Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T20:37:14.426Z Has data issue: false hasContentIssue false

The archaeology and ethnoarchaeology of rain-fed cultivation in arid and hyper-arid North Africa

Published online by Cambridge University Press:  12 August 2019

Carla Lancelotti*
Affiliation:
CaSEs Research Group, Department of Humanities, Universitat Pompeu Fabra, c/Trias Fargas 25–27, Barcelona 08005, Spain
Stefano Biagetti
Affiliation:
CaSEs Research Group, Department of Humanities, Universitat Pompeu Fabra, c/Trias Fargas 25–27, Barcelona 08005, Spain School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa
Andrea Zerboni
Affiliation:
Dipartimento di Scienze della Terra ‘A. Desio’, Università degli Studi di Milano, via Mangiagalli 34, Milan, Italy
Donatella Usai
Affiliation:
Centro Studi Sudanesi e Sub-Sahariani, Strada di Cannizzano 128/d, Treviso 31100, Italy
Marco Madella
Affiliation:
CaSEs Research Group, Department of Humanities, Universitat Pompeu Fabra, c/Trias Fargas 25–27, Barcelona 08005, Spain School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, Barcelona 08010, Spain
*
*Author for correspondence (Email: carla.lancelotti@upf.edu)

Abstract

Rain-fed cultivation in drylands—especially in arid and hyper-arid areas—is often considered to play a minor role in human subsistence. Drawing upon the results of ethnoarchaeological research in North Africa, this paper reviews non-irrigated agricultural practices in the absence of anthropogenic water-harvesting structures, and presents a proposal for how such practices can be identified in the drylands of the past. An improved understanding of the long-term development of rain-fed cultivation augments our knowledge of past land-use strategies and can inform future models of sustainable agriculture in some of the world's driest regions.

Type
Research
Copyright
Copyright © Antiquity Publications Ltd, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bourbon del Monte Santa Maria, G. 1912. L'oasi di Ghat e sue adiacenze, Comando del Corpo di Stato Maggiore (Ufficio Coloniale). Citta’ di Castello: Tipografia dell'Unione Arti Grafiche.Google Scholar
Chapligin, B., Leng, M.J., Webb, E., Alexandre, A., Dodd, J.P., Ijiri, A. & Longstaffe, F.J.. 2011. Inter-laboratory comparison of oxygen isotope compositions from biogenic silica. Geochimica et Cosmochimica Acta 75: 7242–56. https://doi.org/10.1016/j.gca.2011.08.011Google Scholar
Clarke, J. et al. 2016. Climatic changes and social transformations in the Near East and North Africa during the ‘long’ 4th millennium BC: a comparative study of environmental and archaeological evidence. Quaternary Science Review 136: 96121. https://doi.org/10.1016/j.quascirev.2015.10.003Google Scholar
Cremaschi, M. & Zerboni, A.. 2009. Early to Middle Holocene landscape exploitation in a drying environment: two case studies compared from the Central Sahara (SW Fezzan, Libya). Comptes Rendus Géoscience 341: 689702. https://doi.org/10.1016/j.crte.2009.05.001Google Scholar
D'Andrea, A.C. & Casey, J.. 2002. Pearl millet and Kintampo subsistence. African Archaeological Review 19: 147–73. https://doi.org/10.1023/A:1016518919072Google Scholar
D'Andrea, A.C., Fahmy, A.G., Perry, L., Richards, M.P., Darcus, L., Toffolo, M. & El Shafaey, A.E. Attia. 2015. Ancient agricultural economy in the Horn of Africa: new evidence from grinding stones and stable isotopes. Proceedings of the IWAA8, Società dei Naturalisti e Matematici di Modena 144: 155–57.Google Scholar
Desio, A. 1942. Il Sahara Italiano. Il Tibesti nord-orientale: Reale Società Geografica Italiana. Roma: Società Italiana Arti Grafiche.Google Scholar
di Lernia, S., N'siala, I. Massamba & Zerboni, A.. 2012. ‘Saharan waterscapes’. Traditional knowledge and historical depth of water management in the Akakus Mts. (SW Libya), in Mol, L. & Sternberg, T. (ed.) Changing deserts: integrating people and their environment: 101–28. Cambridge: White Horse.Google Scholar
Ding, T.P., Zhou, J.X., Wan, D.F., Chen, Z.Y., Wang, C.Y. & Zhang, F.. 2008. Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon. Geochimica and Cosmochimica Acta 72: 1381–95. https://doi.org/10.1016/j.gca.2008.01.008Google Scholar
Duveyrier, H. 1864. L'exploration du Sahara. Les touaregs du Nord. Paris: Challamel.Google Scholar
Fuller, D.Q. 2005. Farming: Stone Age farmers of the savanna, in Shillington, K. (ed.) Encyclopedia of African history: 521–23. New York: Fitzroy Dearborn.Google Scholar
Gasse, F. 2000. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews 19: 189211. https://doi.org/10.1016/S0277-3791(99)00061-XGoogle Scholar
Giosan, L. et al. 2012. Fluvial landscapes of the Harappan civilization. Proceedings of the National Academy of Sciences of the USA 109: E168894. https://doi.org/10.1073/pnas.1112743109Google Scholar
Gulia, S.K., Wilson, J.P., Carter, J. & Singh, B.P.. 2007. Progress in grain pearl millet research and market development, in Janick, J. & Whipkey, A. (ed.) Issues in new crops and new uses: 196203. Alexandria (VA): ASHS.Google Scholar
Hodson, M.J. 2016. The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology. Journal of Archaeological Science 68: 6269. https://doi.org/10.1016/j.jas.2015.09.002Google Scholar
Huang, J. et al. 2017. Dryland climate change: recent progress and challenges. Reviews of Geophysics 55: 719–78. https://doi.org/10.1002/2016RG000550Google Scholar
Iacumin, P., Matteo, A. Di, Usai, D., Salvadori, S. & Venturelli, G.. 2016. Stable isotope study on ancient populations of central Sudan: insights on their diet and environment. American Journal of Physical Anthropology 160: 498518. https://doi.org/10.1002/ajpa.22987Google Scholar
Jenkins, E., Jamjoum, K., Nuimat, S., Stafford, R., Nortcliff, S. & Mithen, S.. 2016. Identifying ancient water availability through phytolith analysis: an experimental approach. Journal of Archaeological Science 73: 8293. https://doi.org/10.1016/j.jas.2016.07.006Google Scholar
Kuper, R. & Kröpelin, S.. 2006. Climate-controlled Holocene occupation in the Sahara: motor of Africa's evolution. Science 313: 803807. https://doi.org/10.1126/science.1130989Google Scholar
Lancelotti, C., Ruiz-Pérez, J. & García-Granero, J.J.. 2017. Investigating fuel and fireplaces with a combination of phytoliths and multi-element analysis: an ethnographic experiment. Vegetation History and Archaeobotany 26: 7583. https://doi.org/10.1007/s00334-016-0574-yGoogle Scholar
Leng, M.J., Swann, G.E., Hodson, M.J., Tyler, J.J., Patwardhan, S.V. & Sloane, H.J.. 2009. The potential use of silicon isotope composition of biogenic silica as a proxy for environmental change. Silicon 1: 6577. https://doi.org/10.1007/s12633-009-9014-2Google Scholar
Li, X. & Siddique, K.H.M.. 2018. Future smart food—rediscovering hidden treasures of neglected and underutilized species for zero hunger in Asia. Bangkok: Food and Agriculture Organisation of the United Nations. https://doi.org/10.18356/23b5f7ab-enGoogle Scholar
Madella, M. & Lancelotti, C.. 2012. Taphonomy and phytoliths: a user manual. Quaternary International 275: 7683. https://doi.org/10.1016/j.quaint.2011.09.008Google Scholar
Madella, M., Jones, M.K., Echlin, P., Powers-Jones, A. & Moore, M.. 2009. Plant water availability and analytical microscopy of phytoliths: implications for ancient irrigation in arid zones. Quaternary International 193: 3240. https://doi.org/10.1016/j.quaint.2007.06.012Google Scholar
Marshall, F. & Hildebrand, E.. 2002. Cattle before crops: the beginnings of food production in Africa. Journal of World Prehistory 16: 99144. https://doi.org/10.1023/A:1019954903395Google Scholar
McClaran, M.P. & Umlauf, M.. 2000. Desert grassland dynamics estimated from carbon isotopes in grass phytoliths and soil organic matter. Journal of Vegetation Science 11: 7176. https://doi.org/10.2307/3236777Google Scholar
Mercuri, A.M., Fornaciari, R., Gallinaro, M., Vanin, S. & di Lernia, S.. 2018. Plant behaviour from human imprints and the cultivation of wild cereals in Holocene Sahara. Nature Plants 4: 7181. https://doi.org/10.1038/s41477-017-0098-1Google Scholar
Motuzaite-Matuzeviciute, G., Jacob, J., Telizhenko, S. & Jones, M.K.. 2016. Miliacin in palaeosols from an Early Iron Age in Ukraine reveal in situ cultivation of broomcorn millet. Archaeological and Anthropological Sciences 8: 4350. https://doi.org/10.1007/s12520-013-0142-7Google Scholar
Nicolaisen, J. & Nicolaisen, I.. 1997. The pastoral Tuareg: ecology, culture, and society. Copenhagen: Thames & Hudson.Google Scholar
Olsen, J.T., Caudle, K.L., Johnson, L.C., Baer, S.G. & Maricle, B.R.. 2013. Environmental and genetic variation in leaf anatomy among populations of Andropogon gerardii (Poaceae) along a precipitation gradient. American Journal of Botany 100: 1957–68. https://doi.org/10.3732/ajb.1200628Google Scholar
Opfergelt, S., Cardinal, D., Henriet, C., André, L. & Delvaux, B.. 2006. Silicon isotope fractionation between plant parts in banana: in situ vs. in vitro. Journal of Geochemical Exploration 88: 224–27. https://doi.org/10.1016/j.gexplo.2005.08.044Google Scholar
Piperno, D.R. 2006. Phytoliths: a comprehensive guide for archaeologists and paleoecologists. Lanham (MD): Altamira.Google Scholar
Portmann, F.T., Siebert, S. & Döll, P.. 2010. MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles 24: 124. https://doi.org/10.1029/2008GB003435Google Scholar
Rockström, J. & Falkenmark, M.. 2015. Agriculture: increase water harvesting in Africa. Nature 519: 283–85. https://doi.org/10.1038/519283aGoogle Scholar
Rodd, F.R. 1926. People of the veil. London: Macmillan.Google Scholar
Safriel, U. & Adeel, Z.. 2005. Drylands systems, in Hassan, R., Sholes, R. & Ash, N. (ed.) Ecosystems and human well-being: current state and trends: 625–62. Washington, D.C.: Island.Google Scholar
Styring, A.K., Ater, M., Hmimsa, Y., Fraser, R., Miller, H., Neef, R., Pearson, J.A. & Bogaard, A.. 2016. Disentangling the effect of farming practice from aridity on crop stable isotope values: a present-day model from Morocco and its application to early farming sites in the Eastern Mediterranean. The Anthropocene Review 3: 222. https://doi.org/10.1177/2053019616630762Google Scholar
Terwilliger, V.J., Eshetu, Z., Alexandre, M., Huang, Y., Umer, M. & Gebru, T.. 2011. Local variation in climate and land use during the time of the major kingdoms of the Tigray Plateau of Ethiopia and Eritrea. Catena 85: 130–43. https://doi.org/10.1016/j.catena.2010.08.003Google Scholar
Toupet, C. 1963. L'evolution de la nomadisation en Mauritanie sahelienne, in Bataillon, C. (ed.) Nomades et nomadisme au Sahara: recherches sur la zone aride XIX: 6779. Munich: R. Oldenbourg.Google Scholar
United Nations Environment Programme. 1997. World atlas of desertification. London: United Nations Environment Programme.Google Scholar
Usai, D. 2018. Prehistory in central Sudan, in Honegger, M. (ed.) Nubian archaeology in the XXIst century. Proceedings of the Thirteenth International Conference for Nubian Studies, Neuchatel, 1–6 September 2014: 318. Leuven: Peeters.Google Scholar
Webb, E.A. & Longstaffe, F.J.. 2003. Climatic influences on the oxygen isotopic composition of biogenic silica in prairie grass. Geochimica et Cosmochimica Acta 66: 18911904. https://doi.org/10.1016/S0016-7037(02)00822-0Google Scholar
Williams, M.A.J., Usai, D., Salvatori, S., Williams, F.M., Zerboni, A., Maritan, L. & Linseele, V.. 2015. Late Quaternary environments and prehistoric occupation in the lower White Nile valley, central Sudan. Quaternary Science Reviews 130: 7288. https://doi.org/10.1016/j.quascirev.2015.03.007Google Scholar
Winchell, F., Brass, M., Manzo, A., Beldados, A., Perna, V., Murphy, C., Stevens, C. & Fuller, D.Q.. 2018. On the origins and dissemination of domesticated sorghum and pearl millet across Africa and into India: a view from the Butana Group of the Far Eastern Sahel. African Archaeological Review 35: 483505. https://doi.org/10.1007/s10437-018-9314-2Google Scholar
Zomer, R.J., Bossio, D.H., Trabucco, A., Yuanjie, L., Gupta, D.C. & Virendra, P.S.. 2007. Trees and water: smallholder agroforestry on irrigated lands in northern India. Colombo: International Water Management Institute.Google Scholar
Zomer, R.J., Trabucco, A., Bossio, D.A., van Straaten, O. & Verchot, L.. 2008. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems and Environment 126: 6780. https://doi.org/10.1016/j.agee.2008.01.014Google Scholar