Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T22:28:17.285Z Has data issue: false hasContentIssue false

Prediction of subglacial lake melt source regions from site characteristics

Published online by Cambridge University Press:  18 April 2023

Simon Willcocks*
Affiliation:
The University of Adelaide School of Earth and Environmental Sciences - Geology, Mawson Building, Adelaide, South Australia 5005, Australia
Derrick Hasterok
Affiliation:
The University of Adelaide School of Earth and Environmental Sciences - Geology, Mawson Building, Adelaide, South Australia 5005, Australia

Abstract

Subglacial melt has important implications for ice-sheet dynamics. Locating and identifying subglacial lakes are expensive and time-consuming, requiring radar surveys or satellite methods. We explore three methods to identify source regions for lakes using seven continent-wide environmental characteristics that are sensitive to or influenced by ice-sheet temperature. A simple comparison of environmental properties at lake locations with their continent-wide distributions suggests a statistical relationship (high Kolmogorov-Smirnov statistic) between stable lake locations and ice thickness and surface temperatures, indicating melting under passive conditions. Active lakes, in contrast, show little correlation with direct thermally influenced parameters, instead exhibiting large statistical differences with horizontal velocity and bedrock elevation. More sophisticated techniques, including principal component analysis (PCA) and machine learning (ML) classification, provide better spatial identification of lake types. Positive PCA scores derived from the environmental characteristics correlate with stable lakes, whereas negative values correspond to active lakes. ML methods can also identify regions where subglacial lake melt sources are probable. While ML provides the most accurate classification maps, the combination of approaches adds deeper knowledge of the primary controls on lake formation and the environmental settings in which they are likely to be found.

Type
Earth Sciences
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of Antarctic Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, M., Wiens, D.A., Zhao, Y., Feng, M., Nyblade, A.A., Kanao, M., et al. 2015. S-wave velocity model and inferred Moho topography beneath the Antarctic Plate from Rayleigh waves. Journal of Geophysical Research - Solid Earth, 120, 359383.CrossRefGoogle Scholar
Ashmore, D.W. & Bingham, R.G. 2014. Antarctic subglacial hydrology: current knowledge and future challenges. Antarctic Science, 26, 758773.CrossRefGoogle Scholar
Baranov, A., Tenzer, R. & Bagherbandi, M. 2017. Combined gravimetric-seismic crustal model for antarctica. Surveys in Geophysics, 39, 2356.CrossRefGoogle Scholar
Behrendt, J.C. 1999. Crustal and lithospheric structure of the West Antarctic Rift System from geophysical investigations - a review. Global and Planetary Change, 23, 2544.CrossRefGoogle Scholar
Bell, R.E., Studinger, M., Shuman, C.A., Fahnestock, M.A. & Joughin, I. 2007. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature, 445, 904907.CrossRefGoogle ScholarPubMed
Carter, S.P., Blankenship, D.D., Peters, M.E., Young, D.A., Holt, J.W. & Morse, D.L. 2007. Radar-based subglacial lake classification in Antarctica. Geochemistry, Geophysics, Geosystems, 8, 10.1029/2006GC001408.CrossRefGoogle Scholar
Christner, B.C., Priscu, J.C., Achberger, A.M., Barbante, C., Carter, S.P., Christianson, K., et al. 2014. A microbial ecosystem beneath the West Antarctic Ice Sheet. Nature, 512, 310313.CrossRefGoogle ScholarPubMed
Couston, L.-A. & Siegert, M. 2021. Dynamic flows create potentially habitable conditions in Antarctic subglacial lakes. Science Advances, 7, eabc3972.CrossRefGoogle ScholarPubMed
Fretwell, P., Pritchard, H.D., Vaughan, D.G., Bamber, J.L., Barrand, N.E., Bell, R., et al. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7, 375393.CrossRefGoogle Scholar
Fricker, H.A., Scambos, T., Bindschadler, R. & Padman, L. 2007. An active subglacial water system in West Antarctica mapped from space. Science, 315, 15441548.CrossRefGoogle ScholarPubMed
Fricker, H.A., Siegfried, M.R., Carter, S.P. & Scambos, T.A. 2016. A decade of progress in observing and modelling Antarctic subglacial water systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, 20140294.CrossRefGoogle ScholarPubMed
Gard, M. & Hasterok, D. 2021. A global Curie depth model utilising the equivalent source magnetic dipole method. Physics of the Earth and Planetary Interiors, 313, 106672.CrossRefGoogle Scholar
Goeller, S., Steinhage, D., Thoma, M. & Grosfeld, K. 2016. Assessing the subglacial lake coverage of Antarctica. Annals of Glaciology, 57, 109117.CrossRefGoogle Scholar
Goes, S., Hasterok, D., Schutt, D.L. & Klőcking, M. 2020. Continental lithospheric temperatures: a review. Physics of the Earth and Planetary Interiors, 306, 106509.CrossRefGoogle Scholar
Gray, L. 2005. Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophysical Research Letters, 32, 10.1029/2004GL021387.CrossRefGoogle Scholar
Gudlaugsson, E., Humbert, A., Kleiner, T., Kohler, J. & Andreassen, K. 2016. The influence of a model subglacial lake on ice dynamics and internal layering. The Cryosphere, 10, 751760.CrossRefGoogle Scholar
Guimarães, S.N.P., Vieira, F.P. & Hamza, V.M. 2020. Heat flow variations in the Antarctic continent. International Journal of Terrestrial Heat Flow and Applications, 3, 110.CrossRefGoogle Scholar
Hasterok, D. & Chapman, D. 2011. Heat production and geotherms for the continental lithosphere. Earth and Planetary Science Letters, 307, 5970.CrossRefGoogle Scholar
Hasterok, D. & Gard, M. 2016. Utilizing thermal isostasy to estimate sub-lithospheric heat flow and anomalous crustal radioactivity. Earth and Planetary Science Letters, 450, 197207.CrossRefGoogle Scholar
Hasterok, D. & Webb, J. 2017. On the radiogenic heat production of igneous rocks. Geoscience Frontiers, 8, 919940.CrossRefGoogle Scholar
Hasterok, D., Gard, M. & Webb, J. 2018. On the radiogenic heat production of metamorphic, igneous, and sedimentary rocks. Geoscience Frontiers, 9, 17771794.CrossRefGoogle Scholar
Horgan, H.J., Anandakrishnan, S., Jacobel, R.W., Christianson, K., Alley, R.B., Heeszel, D.S., et al. 2012. Subglacial Lake Whillans - seismic observations of a shallow active reservoir beneath a West Antarctic ice stream. Earth and Planetary Science Letters, 331–332, 201209.CrossRefGoogle Scholar
Humbert, A., Steinhage, D., Helm, V., Beyer, S. & Kleiner, T. 2018. Missing evidence of widespread subglacial lakes at Recovery Glacier, Antarctica. Journal of Geophysical Research - Earth Surface, 123, 28022826.CrossRefGoogle Scholar
Jennings, S., Hasterok, D. & Payne, J. 2019. A new compositionally-based thermal conductivity model for plutonic rocks. Geophysical Journal International, 219, 13771394.CrossRefGoogle Scholar
Jordan, T.A., Riley, T.R. & Siddoway, C.S. 2020. The geological history and evolution of West Antarctica. Nature Reviews Earth & Environment, 1, 117.CrossRefGoogle Scholar
King, J.C. & Turner, J. 1997. Antarctic meteorology and climatology. Cambridge: Cambridge University Press, 409 pp.CrossRefGoogle Scholar
Krynauw, J. 1996. A review of the geology of East Antarctica, with special reference to the c. 1000 Ma and c. 500 Ma events. Terra Antarctica, 3, 7789.Google Scholar
Lai, C.-Y., Stevens, L.A., Chase, D.L., Creyts, T.T., Behn, M.D., Das, S.B. & Stone, H.A. 2021. Hydraulic transmissivity inferred from ice-sheet relaxation following Greenland supraglacial lake drainages. Nature Communications, 12, 3955.CrossRefGoogle ScholarPubMed
Livingstone, S.J., Clark, C.D., Woodward, J. & Kingslake, J. 2013. Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. The Cryosphere, 7, 17211740.CrossRefGoogle Scholar
Livingstone, S.J., Li, Y., Rutishauser, A., Sanderson, R.J., Winter, K., Mikucki, J.A., et al. 2022. Subglacial lakes and their changing role in a warming climate. Nature Reviews Earth & Environment, 3, 106124.CrossRefGoogle Scholar
Llubes, M., Lanseau, C. & Rémy, F. 2006. Relations between basal condition, subglacial hydrological networks and geothermal flux in Antarctica. Earth and Planetary Science Letters, 241, 655662.CrossRefGoogle Scholar
MacKie, E.J., Schroeder, D.M., Caers, J., Siegfried, M.R. & Scheidt, C. 2020. Antarctic topographic realizations and geostatistical modeling used to map subglacial lakes. Journal of Geophysical Research - Earth Surface, 125, 10.1029/2019JF005420.CrossRefGoogle Scholar
Magnússon, E., Pálsson, F., Gudmundsson, M.T., Hőgnadóttir, T., Rossi, C., Thorsteinsson, T., et al. 2021. Development of a subglacial lake monitored with radio-echo sounding: case study from the eastern Skaftá cauldron in the Vatnajőkull ice cap, Iceland. The Cryosphere, 15, 37313749.CrossRefGoogle Scholar
Maguire, R., Schmerr, N., Pettit, E., Riverman, K., Gardner, C., Della-Giustina, D., et al. 2021. Geophysical constraints on the properties of a subglacial lake in northwest Greenland. The Cryosphere, 15, 32793291.CrossRefGoogle Scholar
Mareschal, J.-C. & Jaupart, C. 2013. Radiogenic heat production, thermal regime and evolution of continental crust. Tectonophysics, 609, 524534.CrossRefGoogle Scholar
Martos, Y.M., Catalán, M., Jordan, T.A., Golynsky, A., Golynsky, D., Eagles, G. & Vaughan, D.G. 2017. Heat flux distribution of Antarctica unveiled. Geophysical Research Letters, 44, 1141711426.CrossRefGoogle Scholar
MATLAB. 2020. MATLAB version 9.8.0.1359463 (R2020a). Natick, MA: MathWorks, Inc.Google Scholar
Maule, C.F. 2005. Heat flux anomalies in antarctica revealed by satellite magnetic data. Science, 309, 464467.CrossRefGoogle ScholarPubMed
Messager, M.L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. 2016. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications, 7, 13603.CrossRefGoogle ScholarPubMed
Mony, L., Roberts, J.L. & Halpin, J.A. 2020. Inferring geothermal heat flux from an ice-borehole temperature profile at Law Dome, East Antarctica. Journal of Glaciology, 66, 509519.CrossRefGoogle Scholar
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., et al. 2019. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nature Geoscience, 13, 132137.CrossRefGoogle Scholar
Oswald, G.K.A. & Robin, G.D.Q. 1973. Lakes beneath the Antarctic ice sheet. Nature, 245, 251254.CrossRefGoogle Scholar
Palmer, S.J., Dowdeswell, J.A., Christoffersen, P., Young, D.A., Blankenship, D.D., Greenbaum, J.S., et al. 2013. Greenland subglacial lakes detected by radar. Geophysical Research Letters, 40, 61546159.CrossRefGoogle Scholar
Paterson, W.S.B. 1994. The physics of glaciers. Oxford: Pergamon, 480 pp.Google Scholar
Pattyn, F., Carter, S.P. & Thoma, M. 2016. Advances in modelling subglacial lakes and their interaction with the Antarctic ice sheet. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, 20140296.CrossRefGoogle ScholarPubMed
Pollett, A., Hasterok, D., Raimondo, T., Halpin, J.A., Hand, M., Bendall, B. & McLaren, S. 2019. Heat flow in southern Australia and connections with East Antarctica. Geochemistry, Geophysics, Geosystems, 20, 53525370.CrossRefGoogle Scholar
Rignot, E. 2019. MEaSUREs phase map of Antarctic ice velocity, version 1. Retrieved from https://nsidc.org/data/nsidc-0754/versions/1#anchor-1Google Scholar
Robin, G.d.Q., Swithinbank, C. & Smith, B. 1970. Radio echo exploration of the Antarctic ice sheet. International Symposium on Antarctic Glaciological Exploration (ISAGE), 3, 97115.Google Scholar
Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M. & Chica-Rivas, M. 2015. Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804818.CrossRefGoogle Scholar
Schroeder, D.M., Blankenship, D.D., Young, D.A. & Quartini, E. 2014. Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet. Proceedings of the National Academy of Sciences of the United States of America, 111, 90709072.CrossRefGoogle ScholarPubMed
Shapiro, N. & Ritzwoller, M. 2004. Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica. Earth and Planetary Science Letters, 223, 213224.CrossRefGoogle Scholar
Shen, W., Wiens, D.A., Lloyd, A.J. & Nyblade, A.A. 2020. A geothermal heat flux map of Antarctica empirically constrained by seismic structure. Geophysical Research Letters, 47, 10.1029/2020GL086955.CrossRefGoogle Scholar
Siegert, M.J. 2000. Antarctic subglacial lakes. Earth-Science Reviews, 50, 2950.CrossRefGoogle Scholar
Siegert, M.J., Ellis-Evans, J.C., Tranter, M., Mayer, C., Petit, J.-R., Salamatin, A. & Priscu, J.C. 2001. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature, 414, 603609.CrossRefGoogle ScholarPubMed
Siegert, M.J., Kulessa, B., Bougamont, M., Christoffersen, P., Key, K., Andersen, K.R., et al. 2017. Antarctic subglacial groundwater: a concept paper on its measurement and potential influence on ice flow. Special Publication of the Geological Society of London, No. 461, 197213.CrossRefGoogle Scholar
Stål, T., Reading, A.M., Halpin, J.A. & Whittaker, J.M. 2021. Antarctic geothermal heat flow model: Aq1. Geochemistry, Geophysics, Geosystems, 22, 10.1029/2020GC009428.CrossRefGoogle Scholar
Stearns, L.A., Smith, B.E. & Hamilton, G.S. 2008. Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nature Geoscience, 1, 827831.CrossRefGoogle Scholar
Thatje, S., Brown, A. & Hillenbrand, C.-D. 2019. Prospects for metazoan life in sub-glacial Antarctic lakes: the most extreme life on Earth? International Journal of Astrobiology, 18, 416419.CrossRefGoogle Scholar
Van der Veen, C.J., Leftwich, T., von Frese, R., Csatho, B.M. & Li, J. 2007. Subglacial topography and geothermal heat flux: potential interactions with drainage of the Greenland ice sheet. Geophysical Research Letters, 34, 10.1029/2007GL030046.CrossRefGoogle Scholar
Van Wessem, J.M., Reijmer, C.H., Lenaerts, J.T.M., van de Berg, W.J., van den Broeke, M.R. & van Meijgaard, E. 2014. Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica. The Cryosphere, 8, 125135.CrossRefGoogle Scholar
Willcocks, S., Hasterok, D. & Jennings, S. 2021. Thermal refraction: implications for subglacial heat flux. Journal of Glaciology, 67, 875884.CrossRefGoogle Scholar
Wolff, E. & Doake, C. 1986. Implications of the form of the flow law for vertical velocity and age–depth profiles in polar ice. Journal of Glaciology, 32, 366370.CrossRefGoogle Scholar
Wright, A. & Siegert, M. 2012. A fourth inventory of Antarctic subglacial lakes. Antarctic Science, 24, 659664.CrossRefGoogle Scholar
Wright, A., Young, D., Roberts, J., Schroeder, D., Bamber, J., Dowdeswell, J., et al. 2012. Evidence of a hydrological connection between the ice divide and ice sheet margin in the Aurora Subglacial Basin, East Antarctica. Journal of Geophysical Research - Earth Surface, 117, 10.1029/2011JF002066.CrossRefGoogle Scholar
Supplementary material: File

Willcocks and Hasterok supplementary material

Willcocks and Hasterok supplementary material 1

Download Willcocks and Hasterok supplementary material(File)
File 14.1 KB
Supplementary material: PDF

Willcocks and Hasterok supplementary material

Willcocks and Hasterok supplementary material 2

Download Willcocks and Hasterok supplementary material(PDF)
PDF 2.5 MB