Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T20:05:35.012Z Has data issue: false hasContentIssue false

Processes of change in Magdalenian societies in the Pyrenean isthmus (20–16 ky cal BP)

Published online by Cambridge University Press:  02 January 2015

Mathieu Langlais*
Affiliation:
PACEA UMR 5199 du CNRS, Université de Bordeaux, Avenue des facultés Bat. B18, F-33405 Talence, France (Email: m.langlais@pacea.u-bordeaux1.fr)

Extract

The author uses a detailed analysis of lithic assemblages to propose a major social and economic change in the Pyrenees around 18 ky cal BC, roughly the watershed between the Lower and Middle Magdalenian periods. Nomadic groups begin to settle down, occupy loose territories, move raw materials over vast distances and specialise in manufacture for hunting and domestic use. These trends coincide with a cold period and an increase in grassland, the Heinrich Stadial.

Type
Debate
Copyright
Copyright © Antiquity Publications Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Airvaux, J. 2001. L'art préhistorique du Poitou-Charentes. Sculptures et gravures des temps glaciaires. Paris: La Maison des roches.Google Scholar
Andersen, K. K., Svensson, A., Johnsen, S. J., Rasmussen, S. O., Bigler, M., Röthlisberger, R., Ruth, U., Siggaard-Andersen, M.-L., Steffensen, J. P., Dahl-Jensen, D., Vinther, B. M. & Clausen, H. B. 2006. The Greenland Ice Core Chronology 2005, 15-42 ka. Part 1: constructing the time scale. Quaternary Science Reviews 25(23-24): 3246–57.CrossRefGoogle Scholar
Bamforth, D. & Bleed, P. 1997. Technology flaked stone technology and risk, in Barton, C. M. & Clark, G. A. (ed.) Rediscovering Darwin: evolutionary theory and archaeological explanation (Archaeological papers of the American Anthropological Association 7): 109139. Arlington (VA): American Anthropological Association.Google Scholar
Bard, E. 2003. North-Atlantic sea surface temperature reconstruction. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 26. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA.Google Scholar
Bocquet-Appel, J.-P. & Demars, P. Y. 2000. Population kinetics in the Upper Palaeolithic in Western Europe. Journal of Archaeological Science 27: 551–70.CrossRefGoogle Scholar
Bocquet-Appel, J.-P., Demars, P. Y., Noiret, L. & Dobrowsky, D. 2005. Estimates of Upper Palaeolithic meta-population size in Europe from archaeological data. Journal of Archaeological Science 32: 1656–68.CrossRefGoogle Scholar
Bon, F. 2005. Little big tool. Enquête autour du succès de la lamelle, in Brun-Ricalens, F. Le (ed.) Productions lamellaires attribuées à l'Aurignacien: chaînes opératoires et perspectives technoculturelles (Archéologiques 1): 479–84. Luxembourg: Musée National d'Histoire ed d'Art.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal Program. Radiocarbon 37(2): 425–30.CrossRefGoogle Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program OxCal. Radiocarbon 43(2A): 355–63.CrossRefGoogle Scholar
Buisson, D., Fritz, C., Kandel, D., Pincon, G. & Sauvet, G. 1996. Les contours découpés de têtes de chevaux et leur contribution à la connaissance du Magdalénien moyen. Antiquités Nationales 28: 99128.Google Scholar
Cacho, I., Grimalt, J. O., Canals, M., Sbaffi, L., Shackleton, N. J., Schönfeld, J. & Zahn, R. 2001. Variability of the western Mediterranean Sea surface temperature during the last 25,000 years and its connection with the northern hemisphere climatic changes. Paleoceanography 16(1): 40.CrossRefGoogle Scholar
Cacho, I. 2006. Western Mediterranean δ18 O and Uk'37 Data and SST Reconstructions. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 106. NOAA/NCDC Paleoclimatology Program, Boulder CO, USA.Google Scholar
Chauvière, F.-X., Castel, J.-C., L'Homme, X., Camus, H., Langlais, M., Daulny, L., Defois, B., Ducasse, S., Morala, A., Renard, C. & Turq, A. 2008. Ein neuer Fundort aus dem späten Jungpaläolithikum in Südwestfrankreich: Le Petit Cloup Barrat in Cabrerets, Lot. Quartär 55: 159–63.Google Scholar
Costamagno, S. & Laroulandie, V. (ed.). 2003. Mode de vie au Magdalénien: apports de l'Archéozoologie (British Archaeological Reports international series 1144). Oxford: British Archaeological Reports.Google Scholar
Delpech, F. 1999. Biomasse d'ongulés au Paléolithique et inférences sur la démographie. Paléo 11: 1942.CrossRefGoogle Scholar
D'Errico, F., Goñi, M. F. Sanchez & Vanhaeren, M. 2006. L'impact de la variabilité climatique rapide des OIS 3-2 sur le peuplement de l'Europe, in Bard, E. (ed.) L'Homme face au climat. Paris: Odile Jacob.Google Scholar
Ducasse, S. & Langlais, M. 2007. Entre Badegoulien et Magdalénien inférieur, nos coeurs balancent… Approche critique des industries lithiques du Sud de la France et du Nord-Est espagnol entre 19.000 et 16.500 BP. Bulletin de la Société Préhistorique Française 104(4): 771–85.CrossRefGoogle Scholar
Elliot, M., Labeyrie, L. & Duplessy, J.-C. 2002. Changes in North Atlantic deep-water formation associated with the Dansgaard-Oeschger temperature oscillations (60-10 ka). Quaternary Science Reviews 21: 1153–65.CrossRefGoogle Scholar
Elston, R. & Kuhn, S. (ed.). 2002. Thinking small: global perspectives on microlithization (Archaeological Papers of the American Anthropological Association 12). Arlington (VA): American Anthropological Association.Google Scholar
Gambier-Henry, D., Valladas, H., Tisnerat-Laborde, N., Arnold, M. & Besson, F. 2000. Datation de vestiges humains présumés du Paléolithique supérieur par la méthode du carbone 14 en spectrométrie de masse par accélérateur. Paléo 12: 201212.CrossRefGoogle Scholar
González-Sampériz, P., Valero-Garcés, B. L., Moreno, A., Jalut, G., García-Ruiz, J. M., Martí-Bono, C., Delgado-Huertas, A., Navas, A., Otto, T. & Dedoubat, J. J. 2006. Climate variability in the Spanish Pyrenees during the Last 30, 000 yr. revealed by the El Portalet sequence. Quaternary Research 66: 3852.CrossRefGoogle Scholar
Grousset, F. 2001. Les changements abrupts du climat depuis 60.000 ans. Quaternaire 12(4): 203211.CrossRefGoogle Scholar
Hemming, S. R. 2004. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics 42: 143.CrossRefGoogle Scholar
Jalut, G., Marti, J. Monserrat, Fontugne, M., Delibrias, G., Vilaplana, J. M. & Julia, R. 1992. Glacial to interglacial vegetation changes in the northern and southern Pyrenees: deglaciation, vegetation cover and chronology. Quaternary Science Reviews 11: 449–80.CrossRefGoogle Scholar
Kuntz, D. & Costamagno, S. 2010. Relationships between reindeer and man in southwestern France during the Magdalenian. Quaternary International doi:10.1016/j. quaint.2010.10.023.CrossRefGoogle Scholar
Langlais, M. 2007a. Des identités qui se cherchent… Apports des industries lithiques à la question de l'origine du Magdalénien moyen dans le Sud-Ouest européen. Bulletin de la Société Préhistorique Française 104(4): 759–70.CrossRefGoogle Scholar
Langlais, M. 2007b. Dynamiques culturelles des sociétés magdaléniennes dans leurs cadres environnementaux. Enquête sur 7 000 ans d'évolution de leurs industries lithiques entre Rhône et Èbre. Unpublished PhD dissertation, en cotutelle avec les universités de Toulouse-Le Mirail et Barcelone.Google Scholar
Langlais, M. 2008. Magdalenian chronology and territories between the Rhone and the Ebro: the case of the lithic weapon elements, in Pétillon, J. M., Dias-Meirinho, M.-H., Cattelain, P., Honegger, M., Normand, C. & Valdeyron, N. (ed.) Recherches sur les armatures de projectile du Paléolithique supérieur au Néolithique. Colloque 83, XVe congrès de l'IUSPP, Lisbonne, 4-9 septembre 2006. P@lethnologie 1: 220–49.Google Scholar
Langlais, M. 2010. Les Sociétés magdaléniennes de l'isthme pyrénéen (Documents préhistoriques 26). Paris: CTHS.Google Scholar
Langlais, M., Ladier, E., Chalard, P., Jarry, M. & Lacrampe-Cuyaubère, F. 2007. Aux origines du Magdalénien quercinois: les industries de la séquence inférieure de l'abri Gandil (Bruniquel, Tarn-et-Garonne). Paléo 19: 341–66.Google Scholar
Lenoir, M. 2003. Le Magdalénien à pointes à cran de Gironde, in Ladier, E. (ed.) Les pointes à cran dans les industries lithiques du Paléolithique supérieur récent de l'oscillation de Lascaux à l'oscillation de Bølling. Préhistoire du Sud-Ouest suppl. 6: 7383.Google Scholar
Lenoir, M., Marmier, F. & Trécolle, G. 1991. Données nouvelles sur les industries de Saint-Germain-La-Rivière (Gironde), in 25 ans d'études technologiques en Préhistoire: bilan et perspectives: actes des rencontres 18-20 octobre 1990: 245–54. Juan-les-Pins: APDCA.Google Scholar
Naughton, F., Goñi, M. F. Sánchez, Desprat, S., Turon, J.-L., Duprat, J., Malaizé, B., Joly, C., Cortijo, E., Drago, T. & Freitas, M. C. 2007. Present-day and past (last 25000 years) marine pollen signal off western Iberia. Marine Micropaleontology 62: 91114.CrossRefGoogle Scholar
Naughton, F., Goñi, M. F. Sánchez, Kageyama, M., Bard, E., Duprat, J., Cortijo, E., Desprat, S., Malaizé, B., Joly, C., Rostek, F. & Turon, J.-L. 2009. Wet to dry climatic trend in north-western Iberia within Heinrich events. Earth and Planetary Science Letters 284: 329–42CrossRefGoogle Scholar
NGRIP dating group. 2006. Greenland Ice Core Chronology 2005 (GICC05). IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 118. NOAA/NCDC Paleoclimatology Program, Boulder CO, USA.Google Scholar
Pailler, D. & Bard, E. 2002. High frequency paleoceanographic changes during the past 140,000 years recorded by the organic matter in sediments off the Iberian Margin. Palaeogeography, Palaeoclimatology and Palaeoecology 181: 431–52.CrossRefGoogle Scholar
Pétillon, J. M., Langlais, M., Beaune De, S. A., Beukens, R., Chauviere, F. X., David, F., Letourneux, C. & Szmidt, C. 2008. Le Magdalénien de la grotte des Scilles (Lespugue, Haute-Garonne). Premiers résultats de l'étude pluridisciplinaire de la collection Saint-Périer. Antiquités Nationales 39: 115.Google Scholar
Primault, J., Brou, L., Gabilleau, J. & Langlais, M., Berthet, A.-L., Griggo, C., Guerin, S., Henry-Gambier, D., Houmard, C., Laroulandie, V., Lebrun-Ricalens, F., Liard, M., Liolios, D., Mistrot, V., Rambaud, D., Schmitt, A., Soler, L., Taborin, Y. & Vissac, C. 2007. La grotte du Taillis des Coteaux à Antigny (Vienne): intérêts d'une séquence originale à la structuration des premiers temps du Magdalénien. Bulletin de la Société Préhistorique Française 104(4): 743–58.CrossRefGoogle Scholar
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P., Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M.-L., Johnsen, S. J., Larsen, L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M. E. & Ruth, U. 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111. doi:10.1029/2005JD006079.CrossRefGoogle Scholar
Reimer, P. J., Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Bertrand, C. J. H., Blackwell, P. G., Buck, C. E., Burr, G. S., Cutler, K. B., Damon, P. E., Edwards, R. L., Fairbanks, R. G., Friedrich, M., Guilderson, T. P., Hogg, A. G., Hughen, K. A., Kromer, B., McCormac, G., Manning, S., Ramsey, C. Bronk, Reimer, R. W., Remmele, S., Southon, J. R., Stuiver, M., Talamo, S., Taylor, F. W., Plicht, J. Van Der & Weyhenmeyer, C. E. 2004. IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46(3): 10291058.Google Scholar
Rohling, E. J., Mayewski, P. A. & Challenor, P. 2003. On the timing and mechanism of millennial scale climate variability during the last glacial cycle. Climate Dynamics 20: 257–67.CrossRefGoogle Scholar
Sánchez Goñi, M. F. & Harrison, S. P. 2010. Millennial-scale climate variability and vegetation changes during the last llacial: concepts and terminology. Quaternary Science Reviews 29: 2823–7.CrossRefGoogle Scholar
Sánchez Goñi, M. F., Turon, J., Guiot, J., Sierro, F., Peypouquet, J., Grimalt, J. & Shackleton, N. 2002. Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region. Climate Dynamics 19: 95105.Google Scholar
Straus, L. G. 2000. Coming out from the cold: Western Europe in Dryas I and beyond, in Peterkin, G. L. & Price, H. (ed.) Regional approaches to adaptation in late Pleistocene Western Europe (British Archaeological Reports international series 896): 191203. Oxford: John & Erica Hedges.Google Scholar
Straus, L. G., Morales, M. Gonzalez, Martinez, M. A. Fano & Garcia-Gelabert, M. P. 2002. Last Glacial human settlement in eastern Cantabria (northern Spain). Journal of Archaeological Science 29: 14031414.CrossRefGoogle Scholar
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Rasmussen, S. O., Rothlisberger, R., Steffensen, J. P. & Vinther, B. M. 2006. The Greenland Ice Core Chronology 2005, 15-42 ka. Part 2: comparison to other record. Quaternary Science Reviews. 25(23-24): 3258–67.CrossRefGoogle Scholar
Vanhaeren, M. & D'Errico, F. 2003. Le mobilier funéraire de la Dame de Saint-Germain-la-Rivière (Gironde) et l'origine paléolithique des inégalités. Paléo 15: 195238.Google Scholar