Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T02:12:51.086Z Has data issue: false hasContentIssue false

A primer to metabarcoding surveys of Antarctic terrestrial biodiversity

Published online by Cambridge University Press:  13 September 2016

Paul Czechowski*
Affiliation:
Australian Centre for Ancient DNA, University of Adelaide, Adelaide, SA 5000, Australia Antarctic Biological Research Initiative, 31 Jobson Road, Bolivar, SA 5110, Australia
Laurence J. Clarke
Affiliation:
Australian Centre for Ancient DNA, University of Adelaide, Adelaide, SA 5000, Australia Australian Antarctic Division, Channel Highway, Kingston, TAS 7050, Australia Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Private Bag 80, Hobart, TAS 7001, Australia
Alan Cooper
Affiliation:
Australian Centre for Ancient DNA, University of Adelaide, Adelaide, SA 5000, Australia
Mark I. Stevens
Affiliation:
South Australian Museum, GPO Box 234, Adelaide, SA 5000, Australia School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia

Abstract

Ice-free regions of Antarctica are concentrated along the coastal margins but are scarce throughout the continental interior. Environmental changes, including the introduction of non-indigenous species, increasingly threaten these unique habitats. At the same time, the unique biotic communities subsisting in isolation across the continent are difficult to survey due to logistical constraints, sampling challenges and problems related to the identification of small and cryptic taxa. Baseline biodiversity data from remote Antarctic habitats are still missing for many parts of the continent but are critical to the detection of community changes over time, including newly introduced species. Here we review the potential of standardized (non-specialist) sampling in the field (e.g. from soil, vegetation or water) combined with high-throughput sequencing (HTS) of bulk DNA as a possible solution to overcome some of these problems. In particular, HTS metabarcoding approaches benefit from being able to process many samples in parallel, while workflow and data structure can stay highly uniform. Such approaches have quickly gained recognition and we show that HTS metabarcoding surveys are likely to play an important role in continent-wide biomonitoring of all Antarctic terrestrial habitats.

Type
Synthesis
Copyright
© Antarctic Science Ltd 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.H., Kim, B.Y., Song, J. & Weon, H.Y. 2012. Effects of PCR cycle number and DNA polymerase type on the 16S rRNA gene pyrosequencing analysis of bacterial communities. Journal of Microbiology, 50, 10711074.Google Scholar
Altermann, S., Leavitt, S.D., Goward, T., Nelsen, M.P. & Lumbsch, H.T. 2014. How do you solve a problem like Letharia? A new look at cryptic species in lichen-forming fungi using Bayesian clustering and SNPs from multilocus sequence data. PLoS ONE, 9, 10.1371/journal.pone.0097556.CrossRefGoogle Scholar
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215, 403410.Google Scholar
Anders, S. & Huber, W. 2010. Differential expression analysis for sequence count data. Genome Biology, 11, 10.1186/gb-2010-11-10-r106.CrossRefGoogle ScholarPubMed
Ascher, J., Ceccherini, M.T., Pantani, O.L., Agnelli, A., Borgogni, F., Guerri, G., Nannipieri, P. & Pietramellara, G. 2009. Sequential extraction and genetic fingerprinting of a forest soil metagenome. Applied Soil Ecology, 42, 10.1016/j.apsoil.2009.03.005.CrossRefGoogle Scholar
Aylagas, E., Borja, Á. & Rodríguez-Ezpeleta, N. 2014. Environmental status assessment using DNA metabarcoding: towards a genetics based marine biotic index (gAMBI). PLoS ONE, 9, 10.1371/journal.pone.0090529.Google Scholar
Bellemain, E., Davey, M.L., Kauserud, H., Epp, L.S., Boessenkool, S., Coissac, E., Geml, J., Edwards, M., Willerslev, E., Gussarova, G., Taberlet, P. & Brochmann, C. 2013. Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environmental Microbiology, 15, 11761189.CrossRefGoogle ScholarPubMed
Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. & Sayers, E.W. 2011. GenBank. Nucleic Acids Research, 39, 10.1093/nar/gkq1079.Google Scholar
Bik, H.M., Porazinska, D.L., Creer, S., Caporaso, J.G., Knight, R. & Thomas, W.K. 2012a. Sequencing our way towards understanding global eukaryotic biodiversity. Trends in Ecology & Evolution, 27, 233243.Google Scholar
Bik, H.M., Sung, W., De Ley, P., Baldwin, J.G., Sharma, J., Rocha-Olivares, A. & Thomas, W.K. 2012b. Metagenetic community analysis of microbial eukaryotes illuminates biogeographic patterns in deep-sea and shallow water sediments. Molecular Ecology, 21, 10481059.CrossRefGoogle ScholarPubMed
Binladen, J., Gilbert, M.T.P., Bollback, J.P., Panitz, F., Bendixen, C., Nielsen, R. & Willerslev, E. 2007. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS ONE, 2, 10.1371/journal.pone.0000197.CrossRefGoogle ScholarPubMed
Bintanja, R., Severijns, C., Haarsma, R. & Hazeleger, W. 2014. The future of Antarctica’s surface winds simulated by a high-resolution global climate model: 2. Drivers of 21st century changes. Journal of Geophysical Research - Atmospheres, 119, 71607178.Google Scholar
Blanchet, F.G., Legendre, P., Bergeron, J.A.C. & He, F.L. 2014. Consensus RDA across dissimilarity coefficients for canonical ordination of community composition data. Ecological Monographs, 84, 10.1890/13-0648.1.Google Scholar
Bockheim, J.G. 1997. Properties and classification of cold desert soils from Antarctica. Soil Science Society of America Journal, 61, 224231.Google Scholar
Bohmann, K., Evans, A., Gilbert, M.T.P., Carvalho, G.R., Creer, S., Knapp, M., Yu, D.W. & de Bruyn, M. 2014. Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology & Evolution, 29, 358367.Google Scholar
Bokulich, N.A., Subramanian, S., Faith, J.J., Gevers, D., Gordon, J.I., Knight, R., Mills, D.A. & Caporaso, J.G. 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 10, 10.1038/NMETH.2276.Google Scholar
Bottos, E.M., Scarrow, J.W., Archer, S.D.J., McDonald, I.R. & Cary, S.C. 2014a. Bacterial community structures of Antarctic soils. In Cowan, D.A., ed. Antarctic terrestrial microbiology. Berlin: Springer, 933.Google Scholar
Bottos, E.M., Woo, A.C., Zawar-Reza, P., Pointing, S.B. & Cary, S.C. 2014b. Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica. Microbial Ecology, 67, 120128.Google Scholar
Boyer, F., Mercier, C., Bonin, A., Le Bras, Y., Taberlet, P. & Coissac, E. 2016. OBITools: a UNIX-inspired software package for DNA metabarcoding. Molecular Ecology Resources, 16, 176182.Google Scholar
Bragg, L.M., Stone, G., Butler, M.K., Hugenholtz, P. & Tyson, G.W. 2013. Shining a light on dark sequencing: characterising errors in ion torrent PGM data. PLoS Computational Biology, 9, 10.1371/journal.pcbi.1003031.CrossRefGoogle ScholarPubMed
Bybee, S.M., Bracken-Grissom, H., Haynes, B.D., Hermansen, R.A., Byers, R.L., Clement, M.J., Udall, J.A., Wilcox, E.R. & Crandall, K.A. 2011. Targeted amplicon sequencing (TAS): a scalable next-gen approach to multilocus, multitaxa phylogenetics. Genome Biology and Evolution, 3, 13121323.Google Scholar
Caporaso, J.G., Kuczynski, J., Stombaugh, J., et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335336.Google Scholar
Carpenter, E.J., Lin, S.J. & Capone, D.G. 2000. Bacterial activity in South Pole snow. Applied and Environmental Microbiology, 66, 10.1128/AEM.66.10.4514-4517.2000.Google Scholar
Caruso, T., Trokhymets, V., Bargagli, R. & Convey, P. 2013. Biotic interactions as a structuring force in soil communities: evidence from the micro-arthropods of an Antarctic moss model system. Oecologia, 172, 10.1007/s00442-012-2503-9.Google Scholar
CBOL Plant Working Group . 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 106, 12 79412 797.Google Scholar
Chown, S.L., Clarke, A., Fraser, C.I., Cary, S.C., Moon, K.L. & McGeoch, M.A. 2015a. The changing form of Antarctic biodiversity. Nature, 522, 10.1038/nature14505.Google Scholar
Chown, S.L., Hodgins, K.A., Griffin, P.C., Oakeshott, J.G., Byrne, M. & Hoffmann, A.A. 2015b. Biological invasions, climate change and genomics. Evolutionary Applications, 8, 10.1111/eva.12234.Google Scholar
Chown, S., Huiskes, A.H.L., Gremmen, N.J.M., Lee, J.E., Terauds, A., Crosbie, K., Frenot, Y., Hughes, K.A., Imura, S., Kiefer, K., Lebouvier, M., Raymond, B., Tsujimoto, M., Ware, C., van de Vijver, B. & Bergstrom, D.M. 2012a. Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 109, 10.1073/pnas.1119787109.Google Scholar
Chown, S.L., Lee, J.E., Hughes, K.A., Barnes, J., Barrett, P.J., Bergstrom, D.M., Convey, P., Cowan, D.A., Crosbie, K., Dyer, G., Frenot, Y., Grant, S.M., Herr, D., Kennicutt, M.C., Lamers, M., Murray, A., Possingham, H.P., Reid, K., Riddle, M.J., Ryan, P.G., Sanson, L., Shaw, J.D., Sparrow, M.D., Summerhayes, C., Terauds, A. & Wall, D.H. 2012b. Challenges to the future conservation of the Antarctic. Science, 337, 158159.Google Scholar
Clarke, L.J., Soubrier, J., Weyrich, L.S. & Cooper, A. 2014a. Environmental metabarcodes for insects: in silico PCR reveals potential for taxonomic bias. Molecular Ecology Resources, 14, 11601170.CrossRefGoogle ScholarPubMed
Clarke, L.J., Czechowski, P., Soubrier, J., Stevens, M.I. & Cooper, A. 2014b. Modular tagging of amplicons using a single PCR for high-throughput sequencing. Molecular Ecology Resources, 14, 117121.Google Scholar
Cline, J., Braman, J.C. & Hogrefe, H.H. 1996. PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Research, 24, 35463551.Google Scholar
Coissac, E., Riaz, T. & Puillandre, N. 2012. Bioinformatic challenges for DNA metabarcoding of plants and animals. Molecular Ecology, 21, 18341847.CrossRefGoogle ScholarPubMed
Colesie, C., Gommeaux, M., Green, T.G.A. & Bueddel, B. 2014. Biological soil crusts in Continental Antarctica: Garwood Valley, southern Victoria Land, and Diamond Hill, Darwin Mountains region. Antarctic Science, 26, 115123.Google Scholar
Convey, P. 1997. How are the life history strategies of Antarctic terrestrial invertebrates influenced by extreme environmental conditions? Journal of Thermal Biology, 22, 10.1016/S0306-4565(97)00062-4.Google Scholar
Convey, P. 2010. Terrestrial biodiversity in Antarctica – Recent advances and future challenges. Polar Science, 4, 135147.Google Scholar
Convey, P. & Stevens, M.I. 2007. Antarctic biodiversity. Science, 317, 18771878.Google Scholar
Convey, P., Stevens, M.I., Hodgson, D.A., Smellie, J.L., Hillenbrand, C.D., Barnes, D.K.A., Clarke, A., Pugh, P.J.A., Linse, K. & Cary, S.C. 2009. Exploring biological constraints on the glacial history of Antarctica. Quaternary Science Reviews, 28, 30353048.Google Scholar
Convey, P., Chown, S.L., Clarke, A., Barnes, D.K.A., Bokhorst, S., Cummings, V., Ducklow, H.W., Frati, F., Green, T.G.A., Gordon, S., Griffiths, H.J., Howard-Williams, C., Huiskes, A.H.L., Laybourn-Parry, J., Lyons, W.B., McMinn, A., Morley, S.A., Peck, L.S., Quesada, A., Robinson, S.A., Schiaparelli, S. & Wall, D.H. 2014. The spatial structure of Antarctic biodiversity. Ecological Monographs, 84, 203244.Google Scholar
Cowan, D.A., Ramond, J.B., Makhalanyane, T. & de Maayer, P. 2015. Metagenomics of extreme environments. Current Opinion in Microbiology, 25, 10.1016/j.mib.2015.05.005.Google Scholar
Czechowski, P., Clarke, L.J., Breen, J., Cooper, A. & Stevens, M.I. 2016. Antarctic eukaryotic soil diversity of the Prince Charles Mountains revealed by high-throughput sequencing. Soil Biology & Biochemistry, 95, 10.1016/j.soilbio.2015.12.013.Google Scholar
Dalén, L., Götherström, A., Meijer, T. & Shapiro, B. 2007. Recovery of DNA from footprints in the snow. Canadian Field-Naturalist, 121, 321324.Google Scholar
De Cárcer, D.A., Denman, S.E., McSweeney, C. & Morrison, M. 2011. Strategy for modular tagged high-throughput amplicon sequencing. Applied and Environmental Microbiology, 77, 63106312.Google Scholar
Deagle, B.E., Jarman, S.N., Coissac, E., Pompanon, F. & Taberlet, P. 2014. DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biology Letters, 10, 10.1098/rsbl.2014.0562.Google Scholar
Delmont, T.O., Simonet, P. & Vogel, T.M. 2013. Mastering methodological pitfalls for surviving the metagenomic jungle. BioEssays, 35, 744754.Google Scholar
Delmont, T.O., Robe, P., Cecillon, S., Clark, I.M., Constancias, F., Simonet, P., Hirsch, P.R. & Vogel, T.M. 2011. Accessing the soil metagenome for studies of microbial diversity. Applied and Environmental Microbiology, 77, 10.1128/AEM.01526-10.Google Scholar
Denonfoux, J., Parisot, N., Dugat-Bony, E., Biderre-Petit, C., Boucher, D., Morgavi, D.P., Le Paslier, D., Peyretaillade, E. & Peyret, P. 2013. Gene capture coupled to high-throughput sequencing as a strategy for targeted metagenome exploration. DNA Research, 20, 185196.Google Scholar
Dornelas, M., Gotelli, N.J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C. & Magurran, A.E. 2014. Assemblage time series reveal biodiversity change but not systematic loss. Science, 344, 10.1126/science.1248484.CrossRefGoogle Scholar
Dreesens, L.L., Lee, C.K. & Cary, S.C. 2014. The distribution and identity of edaphic fungi in the McMurdo Dry Valleys. Biology, 3, 10.3390/biology3030466.Google Scholar
Drummond, A.J., Newcomb, R.D., Buckley, T.R., Xie, D., Dopheide, A., Potter, B.C.M., Heled, J., Ross, H.A., Tooman, L., Grosser, S., Park, D., Demetras, N.J., Stevens, M.I., Russell, J.C., Anderson, S.H., Carter, A. & Nelson, N. 2015. Evaluating a multigene environmental DNA approach for biodiversity assessment. GigaScience, 4, 10.1186/s13742-015-0086-1.Google Scholar
Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 24602461.CrossRefGoogle ScholarPubMed
Edgar, R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996998.Google Scholar
Ellis, N., Smith, S.J. & Pitcher, C.R. 2012. Gradient forests: calculating importance gradients on physical predictors. Ecology, 93, 156168.Google Scholar
Epp, L.S., Boessenkool, S., Bellemain, E.P., Haile, J., Esposito, A., Riaz, T., Erseus, C., Gusarov, V.I., Edwards, M.E., Johnsen, A., Stenoien, H.K., Hassel, K., Kauserud, H., Yoccoz, N.G., Brathen, K., Willerslev, E., Taberlet, P., Coissac, E. & Brochmann, C. 2012. New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Molecular Ecology, 21, 18211833.Google Scholar
Ettema, C.H. & Wardle, D.A. 2002. Spatial soil ecology. Trends in Ecology & Evolution, 17, 177183.Google Scholar
Faircloth, B.C. & Glenn, T.C. 2012. Not all sequence tags are created equal: designing and validating sequence identification tags robust to indels. PLoS ONE, 7, 10.1371/journal.pone.0042543.Google Scholar
Faircloth, B.C., McCormack, J.E., Crawford, N.G., Harvey, M.G., Brumfield, R.T. & Glenn, T.C. 2012. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Systematic Biology, 61, 10.1093/sysbio/sys004.Google Scholar
Fell, J.W., Scorzetti, G., Connell, L. & Craig, S. 2006. Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with <5% soil moisture. Soil Biology & Biochemistry, 38, 31073119.CrossRefGoogle Scholar
Feng, Y.-J., Liu, Q.-F., Chen, M.-Y., Liang, D. & Zhang, P. 2015. Parallel tagged amplicon sequencing of relatively long PCR products using the Illumina HiSeq platform and transcriptome assembly. Molecular Ecology Resources, 16, 10.1111/1755-0998.12429.Google Scholar
Fernández-Mendoza, F., Domaschke, S., García, M.A, Jordan, P., Martín, M.P. & Printzen, C. 2011. Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata . Molecular Ecology, 20, 12081232.Google Scholar
Ficetola, G.F., Pansu, J., Bonin, A., Coissac, E., Giguet-Covex, C., De Barba, M., Gielly, L., Lopes, C.M., Boyer, F., Pompanon, F., Raye, G. & Taberlet, P. 2015. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Molecular Ecology Resources, 15, 543556.Google Scholar
Fierer, N., Leff, J.W., Adams, B.J., Nielsen, U.N., Bates, S.T., Lauber, C.L., Owens, S., Gilbert, J.A., Wall, D.H. & Caporaso, J.G., 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America, 109, 10.1073/pnas.1215210110.Google Scholar
Frenot, Y., Chown, S.L., Whinam, J., Selkirk, P.M., Convey, P., Skotnicki, M. & Bergstrom, D.M. 2005. Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews, 80, 4572.Google Scholar
Gagné, S.A. & Proulx, R. 2009. Accurate delineation of biogeographical regions depends on the use of an appropriate distance measure. Journal of Biogeography, 36, 561562.Google Scholar
Giardine, B., Riemer, C., Hardison, R.C., Burhans, R., Elnitski, L., Shah, P., Zhang, Y., Blankenberg, D., Albert, I., Taylor, J., Miller, W., Kent, W.J. & Nekrutenko, A. 2005. Galaxy: a platform for interactive large-scale genome analysis. Genome Research, 15, 14511455.Google Scholar
Gilbert, J.A, Meyer, F., Antonopoulos, D., Balaji, P., Brown, C.T., Desai, N., Eisen, J.A., Evers, D., Field, D., Feng, W., Huson, D., Jansson, J., Knight, R., Knight, J., Kolker, E., Konstantindis, K., Kostka, J., Kyrpides, N., Mackelprang, R., McHardy, A., Quince, C., Raes, J., Sczyrba, A., Shade, A. & Stevens, R. 2010. Meeting report: the terabase metagenomics workshop and the vision of an Earth microbiome project. Standards in Genomic Sciences, 3, 243248.Google Scholar
Glenn, T.C. 2011. Field guide to next-generation DNA sequencers. Molecular Ecology Resources, 11, 10.1111/j.1755-0998.2011.03024.x.Google Scholar
Gnirke, A., Melnikov, A., Maguire, J., Rogov, P., LeProust, E.M., Brockman, W., Fennell, T., Giannoukos, G., Fisher, S., Russ, C., Gabriel, S., Jaffe, D.B., Lander, E.S. & Nusbaum, C. 2009. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nature Biotechnology, 27, 182189.CrossRefGoogle ScholarPubMed
Gokul, J.K., Valverde, A., Tuffin, M., Cary, S.C. & Cowan, D.A. 2013. Micro-eukaryotic diversity in hypolithons from Miers Valley, Antarctica. Biology, 2, 331340.Google Scholar
Goordial, J., Davila, A., Greer, C.W., Cannam, R., DiRuggiero, J., McKay, C.P. & Whyte, L.G. 2016. Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper-arid polar desert. Environmental Microbiology, 10.1111/1462-2920.13353.Google Scholar
Gutt, J., Zurell, D., Bracegridle, T.J., Cheung, W., Clark, M.S., Convey, P., Danis, B., David, B., De Broyer, C., di Prisco, G., Griffiths, H., Laffont, R., Peck, L.S., Pierrat, B., Riddle, M.J., Saucede, T., Turner, J., Verde, C., Wang, Z.M. & Grimm, V. 2012. Correlative and dynamic species distribution modelling for ecological predictions in the Antarctic: a cross-disciplinary concept. Polar Research, 31, 10.3402/polar.v31i0.11091.Google Scholar
Hajibabaei, M., Spall, J.L., Shokralla, S. & van Konynenburg, S. 2012. Assessing biodiversity of a freshwater benthic macroinvertebrate community through non-destructive environmental barcoding of DNA from preservative ethanol. BMC Ecology, 12, 10.1186/1472-6785-12-28.Google Scholar
Hamming, R.W. 1950. Error detecting and error correcting codes. Bell System Technical Journal, 29, 10.1002/j.1538-7305.1950.tb00463.x.Google Scholar
Headland, R.K. 2009. A chronology of Antarctic exploration, 2nd ed. Bernard Quaritch, 722 pp.Google Scholar
Hogg, I.D., Cary, S.C., Convey, P., Newsham, K.K., O’Donnell, A.G., Adams, B.J., Aislabie, J., Frati, F., Stevens, M.I. & Wall, D.H. 2006. Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biology & Biochemistry, 38, 30353040.Google Scholar
Howard-Williams, C., Peterson, D., Lyons, W.B., Cattaneo-Vietti, R. & Gordon, S. 2006. Measuring ecosystem response in a rapidly changing environment: the Latitudinal Gradient Project. Antarctic Science, 18, 465471.Google Scholar
Hughes, K.A. & Convey, P. 2010. The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Global Environmental Change - Human and Policy Dimensions, 20, 10.1016/j.gloenvcha.2009.09.005.Google Scholar
Hughes, K.A. & Convey, P. 2012. Determining the native/non-native status of newly discovered terrestrial and freshwater species in Antarctica – current knowledge, methodology and management action. Journal of Environmental Management, 93, 5266.Google Scholar
Hughes, K.A., Convey, P., Maslen, N.R. & Smith, R.I.L. 2010. Accidental transfer of non-native soil organisms into Antarctica on construction vehicles. Biological Invasions, 12, 875891.Google Scholar
Hui, F.K.C., Taskinen, S., Pledger, S., Foster, S.D. & Warton, D.I. 2015. Model-based approaches to unconstrained ordination. Methods in Ecology and Evolution, 6, 10.1111/2041-210X.12236.Google Scholar
Huson, D.H. & Weber, N. 2013. Microbial community analysis using MEGAN. Microbial Metagenomics, Metatranscriptomics, and Metaproteomics, 531, 10.1016/B978-0-12-407863-5.00021-6.Google Scholar
Jarman, S.N., McInnes, J.C., Faux, C., Polanowski, A.M., Marthick, J., Deagle, B.E., Southwell, C. & Emmerson, L. 2013. Adélie penguin population diet monitoring by analysis of food DNA in scats. PLoS ONE, 8, 10.1371/journal.pone.0082227.CrossRefGoogle ScholarPubMed
Jungblut, A.D., Vincent, W.F. & Lovejoy, C. 2012. Eukaryotes in Arctic and Antarctic cyanobacterial mats. FEMS Microbiology Ecology, 82, 416428.Google Scholar
Kanagawa, T. 2003. Bias and artifacts in multitemplate polymerase chain reactions (PCR). Journal of Bioscience and Bioengineering, 96, 317323.Google Scholar
Kennicutt, M.C., Chown, S.L., Cassano, J.J., Liggett, D., Massom, R., Peck, L.S., Rintoul, S.R., Storey, J.W.V., Vaughan, D.G., Wilson, T.J. & Sutherland, W.J. 2014. Polar research: six priorities for Antarctic science. Nature, 512, 10.1038/512023a.Google Scholar
Kennicutt, M.C., Chown, S.L., Cassano, J.J. et al. 2015. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarctic Science, 27, 10.1017/S0954102014000674.Google Scholar
Khan, N., Tuffin, M., Stafford, W., Cary, C., Lacap, D.C., Pointing, S.B. & Cowan, D. 2011. Hypolithic microbial communities of quartz rocks from Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biology, 34, 16571668.Google Scholar
Kircher, M., Sawyer, S. & Meyer, M. 2012. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Research, 40, 10.1093/nar/gkr771.Google Scholar
Kwok, S. 1990. Procedures to minimize PCR-product carry-over. In Innis, M.A., Gelfand, D.H. & Sninsky, J.J., eds. PCR protocols: a guide to methods and applications. San Diego, CA: Academic Press, 142145.Google Scholar
Lan, Y., Wang, Q., Cole, J.R. & Rosen, G.L. 2012. Using the RDP classifier to predict taxonomic novelty and reduce the search space for finding novel organisms. PLoS ONE, 7, 10.1371/journal.pone.0032491.Google Scholar
Lawley, B., Ripley, S., Bridge, P. & Convey, P. 2004. Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Applied and Environmental Microbiology, 70, 59635972.Google Scholar
Lee, C.K., Barbier, B.A., Bottos, E.M., McDonald, I.R. & Cary, S.C. 2012a. The Inter-Valley Soil Comparative Survey: the ecology of Dry Valley edaphic microbial communities. ISME Journal, 6, 10.1038/ismej.2011.170.Google Scholar
Lee, C.K., Herbold, C.W., Polson, S.W., Wommack, K.E., Williamson, S.J., McDonald, I.R. & Cary, S.C. 2012b. Groundtruthing next-gen sequencing for microbial ecology – biases and errors in community structure estimates from PCR amplicon pyrosequencing. PLoS ONE, 7, 10.1371/journal.pone.0044224.Google Scholar
Legendre, P. & Andersson, M.J. 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs, 69, 10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2.Google Scholar
Lemmon, A.R., Emme, S.A. & Lemmon, E.M. 2012. Anchored hybrid enrichment for massively high-throughput phylogenomics. Systematic Biology, 61, 10.1093/sysbio/sys049.Google Scholar
Lenz, T.L. & Becker, S. 2008. Simple approach to reduce PCR artefact formation leads to reliable genotyping of MHC and other highly polymorphic loci – implications for evolutionary analysis. Gene, 427, 117123.Google Scholar
Leray, M., Yang, J.Y., Meyer, C.P., Mills, S.C., Agudelo, N., Ranwez, V., Boehm, J.T. & Machida, R.J. 2013. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in Zoology, 10, 10.1186/1742-9994-10-34.Google Scholar
Lindgreen, S. 2012. AdapterRemoval: easy cleaning of next generation sequencing reads. BMC Research Notes, 5, 10.1186/1756-0500-5-337.Google Scholar
Lindgreen, S., Adair, K.L. & Gardner, P.P. 2016. An evaluation of the accuracy and speed of metagenome analysis tools. Scientific Reports, 6, 19233, 10.1038/srep19233.Google Scholar
Liu, S., Li, Y.Y., Lu, J.L., Su, X., Tang, M., Zhang, R., Zhou, L.L., Zhou, C.R., Yang, Q., Ji, Y.Q., Yu, D.W. & Zhou, X. 2013. SOAPBarcode: revealing arthropod biodiversity through assembly of Illumina shotgun sequences of PCR amplicons. Methods in Ecology and Evolution, 4, 11421150.CrossRefGoogle Scholar
Lohse, M., Bolger, A.M., Nagel, A., Fernie, A.R., Lunn, J.E., Stitt, M. & Usadel, B. 2012. RobiNA: A user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Research, 40, W622W627.CrossRefGoogle Scholar
López-Bueno, A., Tamames, J., Velázquez, D., Moya, A., Quesada, A. & Alcamí, A. 2009. High diversity of the viral community from an Antarctic lake. Science, 326, 858861.Google Scholar
Machida, R.J. & Knowlton, N. 2012. PCR primers for metazoan nuclear 18S and 28S ribosomal DNA sequences. PLoS ONE, 7, 10.1371/journal.pone.0046180.Google Scholar
Magalhaes, C., Stevens, M.I., Cary, S.C., Ball, B.A., Storey, B.C., Wall, D.H., Tuerk, R. & Ruprecht, U. 2012. At limits of life: multidisciplinary insights reveal environmental constraints on biotic diversity in Continental Antarctica. PLoS ONE, 7, 10.1371/journal.pone.0044578.Google Scholar
Makhalanyane, T.P., Valverde, A., Birkeland, N.K., Cary, S.C., Tuffin, I.M. & Cowan, D.A. 2013. Evidence for successional development in Antarctic hypolithic bacterial communities. ISME Journal, 7, 20802090.Google Scholar
Marchant, D.R. & Head, J.W. 2007. Antarctic dry valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus, 192, 187222.CrossRefGoogle Scholar
McGaughran, A., Stevens, M.I., Hogg, I.D. & Carapelli, A. 2011. Extreme glacial legacies: a synthesis of the Antarctic springtail phylogeographic record. Insects, 2, 6282.Google Scholar
McGeoch, M.A., Shaw, J.D., Terauds, A., Lee, J.E. & Chown, S.L. 2015. Monitoring biological invasion across the broader Antarctic: a baseline and indicator framework. Global Environmental Change - Human and Policy Dimensions, 32, 108125.Google Scholar
McMurdie, P.J. & Holmes, S. 2013. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE, 8, 10.1371/journal.pone.0061217.CrossRefGoogle Scholar
McMurdie, P.J. & Holmes, S. 2014. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Computational Biology, 10, 10.1371/journal.pcbi.1003531.Google Scholar
Meyer, M., Stenzel, U. & Hofreiter, M. 2008. Parallel tagged sequencing on the 454 platform. Nature Protocols, 3, 267278.Google Scholar
Nakai, R., Abe, T., Baba, T., Imura, S., Kagoshima, H., Kanda, H., Kohara, Y., Koi, A., Niki, H., Yanagihara, K. & Naganuma, T. 2012. Eukaryotic phylotypes in aquatic moss pillars inhabiting a freshwater lake in East Antarctica, based on 18S rRNA gene analysis. Polar Biology, 35, 14951504.Google Scholar
Niederberger, T.D., Sohm, J.A., Gunderson, T.E., Parker, A.E., Tirindelli, J., Capone, D.G., Carpenter, E.J. & Cary, S.C. 2015. Microbial community composition of transiently wetted Antarctic Dry Valley soils. Frontiers in Microbiology, 6, 10.3389/fmicb.2015.00009.Google Scholar
Nielsen, U.N. & Wall, D.H. 2013. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecology Letters, 16, 409419.Google Scholar
O’Neill, E.M., Schwartz, R., Bullock, C.T., Williams, J.S., Shaffer, H.B., Aguilar-Miguel, X., Parra-Olea, G. & Weisrock, D.W. 2013. Parallel tagged amplicon sequencing reveals major lineages and phylogenetic structure in the North American tiger salamander (Ambystoma tigrinum) species complex. Molecular Ecology, 22, 111129.Google Scholar
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H. & Wagner, H. 2015. . Vegan: community ecology package. Available at: https://cran.r-project.org/package=vegan.Google Scholar
Orgiazzi, A., Bianciotto, V., Bonfante, P., Daghino, S., Ghignone, S., Lazzari, A., Lumini, E., Mello, A., Napoli, C., Perotto, S., Vizzini, A., Bagella, A., Murat, C. & Girlanda, M. 2013. 454 pyrosequencing analysis of fungal assemblages from geographically distant, disparate soils reveals spatial patterning and a core mycobiome. Diversity, 5, 7398.Google Scholar
Pedersen, M.W., Overballe-Petersen, S., Ermini, L., Sarkissian, C.D., Haile, J., Hellstrom, M., Spens, J., Thomsen, P.F., Bohmann, K., Cappellini, E., Schnell, I.B., Wales, N.A., Caroe, C., Campos, P.F., Schmidt, A.M.Z., Gilbert, M.T.P., Hansen, A.J., Orlando, L. & Willerslev, E. 2014. Ancient and modern environmental DNA. Philosophical Transactions of the Royal Society - Biological Sciences, B370, 10.1098/rstb.2013.0383.Google Scholar
Pointing, S.B. & Belnap, J. 2012. Microbial colonization and controls in dryland systems. Nature Reviews Microbiology, 10, 551562.Google Scholar
Powell, S.M., Bowman, J.P., Snape, I. & Stark, J.S. 2003. Microbial community variation in pristine and polluted nearshore Antarctic sediments. FEMS Microbiology Ecology, 45, 10.1016/S0168-6496(03)00135-1.Google Scholar
Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W.G., Peplies, J. & Gloeckner, F.O. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 35, 71887196.Google Scholar
R Development Team . 2016. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at: http://www.r-project.org/.Google Scholar
Ratnasingham, S. & Hebert, P.D.N. 2007. BOLD: the barcode of life data system (www.barcodinglife.org). Molecular Ecology Notes, 7, 355364.Google Scholar
Riaz, T., Shehzad, W., Viari, A., Pompanon, F., Taberlet, P. & Coissac, E. 2011. ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Research, 39, 10.1093/nar/gkr732.Google Scholar
Robertson, C.E., Harris, J.K., Wagner, B.D., Granger, D., Browne, K., Tatem, B., Feazel, L.M., Park, K., Pace, N.R. & Frank, D.N. 2013. Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data. Bioinformatics, 29, 31003101.Google Scholar
Robinson, M.D., McCarthy, D.J. & Smyth, G.K. 2009. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139140.Google Scholar
Roesch, L.F.W., Fulthorpe, R.R., Pereira, A.B., Pereira, C.K., Lemos, L.N., Barbosa, A.D., Suleiman, A.K.A., Gerber, A.L., Pereira, M.G., Loss, A. & da Costa, E.M. 2012. Soil bacterial community abundance and diversity in ice-free areas of Keller Peninsula, Antarctica. Applied Soil Ecology, 61, 715.Google Scholar
Rogers, A.D. 2007. Evolution and biodiversity of Antarctic organisms: a molecular perspective. Philosophical transactions of the Royal Society - Biological sciences, B362, 21912214.Google Scholar
Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. & Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA-polymerase. Science, 239, 487491.Google Scholar
Salter, S.J., Cox, M.J., Turek, E.M., Calus, S.T., Cookson, W.O., Moffatt, M.F., Turner, P., Parkhill, J., Loman, N.J. & Walker, A.W. 2014. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology, 12, 10.1186/s12915-014-0087-z.Google Scholar
Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A, Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., van Horn, D.J. & Weber, C.F. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 75377541.Google Scholar
Shaw, J.D., Terauds, A., Riddle, M.J., Possingham, H.P. & Chown, S.L. 2014. Antarctica’s protected areas are inadequate, unrepresentative, and at risk. PLoS Biology, 12, 10.1371/journal.pbio.1001888.Google Scholar
Shokralla, S., Singer, G.A.C. & Hajibabaei, M. 2010. Direct PCR amplification and sequencing of specimens’ DNA from preservative ethanol. BioTechniques, 48, 10.2144/000113362.Google Scholar
Sipos, R., Székely, A.J., Palatinszky, M., Révész, S., Márialigeti, K. & Nikolausz, M. 2007. Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targeting bacterial community analysis. FEMS Microbiology Ecology, 60, 10.1111/j.1574-6941.2007.00283.x.Google Scholar
Smith, D.P. & Peay, K.G. 2014. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE, 9, 10.1371/journal.pone.0090234.Google Scholar
Stiller, M., Knapp, M., Stenzel, U., Hofreiter, M. & Meyer, M. 2009. Direct multiplex sequencing (DMPS) – a novel method for targeted high-throughput sequencing of ancient and highly degraded DNA. Genome Research, 19, 18431848.Google Scholar
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. 2012a. Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology, 21, 20452050.Google Scholar
Taberlet, P., Prud’Homme, S.M., Campione, E., Roy, J., Miquel, C., Shehzad, W., Gielly, L., Rioux, D., Choler, P., Clement, J.C., Melodelima, C., Pompanon, F. & Coissac, E. 2012b. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Molecular Ecology, 21, 18161820.Google Scholar
Tang, C.Q., Leasi, F., Obertegger, U., Kieneke, A., Barraclough, T.G. & Fontaneto, D. 2012. The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proceedings of the National Academy of Sciences of the United States of America, 109, 16 20816 212.Google Scholar
Terauds, A., Chown, S.L., Morgan, F., Peat, H.J., Watts, D.J., Keys, H., Convey, P. & Bergstrom, D.M. 2012. Conservation biogeography of the Antarctic. Diversity and Distributions, 18, 726741.Google Scholar
Turrill, W.B. 1938. The expansion of taxonomy with special reference to spermatophyta. Biological Reviews, 13, 10.1111/j.1469-185X.1938.tb00522.x.Google Scholar
Van Dijk, E.L., Auger, H., Jaszczyszyn, Y. & Thermes, C. 2014. Ten years of next-generation sequencing technology. Trends in Genetics, 30, 10.1016/j.tig.2014.07.001.Google Scholar
Van Rossum, G. & Drake, F.L. 1995. Python tutorial. Amsterdam: Centrum voor Wiskunde en Informatica.Google Scholar
Velasco-Castrillón, A. & Stevens, M.I. 2014. Morphological and molecular diversity at a regional scale: a step closer to understanding Antarctic nematode biogeography. Soil Biology & Biochemistry, 70, 272284.Google Scholar
Velasco-Castrillón, A., Gibson, J.A.E. & Stevens, M.I. 2014a. A review of current Antarctic limno-terrestrial microfauna. Polar Biology, 37, 15171531.CrossRefGoogle Scholar
Velasco-Castrillón, A., Page, T.J., Gibson, J.A.E. & Stevens, M.I. 2014b. Surprisingly high levels of biodiversity and endemism amongst Antarctic rotifers uncovered with mitochondrial DNA. Biodiversity, 15, 130142.Google Scholar
Velasco-Castrillón, A., Schultz, M.B., Colombo, F., Gibson, J.A.E., Davies, K.A, Austin, A.D. & Stevens, M.I. 2014c. Distribution and diversity of soil microfauna from East Antarctica: assessing the link between biotic and abiotic factors. PLoS ONE, 9, 10.1371/journal.pone.0087529.Google Scholar
Wang, Y., Naumann, U., Wright, S.T. & Warton, D.I. 2012. mvabund – an R package for model-based analysis of multivariate abundance data. Methods in Ecology and Evolution, 3, 10.1111/j.2041-210X.2012.00190.x.CrossRefGoogle Scholar
Whittaker, R.H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 10.2307/1943563.Google Scholar
Wilke, A., Bischof, J., Gerlach, W., Glass, E., Harrison, T., Keegan, K.P., Paczian, T., Trimble, W.L., Bagchi, S., Gram, A., Chaterji, S. & Meyer, F. 2016. The MG-RAST metagenomics database and portal in 2015. Nucleic Acids Research, 44, 10.1093/nar/gkv1322.Google Scholar
Willerslev, E., Hansen, A.J. & Poinar, H.N. 2004. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends in Ecology & Evolution, 19, 10.1016/j.tree.2003.11.010.Google Scholar
Wish, M. & Carroll, J.D. 1982. Multidimensional scaling and its applications. In Krishnaiah, P.R. & Kanal, L.N., eds. Handbook of statistics 2. North-Holland: Elsevier, 317345.Google Scholar
Wu, T.H., Ayres, E., Bardgett, R.D., Wall, D.H. & Garey, J.R. 2011. Molecular study of worldwide distribution and diversity of soil animals. Proceedings of the National Academy of Sciences of the United States of America, 108, 17 72017 725.Google Scholar
Zhan, A.B., Bailey, S.A., Heath, D.D. & Macisaac, H.J. 2014. Performance comparison of genetic markers for high-throughput sequencing-based biodiversity assessment in complex communities. Molecular Ecology Resources, 14, 10.1111/1755-0998.12254.Google Scholar
Zhou, X.F. & Rokas, A. 2014. Prevention, diagnosis and treatment of high-throughput sequencing data pathologies. Molecular Ecology, 23, 10.1111/mec.12680.Google Scholar