Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T02:12:53.793Z Has data issue: false hasContentIssue false

Formal recognition of extinct Antarctic polar forests as a distinct biome

Published online by Cambridge University Press:  21 June 2022

Michael Macphail*
Affiliation:
Department of Archaeology and Natural History, College of Asia and the Pacific, Australian National University, Canberra, ACT 2601, Australia
Raymond Carpenter
Affiliation:
School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
Robert Hill
Affiliation:
School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia Department of Ecology and Evolutionary Biology, University of Adelaide, Adelaide, South Australia 5000, Australia

Abstract

We conclude that the extinct polar forests of Antarctica deserve recognition as a distinct biome - the ‘Austral Polar Forest Biome’ - rather than being regarded as analogous to modern rainforest.

Type
Opinion
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of Antarctic Science Ltd.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Askin, R.A. 1992. Late Cretaceous–Early Tertiary Antarctic outcrop evidence for past vegetation and climates. Antarctic Research Series, 56, 6173.Google Scholar
Barreda, V.D., Palazzesi, L. & Olivero, E.B. 2019. When flowering plants ruled Antarctica: evidence from Cretaceous pollen grains. New Phytologist, 223, 10231030.CrossRefGoogle ScholarPubMed
Biffin, E., Brodribb, T., Hill, R.S, Thomas, P. & Lowe, A.J. 2011. Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation. Proceedings of the Royal Society B: Biological Sciences, 279, 341348.CrossRefGoogle ScholarPubMed
Bowman, V.C., Francis, J.E., Askin, R.A., Riding, J.B. & Swindles, G.T. 2014. Latest Cretaceous–earliest Paleogene vegetation and climate change at the high southern latitudes: palynological evidence from Seymour Island, Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology, 408, 2647.CrossRefGoogle Scholar
Boyce, C.K., Brodribb, T.J., Feild, T.S. & Zwieniecki, M.A. 2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Royal Society of London. Proceedings. Biological Sciences, 276, 17711776.Google Scholar
Brodribb, T.J. & Hill, R.S. 1997. Light response characteristics of a morphologically diverse group of Southern Hemisphere conifers as measured by chlorophyll fluorescence. Oecologia, 110, 1017.CrossRefGoogle ScholarPubMed
Brodribb, T.J. & Hill, R.S. 2003. Implications for leaf and shoot physiology in Podocarpaceae. Acta Horticulturae, 615, 173174.CrossRefGoogle Scholar
Busby, J.R. & Brown, M.J. 1994. Southern rainforests. In Groves, R.H., ed. Australian vegetation, 2nd edition. Cambridge: Cambridge University Press, 131155.Google Scholar
Burn, C. 1996. The Polar Night. The Aurora Institute Scientific Report, 4, 111.Google Scholar
Cantrill, D.J. & Poole, I. 2005. Taxonomic turnover and abundance in Cretaceous to Tertiary wood floras of Antarctica: implications for changes in forest ecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 215, 205219CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2012. The vegetation of Antarctica through geological time. Cambridge: Cambridge University Press, 480 pp.CrossRefGoogle Scholar
Carpenter, R.J., Jordan, J., Macphail, M.K. & Hill, R.S. 2012. Near-tropical Early Eocene terrestrial temperatures at the Australo-Antarctic margin, western Tasmania. Geology, 40, 267270.CrossRefGoogle Scholar
Carter, A., Riley, T.R., Hillenbrand, C.D. & Rittner, M. 2017. Widespread Antarctic glaciation during the Late Eocene. Earth and Planetary Science Letters, 458, 4957.CrossRefGoogle Scholar
Contreras, L., Pross, J., Bijl, P.K., Koutsodendris, A., Raine, J.L., van der Schootbrugge, B. & Brinkhuis, H. 2013. Early to Middle Eocene vegetation dynamics at the Wilkes Land margin (Antarctica). Review of Palaeobotany and Palynology, 197, 113142.CrossRefGoogle Scholar
DeConto, R. & Pollard, D. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421, 245249.CrossRefGoogle ScholarPubMed
Dettmann, M.E. 1989. Antarctica: Cretaceous cradle of austral temperate rainforest. In Crame, J.A., ed. Origins and evolution of the Antarctica biota. Special Publication of the Geological Society of London, No. 47, 89105.Google Scholar
Dettmann, M.E. 1994. Cretaceous vegetation: the microfossil record. In Hill, R.S., ed. History of the Australian vegetation: Cretaceous to recent. Cambridge: Cambridge University Press, Cambridge, 143170.Google Scholar
Dettmann, M.E., Molnar, R.E., Douglas, J.G., Burger, D., Fielding, C., Clifford, H.T., et al. 1992. Australian Cretaceous terrestrial faunas and floras: biostratigraphic and biogeographic implications. Cretaceous Research, 13, 207262.CrossRefGoogle Scholar
Di Pasquo, M. & Martin, J.E. 2013. Palynoassemblages associated with a theropod dinosaur from the Snow Hill Island Formation (lower Maastrichtian) at the Naze, James Ross Island, Antarctica. Cretaceous Research, 45, 135154.CrossRefGoogle Scholar
Enright, N.J. 1982. Does Araucaria hunsteinii compete with its neighbours? Australian Journal of Ecology, 7, 9799.CrossRefGoogle Scholar
Enright, N.J. & Hill, R.S. 1995. Ecology of the southern conifers. Melbourne: Melbourne University Press, 342 pp.Google Scholar
Exon, N.F., Brinkhuis, H., Robert, C.M., Kennett, J.P., Hill, P.J. & Macphail, M.K. 2004. Tectono-sedimentary history of uppermost Cretaceous through Oligocene sequences from the Tasmanian region, a temperate Antarctic margin. In Exon, N., Kennett, J.P. & Malone, M., eds. The Cenozoic Southern Ocean. Tectonics, sedimentation and climate change between Australia and Antarctica. Geographical Monograph Series, 151, 319344.Google Scholar
Falcon-Lang, H.J. & Cantrill, D.J. 2001a. Biodiversity and terrestrial ecology of a mid-Cretaceous, high latitude floodplain, Alexander Island, Antarctica. Journal of the Geological Society (London), 158, 709724.CrossRefGoogle Scholar
Falcon-Lang, H.J. & Cantrill, D.J. 2001b. Leaf phenology of some mid-Cretaceous polar forests, Alexander Island, Antarctica. Geological Magazine, 138, 3952.CrossRefGoogle Scholar
Francis, J.E. 2000. Fossil wood from Eocene high latitude forests, McMurdo Sound, Antarctica. In Stillwell, J.D. & Feldmann, R.M., eds. Palaeobiology and Palaeoenvironments of Eocene Rocks, Mc Murdo Sound, East Antarctica. Washington, DC: American Geophysical Union, 253260.CrossRefGoogle Scholar
Francis, J.E. & Hill, R.S. 1996. Plant microfossils from the Pliocene Sirius Group, Transantarctic Mountains: evidence for climate from growth rings and fossil leaves. Palaios, 11, 389396.CrossRefGoogle Scholar
Gnaedinger, S., Coria, R.A., Koppelhus, E., Cassadío, S., Tunik, M. & Currie, P. 2017. First Lower Cretaceous record of Podocarpaceae wood associated with dinosaur remains from Patagonia, Neuquén Province, Patagonia. Cretaceous Research, 78, 228239.CrossRefGoogle Scholar
Graham, H.V., Herrera, F., Jaramillo, C., Wing, S.L. & Freeman, K.H. 2019. Canopy structure in Late Cretaceous and Paleocene forests as reconstructed from carbon isotope analysis of fossil leaves. Geology, 47, 997–981.CrossRefGoogle Scholar
Greenwood, D.R. 1994. Palaeobotanical evidence for Tertiary climates. In Hill, R.S., ed. Australian vegetation history: Cretaceous to recent. Cambridge: Cambridge University Press, 4459.Google Scholar
Gulick, S.P.S., Shevenell, A.E., Montelli, A., Fernandez, R., Smith, C., Warney, S., et al. 2017. Initiation and long-term instability of the East Antarctic ice sheet. Nature, 552, 225229.CrossRefGoogle ScholarPubMed
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany, 47 , 639696.CrossRefGoogle Scholar
Hill, R.S. & Brodribb, T.J. 2003. Evolution of conifer foliage in the Southern Hemisphere. Acta Horticulturae, 615, 5358.CrossRefGoogle Scholar
Hill, R.S. & Scriven, L. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology, 86, 175198.CrossRefGoogle Scholar
Hill, R.S., Carpenter, R.J., Carpenter, R.J. & Paull, R.A. 2019. Araucaria section Eutacta macrofossils from the Cenozoic of south-eastern Australia. International Journal of Plant Science, 180, 902921.CrossRefGoogle Scholar
Hill, R.S., Lewis, T., Carpenter, R.J. & Whang, S.S. 2008. Agathis (Araucariaceae) macrofossils from Cainozoic sediments in south-eastern Australia. Australian Systematic Botany, 21, 162177.CrossRefGoogle Scholar
Horrell, M.A. 1991. Phytogeography and paleoclimatic interpretation of the Maastrichtian. Palaeogeography, Palaeoclimatology, Palaeoecology, 86, 87138.CrossRefGoogle Scholar
Iglesias, A. 2016. New Upper Cretaceous (Campanian) flora from James Ross Island, Antarctica. Ameghiniana, 53, 358374.CrossRefGoogle Scholar
Jefferson, T.H. 1982. Fossil forests from the Lower Cretaceous of Alexander Island, Antarctica. Palaeontology, 25, 681708.Google Scholar
Jordan, G.J., Carpenter, R.J., Bannister, J.M., Lee, D.E., Mildenhall, D.C. & Hill, R.S. 2011. High conifer diversity in Oligo-Miocene New Zealand. Australian Systematic Botany, 24, 121136.CrossRefGoogle Scholar
Klages, J.P., Salzmann, U., Bickert, T., Hillenbrand, C.-D, Gohl, K., Kuhn, G., et al. 2020. Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature, 580, 8186.CrossRefGoogle ScholarPubMed
Kvaček, J. & Vodrážka, R. 2018. Late Cretaceous flora of the Hidden Lake Formation, James Ross Island (Antarctica): its biostratigraphy and palaeoecological implications. Cretaceous Research, 58, 183201.CrossRefGoogle Scholar
Macphail, M.K. & Truswell, E.M. 2004. Palynology of Site 1166. In Cooper, A.K., O'Brien, P.E. & Richter, C, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 188, 143.Google Scholar
Macphail, M.K., Alley, N., Truswell, E.M. & Sluiter, I.R. 1994. Early Tertiary vegetation: evidence from pollen and spores. In Hill, R.S., ed. Australian vegetation history: Cretaceous to recent. Cambridge: Cambridge University Press, 189261.Google Scholar
Macphail, M.K., Hill, R.S., Partridge, A.D. & Jordan, G.J. 2014. Geo-botany of the Cretaceous to Neogene. In Corbett K.D., Quilty, & Calver, P.G., C.R., eds. Geological evolution of Tasmania. Special Publication of the Geological Society of Australia, 24, 495507.Google Scholar
Mays, C., Cantrill, D.J. & Blevitt, J. 2017. Polar wildfires and conifer serotiny during the Cretaceous hothouse. Geology, 45, 11191122.CrossRefGoogle Scholar
McGlone, M.S., Mildenhall, D.C. & Pole, M.S. 1996. History and palaeoecology of New Zealand Nothofagus forests. In Veblen, T.T., Hill, R.S., & Read, J., eds. The ecology and biogeography of Nothofagus forests. New Haven, CT: Yale University Press, 83130.Google Scholar
Miller, M.F., Knepprath, N.E., Cantrill, D.J., Francis, J.E. & Isbell, J.I. 2016. Highly productive forests from the Permian of Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 292304.CrossRefGoogle Scholar
Morley, R.J. 2000. Origin and evolution of tropical rain forests. Chicester: Wiley Press, 362 pp.Google Scholar
Mosbrugger, V., Gee, C.T., Belz, G. & Ashraf, A.R. 1994. Three-dimensional reconstruction of an in situ Miocene peat forest from the Lower Rhine Embayment, northwestern Germany - new methods in palaeovegetation analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 110, 295317.CrossRefGoogle Scholar
Osborne, C.P., Royer, D.L. & Beerling, D.J. 2004. Adaptive role of leaf habit in extinct polar forests. International Forestry Review, 6, 181186.CrossRefGoogle Scholar
Olivero, E.B. 2012. Sedimentary cycles, ammonite diversity and palaeoenvironmental changes in the Upper Cretaceous Marambio Group, Antarctica. Cretaceous Research, 34, 348366.CrossRefGoogle Scholar
Pole, M.S. 1994. Deciduous Nothofagus leaves from the Miocene of Cornish Head, New Zealand. Alcheringa, 18, 7983.CrossRefGoogle Scholar
Poole, I. & Cantrill, D.J. 2006. Cretaceous and Cenozoic vegetation of Antarctica integrating the fossil wood record. Special Publication of the Geological Society of London, 258, 6381.CrossRefGoogle Scholar
Pross, K., Contreras, L., Bijl, P.K., Greenwood, D.R., Boharty, S.M., Schouten, S., et al. 2012. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature, 488, 7377.CrossRefGoogle ScholarPubMed
Pujana, R.R., Inglesias, A., Raffi, M.E. & Olivero, E.B. 2018. Angiosperm fossil woods from the Late Cretaceous of Western Antarctica (Santa Marta Formation). Cretaceous Research, 90, 349362.CrossRefGoogle Scholar
Quattrocchio, M.E., Volkheimer, W., Marquillas, R.A. & Salfity, J.A. 2005. Palynostratigraphy, palaeobiogeography and evolutionary significance of the Late Senonian and Early Palaeogene palynofloras of the Salta Group, northern Argentina. Revista Espagñola de Micropalaeontologia, 37, 259272.Google Scholar
Rackham, O. 2006. Woodlands. London: HarperCollins, 609 pp.Google Scholar
Read, J. 1999. Rainforest ecology. In Reid, J.B., Hill, R.S., Brown, M.J. & Hovenden, M.J., eds. Vegetation of Tasmania. Flora of Australia Supplementary Series, 8, 160197.Google Scholar
Read, J. & Francis, J.E. 1992. Responses of some Southern Hemisphere tree species to a prolonged dark period and their implications for high-latitude Cretaceous and Tertiary floras. Palaeogeography, Palaeoclimatology, Palaeoecology, 99, 271290.CrossRefGoogle Scholar
Read, J., Hill, R.S. & Hope, G.S. 2010. Contrasting responses to water deficits of Nothofagus species from tropical New Guinea and high-latitude temperate forests: can rainfall regimes constrain latitudinal range? Journal of Biogeography, 37, 19621976.Google Scholar
Specht, R.L. 1982. Structural attributes - foliage projective cover and standing biomass. In Gillison, A.N & Anderson, D.J., eds. Vegetation classification of the Australian region. Canberra: CSIRO and Australian National University Press, 1021.Google Scholar
Specht, R.L., Dettmann, M.E., Thompson, M.R.A. & Davies, R.E.S. 1992. Community associations and structure in the Late Cretaceous vegetation of southeast Australasia and Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 94, 283309.CrossRefGoogle Scholar
Srivastava, S. 1994. Evolution of Cretaceous phytogeoprovinces, continents and climates. Review of Palaeobotany and Palynology, 82, 197224.CrossRefGoogle Scholar
Takahashi, S. & Murata, N. 2008. How do environmental stresses accelerate photoinhibition? Trends in Plant Science, 13, 178182.CrossRefGoogle ScholarPubMed
Taylor, E.L. & Rhyberg, P.E. 2007. Tree growth at polar latitudes based on fossil tree ring analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 255, 246264.CrossRefGoogle Scholar
Thain, M. & Hickman, M. 1994. Dictionary of biology. London: Penguin Books, 665 pp.Google Scholar
Thorn, V. 2005. A Middle Jurassic fossil forest from New Zealand. Palaeontology, 48, 10211039.CrossRefGoogle Scholar
Truswell, E.M. & Macphail, M.K. 2004. Carnivorous plants at high latitudes: pollen evidence for Droseraceae growing in East Antarctica during the Late Eocene. Memoirs of the Association of Australasian Palaeontologists, 29, 8597.Google Scholar
Truswell, E.M. & Macphail, M.K. 2009. Polar forests on the edge of extinction: what does the fossil pollen and spore evidence from East Antarctica say? Australian Systematic Botany, 22, 57106.CrossRefGoogle Scholar
Veblen, T.T., Hill, R.S. & Read, J. 1996. The ecology and biogeography of Nothofagus forests. New Haven, CT: Yale University Press, 403 pp.Google Scholar
Veblen, T.T., Burns, B.R., Kitzberger, T., Lara, A. & Villabra, R. 1995. The ecology of the conifers of southern South America. In Veblen, T.T., Hill, R.S. & Read, J., eds. The ecology and biogeography of Nothofagus forests. New Haven, CT: Yale University Press, 120170.Google Scholar