Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T19:05:46.114Z Has data issue: false hasContentIssue false

Provenance changes between recent and glacial-time sediments in the Amundsen Sea embayment, West Antarctica: clay mineral assemblage evidence

Published online by Cambridge University Press:  18 May 2011

Werner Ehrmann*
Affiliation:
University of Leipzig, Institute of Geophysics and Geology, Talstraße 35, D-04103 Leipzig, Germany
Claus-Dieter Hillenbrand
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK
James A. Smith
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK
Alastair G.C. Graham
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK
Gerhard Kuhn
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Am Alten Hafen 26, D-27568 Bremerhaven, Germany
Robert D. Larter
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK

Abstract

The Amundsen Sea embayment is a probable site for the initiation of a future collapse of the West Antarctic Ice Sheet. This paper contributes to a better understanding of the transport pathways of subglacial sediments into this embayment at present and during the last glacial period. It discusses the clay mineral composition of sediment samples taken from the seafloor surface and marine cores in order to decipher spatial and temporal changes in the sediment provenance. The most striking feature in the present-day clay mineral distribution is the high concentration of kaolinite, which is mainly supplied by the Thwaites Glacier system and indicates the presence of hitherto unknown kaolinite-bearing sedimentary strata in the hinterland, probably in the Byrd Subglacial Basin. The main illite input is via the Pine Island Glacier. Smectite originates from the erosion of volcanic rocks in Ellsworth Land and western Marie Byrd Land. The clay mineral assemblages in diamictons deposited during the last glacial period are distinctly different from those in corresponding surface sediments. This relationship indicates that glacial sediment sources were different from modern ones, which could reflect changes in the catchment areas of the glaciers and ice streams.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anandakrishnan, S. Winberry, J.P. 2004. Antarctic subglacial sedimentary layer thickness from receiver function analysis. Global and Planetary Change, 42, 167176.CrossRefGoogle Scholar
Bamber, J.L., Riva, R.E.M., Vermeersen, B.L.A. LeBrocq, A.M. 2009. Reassessment of the potential sea level rise from a collapse of the West Antarctic Ice Sheet. Science, 324, 901903.CrossRefGoogle ScholarPubMed
Bell, R.E., Studinger, M., Karner, G., Finn, C.A. Blankenship, D.A. 2006. Identifying major sedimentary basins beneath the West Antarctic Ice Sheet from aeromagnetic data analysis. In Fütterer, D.K., Damaske, D., Kleinschmidt, G., Miller, H. & Tessensohn, F., eds. Antarctica: contributions to global earth sciences. Berlin: Springer, 117121.CrossRefGoogle Scholar
Biscaye, P.E. 1964. Distinction between kaolinite and chlorite in recent sediments by X-ray diffraction. The American Mineralogist, 49, 12811289.Google Scholar
Biscaye, P.E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803832.CrossRefGoogle Scholar
Chamley, H. 1989. Clay sedimentology. Berlin: Springer, 623 pp.CrossRefGoogle Scholar
Clarke, T.S., Burkholder, P.D., Smithson, S.B. Bentley, C.R. 1997. Optimum seismic shooting and recording parameters and a preliminary crustal model for the Byrd Subglacial Basin, Antarctica. In Ricci, C.A., ed. The Antarctic region: geological evolution and processes. Siena: Terra Antartica Publications, 485493.Google Scholar
Conway, H. Rasmussen, L.A. 2009. Recent thinning and migration of the western divide, central West Antarctica. Geophysical Research Letters, 36, 10.1029/2009GL038072.CrossRefGoogle Scholar
Dingle, R.V. Lavelle, M. 1998. Late Cretaceous–Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeography, Palaeoclimatology, Palaeoecology, 141, 215232.CrossRefGoogle Scholar
Domack, E.W., Jacobson, E.A., Shipp, S. Anderson, J.B. 1999. Late Pleistocene–Holocene retreat of the West Antarctic ice sheet system in the Ross Sea: Part 2. Sedimentologic and stratigraphic signature. Geological Society of America Bulletin, 111, 15171536.2.3.CO;2>CrossRefGoogle Scholar
Dunbar, N.W., McIntosh, W.C. Esser, R.P 2008. Physical setting and tephrochronology of the summit caldera ice record at Mount Moulton, West Antarctica. Geological Society of America Bulletin, 120, 796812.CrossRefGoogle Scholar
Ehrmann, W., Melles, M., Kuhn, G. Grobe, H. 1992. Significance of clay mineral assemblages in the Southern Ocean. Marine Geology, 107, 249273.CrossRefGoogle Scholar
Esquevin, J. 1969. Influence de la composition chimique des illites sur leur cristallinité. Bulletin du Centre de Recherches de Pau, Société Nationale des Pétroles d'Aquitaine, 3, 147153.Google Scholar
Evans, J. Pudsey, C.J. 2002. Sedimentation associated with Antarctic Peninsula ice shelves: implications for palaeoenvironmental reconstructions of glacimarine sediments. Journal of the Geological Society, 159, 233238.CrossRefGoogle Scholar
Evans, J., Dowdeswell, J.A., Ó Cofaigh, C., Benham, T.J. Anderson, J.B. 2006. Extent and dynamics of the West Antarctic Ice Sheet on the outer continental shelf of Pine Island Bay during the last glaciation. Marine Geology, 230, 5372.CrossRefGoogle Scholar
Fagel, N. 2007. Clay minerals, deep circulation and climate. Developments in Marine Geology, 1, 139184.CrossRefGoogle Scholar
Forsberg, C.F., Florindo, F., Grützner, J., Venuti, A. Solheim, A. 2008. Sedimentation and aspects of glacial dynamics from physical properties, mineralogy and magnetic properties at ODP Sites 1166 and 1167, Prydz Bay, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 260, 184201.CrossRefGoogle Scholar
Gingele, F.X., Kuhn, G., Maus, B., Melles, M. Schöne, T. 1997. Holocene ice retreat from the Lazarev Sea shelf, East Antarctica. Continental Shelf Research, 17, 137163.CrossRefGoogle Scholar
Graham, A.G.C., Larter, R.D., Gohl, K., Hillenbrand, C.-D., Smith, J.A. Kuhn, G. 2009. Bedform signature of a West Antarctic palaeo-ice stream reveals a multi-temporal record of flow and substrate control. Quaternary Science Reviews, 28, 27742793.CrossRefGoogle Scholar
Graham, A.G.C., Larter, R.D., Gohl, K., Dowdeswell, J.A., Hillenbrand, C.-D., Smith, J.A., Evans, J., Kuhn, G. Deen, T. 2010. Flow and retreat of the Late Quaternary Pine Island–Thwaites palaeo-ice stream, West Antarctica. Journal of Geophysical Research, 115, 10.1029/2009JF001482.CrossRefGoogle Scholar
Hallet, G., Hunter, L. Bogen, J. 1996. Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Global and Planetary Change, 12, 213235.CrossRefGoogle Scholar
Hillenbrand, C.-D. Ehrmann, W. 2002. Distribution of clay minerals in drift sediments on the continental rise west of the Antarctic Peninsula, ODP Leg 178, Sites 1095 and 1096. In Barker, P.F., Camerlenghi, A., Acton, G.D. & Ramsay, A.T.S., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 178, 1–29.Google Scholar
Hillenbrand, C.-D., Kuhn, G. Frederichs, T. 2009a. Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: an indicator for ice sheet collapse? Quaternary Science Reviews, 28, 11471159.CrossRefGoogle Scholar
Hillenbrand, C.-D., Fütterer, D.K., Grobe, H. Frederichs, T. 2002. No evidence for a Pleistocene collapse of the West Antarctic Ice Sheet from continental margin sediments recovered in the Amundsen Sea. Geo-Marine Letters, 22, 5159.CrossRefGoogle Scholar
Hillenbrand, C.-D., Grobe, H., Diekmann, B., Kuhn, G. Fütterer, D.K. 2003. Distribution of clay minerals and proxies for productivity in surface sediments of the Bellingshausen and Amundsen seas (West Antarctica) - relation to modern environmental conditions. Marine Geology, 193, 253271.CrossRefGoogle Scholar
Hillenbrand, C.-D., Ehrmann, W., Larter, R.D., Benetti, S., Dowdeswell, J.A., Ó Cofaigh, C., Graham, A.G.C. Grobe, H. 2009b. Clay mineral provenance of sediments in the southern Bellingshausen Sea reveals drainage changes of the West Antarctic Ice Sheet during the Late Quaternary. Marine Geology, 265, 118.CrossRefGoogle Scholar
Hillenbrand, C.-D., Smith, J.A., Kuhn, G., Esper, O., Gersonde, R., Larter, R.D., Maher, B., Moreton, S.G., Shimmield, T.M. Korte, M. 2010. Age assignment of a diatomaceous ooze deposited in the western Amundsen Sea embayment after the Last Glacial Maximum. Journal of Quaternary Science, 25, 280295.CrossRefGoogle Scholar
Holt, J.W., Blankenship, D.D., Morse, D.L., Young, D.A., Peters, M.E., Kempf, S.D., Richter, T.G., Vaughan, D.G. Corr, H.F.J. 2006. New boundary conditions for the West Antarctic Ice Sheet: subglacial topography of the Thwaites and Smith glacier catchments. Geophysical Research Letters, 33, 10.1029/2005GL025561.CrossRefGoogle Scholar
Iizuka, Y., Miura, H., Iwasaki, S., Maemoku, H., Sawagaki, T., Greve, R., Satake, H., Sasa, K. Matsushi, Y. 2010. Evidence of past migration of the ice divide between the Shirase and Sôya drainage basins derived from chemical characteristics. Journal of Glaciology, 56, 395404.CrossRefGoogle Scholar
Larter, R.D., Graham, A.G.C., Gohl, K., Kuhn, G., Hillenbrand, C.-D., Smith, J.A., Deen, T.J. Schenke, H.-W. 2009. Subglacial bedforms reveal complex basal regime in a zone of paleo-ice stream convergence, Amundsen Sea embayment, West Antarctica. Geology, 37, 411414.CrossRefGoogle Scholar
LeMasurier, W.E. 2008. Neogene extension and basin deepening in the West Antarctic rift inferred from comparisons with the East African rift and other analogs. Geology, 36, 247250.CrossRefGoogle Scholar
LeMasurier, W.E. Rex, D.C. 1991. The Marie Byrd Land volcanic province and its relation to the Cainozoic West Antarctic rift system. In Tingey, R.J., ed. The geology of Antarctica. Oxford: Clarendon Press, 249284.Google Scholar
LeMasurier, W.E. Thomson, J.G., eds. 1990. Volcanoes of the Antarctic plate and the Southern Ocean. Antarctic Research Series, 48, 512 pp.Google Scholar
Licht, K.J., Dunbar, N.W., Andrews, J.T. Jennings, A.E. 1999. Distinguishing subglacial till and glacial marine diamictons in the western Ross Sea, Antarctica: implications for a last glacial maximum grounding line. Geological Society of America Bulletin, 111, 91103.2.3.CO;2>CrossRefGoogle Scholar
Lowe, A.L. Anderson, J.B. 2002. Reconstruction of the West Antarctic ice sheet in Pine Island Bay during the Last Glacial Maximum and its subsequent retreat history. Quaternary Science Reviews, 21, 18791897.CrossRefGoogle Scholar
Lowe, A.L. Anderson, J.B. 2003. Evidence for abundant subglacial meltwater beneath the paleo-ice sheet in Pine Island Bay, Antarctica. Journal of Glaciology, 49, 125138.CrossRefGoogle Scholar
Mukasa, S.B. Dalziel, I.W.D. 2000. Marie Byrd Land, West Antarctica: evolution of Gondwana's Pacific margin constrained by zircon U-Pb geochronology and feldspar common-Pb isotopic compositions. Geological Society of America Bulletin, 112, 611627.2.0.CO;2>CrossRefGoogle Scholar
Nayudu, Y.R. 1971. Lithology and chemistry of surface sediments in sub-Antarctic regions of the Pacific Ocean. Antarctic Research Series, 15, 247282.CrossRefGoogle Scholar
Neumann, T.A., Conway, H., Price, S.F., Waddington, E.D., Catania, G.A. Morse, D.L. 2008. Holocene accumulation and ice sheet dynamics in central West Antarctica. Journal of Geophysical Research, 113, 10.1029/2007JF000764.CrossRefGoogle Scholar
Ó Cofaigh, C., Dowdeswell, J.A., Allen, C.S., Hiemstra, J., Pudsey, C.J., Evans, J. Evans, D.J.A. 2005. Flow dynamics and till genesis associated with a marine-based Antarctic palaeo-ice stream. Quaternary Science Reviews, 24, 709740.CrossRefGoogle Scholar
Oppenheimer, M. 1998. Global warming and the stability of the West Antarctic Ice Sheet. Nature, 393, 325332.CrossRefGoogle Scholar
Pankhurst, R.J., Weaver, S.D., Bradshaw, J.D., Storey, B.C. Ireland, T.R. 1998. Geochronology and geochemistry of pre-Jurassic superterranes in Marie Byrd Land, Antarctica. Journal of Geophysical Research, 103, 25292547.CrossRefGoogle Scholar
Petschick, R. 2001. MacDiff 4.2.5 Freeware. Frankfurt am Main: Institute of Geology and Palaeontology, Johann Wolfgang Goethe-University. http://www.geologie.uni-frankfurt.de/Staff/Homepages/Petschick/Petschick.html.Google Scholar
Petschick, R., Kuhn, G. Gingele, F. 1996. Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Marine Geology, 130, 203229.CrossRefGoogle Scholar
Pritchard, H.D., Arthern, R.J., Vaughan, D.G. Edwards, L.A. 2009. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461, 971975.CrossRefGoogle ScholarPubMed
Reinardy, B.T.I., Pudsey, C.J., Hillenbrand, C.-D., Murray, T. Evans, J. 2009. Contrasting sources for glacial and interglacial shelf sediments used to interpret changing ice flow directions in the Larsen Basin, northern Antarctic Peninsula. Marine Geology, 266, 156171.CrossRefGoogle Scholar
Rignot, E. Jacobs, S.S. 2002. Rapid bottom melting widespread near Antarctic Ice Sheet grounding lines. Science, 296, 20202023.CrossRefGoogle ScholarPubMed
Rignot, E., Bamber, J.L., van Den Broeke, M.R., Davis, C., Li, Y., van De Berg, W.J. van Meijgaard, E. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience, 1, 106110.CrossRefGoogle Scholar
Robert, C. Maillot, H. 1990. Paleoenvironments in the Weddell Sea area and Antarctic climates, as deduced from clay mineral associations and geochemical data, ODP Leg 113. In Barker, P.F., Kennett, J.P. et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 113, 51–66.Google Scholar
Schoof, C. 2007. Ice sheet grounding line dynamics: steady states, stability and hysteresis. Journal of Geophysical Research, 112, 10.1029/2006JF000664.CrossRefGoogle Scholar
Smith, J.A., Hillenbrand, C.-D., Larter, R.D., Graham, A.G.C. Kuhn, G. 2009. The sediment infill of subglacial meltwater channels on the West Antarctic continental shelf. Quaternary Research, 71, 190200.CrossRefGoogle Scholar
Smith, J.A., Hillenbrand, C.-D., Kuhn, G., Larter, R.D., Graham, A.G.C., Ehrmann, W., Moreton, S.G. Forwick, M. 2011. Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea embayment. Quaternary Science Reviews, 30, 488505.CrossRefGoogle Scholar
Storey, B.C., Pankhurst, R.J., Millar, I.L., Dalziel, I.W.D. Grunow, A.M. 1991. A new look at the geology of Thurston Island. In Thomson, M.R.A., Crame, J.A. & Thomson, J.W., eds. Geological evolution of Antarctica. Cambridge: Cambridge University Press, 399403.Google Scholar
Studinger, M., Bell, R.E., Blankenship, D.D., Finn, C.A., Arko, R.A., Morse, D.L. Joughin, I. 2001. Subglacial sediment: a regional geological template for ice flow in West Antarctica. Geophysical Research Letters, 28, 34933496.CrossRefGoogle Scholar
Thoma, M., Jenkins, A., Holland, D. Jacobs, S. 2008. Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophysical Research Letters, 35, 1029/2008GL034939.CrossRefGoogle Scholar
Thomas, R., Rignot, E., Casassa, G., Kanagaratnam, P., Acuna, C., Akins, T., Brecher, H., Frederick, E., Gogineni, P., Krabill, W., Manizade, S., Ramamoorthy, H., Rivera, A., Russell, R., Sonntag, J., Swift, R., Yungel, J. Zwally, J. 2004. Accelerated sea level rise from West Antarctica. Science, 306, 255258.CrossRefGoogle ScholarPubMed
Tingey, J.R. 1991. Commentary on schematic geological map of Antarctica, scale 1:10 000 000. Bureau of Mineral Resources, Australia, Bulletin, No. 238, 30 pp.Google Scholar
Vaughan, D.G. 2008. West Antarctic Ice Sheet collapse - the fall and rise of a paradigm. Climatic Change, 91, 6579.CrossRefGoogle Scholar
Vaughan, D.G., Corr, H.F.J., Ferraccioli, F., Frearson, N., O'Hare, A., Mach, D., Holt, J.W., Blankenship, D.D., Morse, D.L. Young, D.A. 2006. New boundary conditions for the West Antarctic ice sheet: subglacial topography beneath Pine Island Glacier. Geophysical Research Letters, 33, 10.1029/2005GL025588.CrossRefGoogle Scholar
Walker, D.P., Brandon, M.A., Jenkins, A., Allen, J.T., Dowdeswell, J.A. Evans, J. 2007. Oceanic heat transport onto the Amundsen Sea shelf through a submarine glacial trough. Geophysical Research Letters, 34, 10.1029/2006GL028154.CrossRefGoogle Scholar
Weigelt, E., Gohl, K., Uenzelmann-Neben, G. Larter, R.D. 2009. Late Cenozoic ice sheet cyclicity in the western Amundsen Sea embayment - evidence from seismic records. Global and Planetary Change, 69, 162169.CrossRefGoogle Scholar
Wellner, J.S., Lowe, A.L., Shipp, S.S. Anderson, J.B. 2001. Distribution of glacial geomorphic features on the Antarctic continental shelf and correlation with substrate: implications for ice behavior. Journal of Glaciology, 47, 397411.CrossRefGoogle Scholar
Wilch, T.I., McIntosh, W.C. Dunbar, N.W. 1999. Late Quaternary volcanic activity in Marie Byrd Land: potential 40Ar/39Ar dated time horizons in West Antarctic ice and marine cores. Geological Society of America Bulletin, 111, 15631580.2.3.CO;2>CrossRefGoogle Scholar
Winberry, J.P. Anandakrishnan, S. 2004. Crustal structure of the West Antarctic rift system and Marie Byrd Land hotspot. Geology, 32, 977980.CrossRefGoogle Scholar