Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T22:31:01.837Z Has data issue: false hasContentIssue false

Low phytoplankton biomass and ice algal blooms in the Weddell Sea during the ice-filled summer of 1997

Published online by Cambridge University Press:  22 April 2004

ELSE N. HEGSETH
Affiliation:
The Norwegian College of Fishery Science, University of Tromsø, N-9037 Tromsø, Norway
CECILIE H. VON QUILLFELDT
Affiliation:
The Norwegian Polar Institute, The Polar Environmental Centre, N-9296 Tromsø, Norway

Abstract

The summer of 1997 was characterized by unusually large amounts of pack ice in the southeastern Weddell Sea, and less than 10% of the area that is commonly ice-free in summer was open. A modest phytoplankton bloom developed in the upper mixed layer in the northernmost area (72°S). The bloom peaked in mid-February with max chlorophyll concentrations of 1.5 μg l−1, and integrated stocks of 55–60 mg m−2. Autotrophic flagellates dominated the biomass (80–90% of the chlorophyll) at first, while diatoms increased relative to flagellates during the bloom. Nutrient deficits, however, indicated that a much larger biomass was produced than was observed. Freezing starting after mid-February probably terminated the bloom, resulting in a pelagic growth season limited in time (less than two months) and space. The sea ice had a distinct brown layer of algae, usually at 1–2 m depth, with average chlorophyll biomass of 10.3 mg m−2. The ice cover exhibited a substantial amount of ridges, with ice algae growing in cavities and other structures, but with lower biomass than in the bands. Ice algae were also found growing on the lower 2 m of the ice shelf (visible at low tide). The overall growth season in the ice lasted several months, and ice algal production may have exceeded pelagic production in the Weddell Sea during the growth season of 1997. Pennate diatoms, like Fragilariopsis curta and F. cylindrus, dominated both in ice and in open water above the pycnocline, while Phaeocystis antarctica dominated in deeper layers and in crack pools. Euphausiids, particularly young stages, were frequently observed grazing on ice algae in ridges and on all sides of the floes, (confirmed by the gut content). Ice algae would thus have served as an ample food supply for the krill in the summer of 1997.

Type
Research Article
Copyright
© Antarctic Science Ltd 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)