Radiocarbon Calibration Program. Radiocarbon 35 (1): 231–7.Google Scholar
van der Plicht, J. 2000. Introduction: The 2000 Radiocarbon varve/comparison issue. Radiocarbon 42 (3): 313–22.Google Scholar
van der Plicht, J., Beck, J.W., Bard, E., Baillie, M.G.L., Blackwell, P.G., Buck, C.E., Friedrich, M., Guilderson, T.P., Hughen, K.A., Kromer, B., McCormac, F.G., Bronk Ramsey, C., Reimer, P.J., Reimer, R.W., Remmele, S., Richards, D.A., Southon, J.R., Stuiver, M. & Weyhenmeyer, C.E.. 2004. NotCal04 – Comparison/calibration C-14 records 26-50 cal kyr BP. Radiocarbon 46 (3): 1225–38.Google Scholar
Vogel, J.C. & Kronfeld, J.. 1997. Calibration of radiocarbon dates for the late Pleistocene using U/Th dates on stalagmites. Radiocarbon 39 (1): 2732.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.C. & Dorale, J.A.. 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294 (5550): 2345–8.Google Scholar