Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-24T09:33:35.309Z Has data issue: false hasContentIssue false

Detection and community-level identification of microbial mats in the McMurdo Dry Valleys using drone-based hyperspectral reflectance imaging

Published online by Cambridge University Press:  19 May 2020

Joseph Levy*
Affiliation:
Colgate University, Department of Geology, Hamilton, NY13346, USA
S. Craig Cary
Affiliation:
International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton3240, New Zealand
Kurt Joy
Affiliation:
International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton3240, New Zealand
Charles K. Lee
Affiliation:
International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton3240, New Zealand

Abstract

The reflectance spectroscopic characteristics of cyanobacteria-dominated microbial mats in the McMurdo Dry Valleys (MDVs) were measured using a hyperspectral point spectrometer aboard an unmanned aerial system (remotely piloted aircraft system, unmanned aerial vehicle or drone) to determine whether mat presence, type and activity could be mapped at a spatial scale sufficient to characterize inter-annual change. Mats near Howard Glacier and Canada Glacier (ASPA 131) were mapped and mat samples were collected for DNA-based microbiome analysis. Although a broadband spectral parameter (a partial normalized difference vegetation index) identified mats, it missed mats in comparatively deep (> 10 cm) water or on bouldery surfaces where mats occupied fringing moats. A hyperspectral parameter (B6) did not have these shortcomings and recorded a larger dynamic range at both sites. When linked with colour orthomosaic data, B6 band strength is shown to be capable of characterizing the presence, type and activity of cyanobacteria-dominated mats in and around MDV streams. 16S rRNA gene polymerase chain reaction amplicon sequencing analysis of the mat samples revealed that dominant cyanobacterial taxa differed between spectrally distinguishable mats, indicating that spectral differences reflect underlying biological distinctiveness. Combined rapid-repeat hyperspectral measurements can be applied in order to monitor the distribution and activity of sentinel microbial ecosystems across the terrestrial Antarctic.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Najjar, M., Ramette, A.R., Kühl, M., Hamza, W., Klatt, J.M. & Polerecky, L. 2014. Spatial patterns and links between microbial community composition and function in cyanobacterial mats. Frontiers in Microbiology, 5, 10.3389/fmicb.2014.00406.CrossRefGoogle ScholarPubMed
Andrefouet, S., Payri, C., Hochberg, E.J., Che, L.M. & Atkinson, M.J. 2003. Airborne hyperspectral detection of microbial mat pigmentation in Rangiroa atoll (French Polynesia). Limnology and Oceanography, 48, 10.4319/lo.2003.48.1_part_2.0426.CrossRefGoogle Scholar
Bachar, A., Polerecky, L., Fischer, J.P., Vamvakopoulos, K., de Beer, D. & Jonkers, H.M. 2008. Two-dimensional mapping of photopigment distribution and activity of Chloroflexus-like bacteria in a hypersaline microbial mat. FEMS Microbiology Ecology, 65, 10.1111/j.1574-6941.2008.00534.x.CrossRefGoogle Scholar
Burkart, A., Cogliati, S., Schickling, A. & Rascher, U. 2013. A novel UAV-based ultra-light weight spectrometer for field spectroscopy. IEEE Sensors Journal, 14, 10.1109/JSEN.2013.2279720.Google Scholar
Edgar, R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 10.1038/nmeth.2604.CrossRefGoogle ScholarPubMed
Fountain, A.G., Levy, J.S., Gooseff, M.N. & van Horn, D. 2014. The McMurdo Dry Valleys: a landscape on the threshold of change. Geomorphology, 225, 10.1016/j.geomorph.2014.03.044.CrossRefGoogle Scholar
Fritsen, C.H., Grue, A.M. & Priscu, J.C. 2000. Distribution of organic carbon and nitrogen in surface soils in the McMurdo Dry Valleys, Antarctica. Polar Biology, 23, 121128.CrossRefGoogle Scholar
Hopkins, D.W., Sparrow, A.D., Novis, P.M., Gregorich, E.G., Elberling, B. & Greenfield, L.G. 2006. Controls on the distribution of productivity and organic resources in Antarctic Dry Valley soils. Proceedings of the Royal Society B: Biological Sciences, 273, 10.1098/rspb.2006.3595.Google ScholarPubMed
Howard-Williams, C., Vincent, C.L., Broady, P.A. & Vincent, W.F. (1986). Antarctic stream ecosystems: variability in environmental properties and algal community structure. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 71, 10.1002/iroh.19860710405.CrossRefGoogle Scholar
Jungblut, A.-D., Hawes, I., Mountfort, D., Hitzfield, B., Dietrich, D.R., Burns, B.P., et al. 2005. Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environmental Microbiology, 7, 10.1111/j.1462-2920.2004.00717.x.CrossRefGoogle ScholarPubMed
Karr, E.A., Sattley, W.M., Rice, M.R., Jung, D.O., Madigan, M.T. & Achenbach, L.A. 2005. Diversity and distribution of sulfate-reducing bacteria in permanently frozen Lake Fryxell, McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 71, 10.1128/AEM.71.10.6353-6359.2005.CrossRefGoogle ScholarPubMed
Kohls, K., Abed, R.M.M., Polerecky, L., Weber, M. & de Beer, D. 2010. Halotaxis of cyanobacteria in an intertidal hypersaline microbial mat. Environmental Microbiology, 12, 10.1111/j.1462-2920.2009.02095.x.CrossRefGoogle Scholar
Lee, K.C., Caruso, T., Archer, S.D.J., Gillman, L.N., Lau, M.C.Y. & Cary, C.S. 2018. Stochastic and deterministic effects of a moisture gradient on soil microbial communities in the McMurdo Dry Valleys of Antarctica. Frontiers in Microbiology, 9, 10.3389/fmicb.2018.02619.CrossRefGoogle ScholarPubMed
Levy, J.S., Fountain, A.G., Obryk, M.K., Telling, J., Glennie, C. & Pettersson, R. 2018. Decadal topographic change in the McMurdo Dry Valleys of Antarctica: thermokarst subsidence, glacier thinning, and transfer of water storage from the cryosphere to the hydrosphere. Geomorphology, 323, 10.1016/j.geomorph.2018.09.012.CrossRefGoogle Scholar
Lucieer, A., Turner, D., King, D.H. & Robinson, S.A. 2014. Using an unmanned aerial vehicle (UAV) to capture micro-topography of Antarctic moss beds. International Journal of Applied Earth Observation and Geoinformation, 27, 5362.CrossRefGoogle Scholar
Malenovský, Z., Turnbull, J.D., Lucieer, A. & Robinson, S.A. 2015. Antarctic moss stress assessment based on chlorophyll content and leaf density retrieved from imaging spectroscopy data. New Phytologist, 208, 10.1111/nph.13524.CrossRefGoogle ScholarPubMed
Malenovský, Z., Lucieer, A., King, D.H., Turnbull, J.D. & Robinson, S.A. 2017. Unmanned aircraft system advances health mapping of fragile polar vegetation. Methods in Ecology and Evolution, 8, 10.1111/2041-210X.12833.CrossRefGoogle Scholar
McCormac, F.G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G. & Reimer, P.J. 2004. SHCal04 southern hemisphere calibration 0–11.0 cal kyr bp. Radiocarbon, 46, 10871092.CrossRefGoogle Scholar
McKnight, D.M., Alger, A., Tate, C., Shupe, G. & Spaulding, S. 2013. Longitudinal patterns in algal abundance and species distribution in meltwater streams in Taylor Valley, Southern Victoria Land, Antarctica. Antarctic Research Series, 72, 10.1029/AR072p0109.CrossRefGoogle Scholar
McKnight, D.M., Niyogi, D.K., Alger, A.S., Bomblies, A., Conovitz, P.A. & Tate, C.M. 1999. Dry Valley streams in Antarctica: ecosystems waiting for water. BioScience, 49, 985995.CrossRefGoogle Scholar
Moorhead, D.L., Barrett, J.E., Virginia, R.A., Wall, D.H. & Porazinska, D. 2003. Organic matter and soil biota of upland wetlands in Taylor Valley, Antarctica. Polar Biology, 26, 10.1007/s00300-003-0524-x.CrossRefGoogle Scholar
Niederberger, T.D., Bottos, E.M., Sohm, J.A., Gunderson, T., Parker, A. & Coyne, K.J. 2019. Rapid microbial dynamics in response to an induced wetting event in Antarctic Dry Valley soils. Frontiers in Microbiology, 10, 10.3389/fmicb.2019.00621.CrossRefGoogle Scholar
Prezelin, B.B. & Boczar, B.A. 1986. Molecular bases of cell absorption and fluorescence in phytoplankton: potential applications to studies in optical oceanography. In Round, F. & Chapman, D., eds. Progress in phycological research. Bristol: Biopress Ltd, 350465.Google Scholar
Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M. & Hollister, E.B. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 10.1128/AEM.01541-09.CrossRefGoogle ScholarPubMed
Schmidt, H. & Karnieli, A. 2000. Remote sensing of the seasonal variability of vegetation in a semi-arid environment. Journal of Arid Environments, 45, 10.1006/jare.1999.0607.CrossRefGoogle Scholar
Stanish, L.F., Kohler, T.J., Esposito, R.M., Simmons, B.L., Nielsen, U.N. & Wall, D.H. 2012. Extreme streams: flow intermittency as a control on diatom communities in meltwater streams in the McMurdo Dry Valleys, Antarctica. Canadian Journal of Fisheries and Aquatic Sciences, 69, 10.1139/f2012-022.Google Scholar
Stuiver, M. & Reimer, P.J. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon, 35, 215230.CrossRefGoogle Scholar
Taton, A., Grubisic, S., Brambilla, E., de Wit, R. & Wilmotte, A. 2003. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Applied and Environmental Microbiology, 69, 10.1128/AEM.69.9.5157-5169.2003.CrossRefGoogle ScholarPubMed
Tiao, G., Lee, C.K., McDonald, I.R., Cowan, D.A. & Cary, C.S. 2012. Rapid microbial response to the presence of an ancient relic in the Antarctic Dry Valleys. Nature Communications, 3, 10.1038/ncomms1645.CrossRefGoogle ScholarPubMed
Weaver, E.C. & Wrigley, R. 1994. Factors affecting the identification of phytoplankton groups by means of remote sensing. Moffett Field, CA: NASA, 1 p.Google Scholar
Zeglin, L.H., Sinsabaugh, R.L., Barrett, J.E., Gooseff, M.N. & Takacs-Vesbach, C.D. 2009. Landscape distribution of microbial activity in the McMurdo Dry Valleys: linked biotic processes, hydrology, and geochemistry in a cold desert ecosystem. Ecosystems, 12, 10.1007/s10021-009-9242-8.CrossRefGoogle Scholar