Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T10:49:17.928Z Has data issue: false hasContentIssue false

Can classic biological invasion hypotheses be applied to reported cases of non-native terrestrial species in the Maritime Antarctic?

Published online by Cambridge University Press:  04 April 2022

Luis R. Pertierra*
Affiliation:
BIOMA Lab, Universidad Rey Juan Carlos, C/Tulipan, S/N, 28933 Móstoles, Spain
Peter Convey
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK Department of Zoology, University of Johannesburg, Auckland Park 2006, South Africa
Pablo Ariel Martinez
Affiliation:
Federal University of Sergipe, Av. Marechal Rondon, s/n - Jardim Rosa Elze, São Cristóvão - SE, 49100-000 São Cristóvão, Brazil
Pablo Tejedo
Affiliation:
Universidad Autónoma de Madrid, C/Darwin, 2, 28049 Madrid, Spain
Javier Benayas
Affiliation:
Universidad Autónoma de Madrid, C/Darwin, 2, 28049 Madrid, Spain
Miguel Ángel Olalla-Tárraga
Affiliation:
BIOMA Lab, Universidad Rey Juan Carlos, C/Tulipan, S/N, 28933 Móstoles, Spain

Abstract

Understanding the success factors underlying each step in the process of biological invasion provides a robust foundation upon which to develop appropriate biosecurity measures. Insights into the processes occurring can be gained through clarifying the circumstances applying to non-native species that have arrived, established and, in some cases, successfully spread in terrestrial Antarctica. To date, examples include a small number of vascular plants and a greater diversity of invertebrates (including Diptera, Collembola, Acari and Oligochaeta), which share features of pre-adaptation to the environmental stresses experienced in Antarctica. In this synthesis, we examine multiple classic invasion science hypotheses that are widely considered to have relevance in invasion ecology and assess their utility in understanding the different invasion histories so far documented in the continent. All of these existing hypotheses appear relevant to some degree in explaining invasion processes in Antarctica. They are also relevant in understanding failed invasions and identifying barriers to invasion. However, the limited number of cases currently available constrains the possibility of establishing patterns and processes. To conclude, we discuss several new and emerging confirmatory methods as relevant tools to test and compare these hypotheses given the availability of appropriate sample sizes in the future.

Type
Biological Sciences
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of Antarctic Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aikio, S., Duncan, R.P. & Hulme, P.E. 2010. Lag-phases in alien plant invasions: separating the facts from the artefacts. Oikos, 119, 370378.CrossRefGoogle Scholar
Allegrucci, G., Carchini, G., Convey, P. & Sbordoni, V. 2012. Evolutionary geographic relationships among chironomid midges from Maritime Antarctic and sub-Antarctic islands. Biological Journal of the Linnean Society, 106, 258274.CrossRefGoogle Scholar
Atala, C., Pertierra, L.R., Aragón, P., Carrasco-Urra, F., Lavín, P., Gallardo-Cerda, J., et al. 2019. Positive interactions among native and invasive vascular plants in Antarctica: assessing the ‘nurse effect’ at different spatial scales. Biological Invasions, 21, 28192836.CrossRefGoogle Scholar
Bahrndorff, S., Loeschcke, V., Pertoldi, C., Beier, C. & Holmstrup, M. 2009. The rapid cold hardening response of Collembola is influenced by thermal variability of the habitat. Functional Ecology, 23, 340347.CrossRefGoogle Scholar
Baird, H.P., Moon, K.L., Janion-Scheepers, C. & Chown, S.L. 2020. Springtail phylogeography highlights biosecurity risks of repeated invasions and intraregional transfers among remote islands. Evolutionary Applications, 13, 960973.CrossRefGoogle ScholarPubMed
Baird, H.P., Janion-Scheepers, C., Stevens, M.I., Leihy, R.I. & Chown, S.L. 2019. The ecological biogeography of indigenous and introduced Antarctic springtails. Journal of Biogeography, 46, 19591973.CrossRefGoogle Scholar
Bartlett, J.C. 2019. Ecophysiology and ecological impacts of an Antarctic invader: The chironomid Eretmoptera murphyi. Doctoral thesis, University of Birmingham, 276 pp.Google Scholar
Bartlett, J.C., Convey, P. & Hayward, S.A.L. 2019a. Life cycle and phenology of an Antarctic invader - the flightless chironomid midge, Eretmoptera murphyi. Polar Biology, 42, 115130.CrossRefGoogle Scholar
Bartlett, J.C., Convey, P. & Hayward, S.A.L. 2019b. Not so free range? Oviposition microhabitat and egg clustering affects Eretmoptera murphyi (Diptera: Chironomidae) reproductive success. Polar Biology, 42, 271284.CrossRefGoogle Scholar
Bartlett, J.C., Convey, P., Pertierra, L.R. & Hayward, S.A.L. 2020. An insect invasion of Antarctica: the past, present and future distribution of Eretmoptera murphyi (Diptera, Chironomidae) on Signy Island. Insect Conservation and Diversity, 13, 7790.CrossRefGoogle Scholar
Bergstrom, D.M. & Chown, S.L. 1999. Life at the front: history, ecology and change on Southern Ocean islands. Trends in Ecology and Evolution, 14, 472477.CrossRefGoogle ScholarPubMed
Blackburn, T.M., Prowse, T.A.A., Lockwood, J.L. & Cassey, P. 2013. Propagule pressure as a driver of establishment success in deliberately introduced exotic species: fact or artefact? Biological Invasions, 15, 14591469.CrossRefGoogle Scholar
Blackburn, T.M., Pyšek, P., Bacher, S., Carlton, J.T., Duncan, R.P., Jarošík, V., et al. 2011. A proposed unified framework for biological invasions. Trends in Ecology and Evolution, 26, 333339.CrossRefGoogle ScholarPubMed
Block, W., Burn, A.J. & Richard, K.J. 1984. An insect introduction to the maritime Antarctic. Biological Journal of the Linnean Society, 23, 3339.CrossRefGoogle Scholar
Bokhorst, S., Convey, P., Casanova-Katny, A. & Aerts, R. 2021. Warming impacts on potential germination of non-native plants on the Antarctic Peninsula. Communications Biology, 4, 403.CrossRefGoogle ScholarPubMed
Bomford, M., Kraus, F., Barry, S.C. & Lawrence, E. 2008. Predicting establishment success for alien reptiles and amphibians: a role for climate matching. Biological Invasions, 11, 713.CrossRefGoogle Scholar
Braun, C., Mustafa, O., Nordt, A., Pfeiffer, S. & Peter, H.-U. 2012. Environmental monitoring and management proposals for the Fildes Region, King George Island, Antarctica. Polar Research, 31, 18206.CrossRefGoogle Scholar
Burton-Johnson, A., Black, M., Fretwell, P.T. & Kaluza-Gilbert, J. 2016. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. The Cryosphere, 10, 16651677.CrossRefGoogle Scholar
Callaway, R.M. & Ridenour, W.M. 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment, 2, 436443.CrossRefGoogle Scholar
Catford, J.A., Jansson, R. & Nilsson, C. 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity and Distributions, 15, 2240.CrossRefGoogle Scholar
Chapuis, J.-L., Frenot, Y. & Lebouvier, M. 2004. Recovery of native plant communities after eradication of rabbits from the subantarctic Kerguelen Islands, and influence of climate change. Biological Conservation, 117, 167-179.CrossRefGoogle Scholar
Chown, S.L. & Avenant, N. 1992. Status of Plutella xylostella at Marion Island six years after its colonisation. South African Journal of Antarctic Research, 22, 3740Google Scholar
Chown, S.L., Huiskes, A.H.L., Gremmen, N.J.M., Lee, J.E., Terauds, A., Crosbie, K., et al. 2012. Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 109, 49384943.CrossRefGoogle ScholarPubMed
Chown, S.L., Brooks, C.M., Terauds, A., Le Bohec, C., van Klaveren-Impagliazzo, C., whittington, j.d., et al. 2017. Antarctica and the strategic plan for biodiversity. PLoS Biology, 15, e2001656.CrossRefGoogle ScholarPubMed
Chwedorzewska, K.J. & Bernarek, P.T. 2012. Genetic and epigenetic variation in a cosmopolitan grass Poa annua from Antarctic and Polish populations. Polish Polar Research, 33, 6380.CrossRefGoogle Scholar
Chwedorzewska, K.J., Małgorzata Korczak-Abshire, M., Olech, M., Lityńska-Zając, M. & Augustyniuk-Kramm, A. 2013. Alien invertebrates transported accidentally to the Polish Antarctic Station in cargo and on fresh foods. Polish Polar Research, 34, 5566.CrossRefGoogle Scholar
Colautti, R.I., Grigorovich, I.A. & MacIsaac, H.J. 2006. Propagule pressure: a null model for biological invasions. Biological Invasions, 8, 10231037.CrossRefGoogle Scholar
Colautti, R.I., Ricciardi, A., Grigorovich, I.A. & MacIsaac, H.J. 2004. Is invasion success explained by the enemy release hypothesis? Ecology Letters, 7, 721733.CrossRefGoogle Scholar
Contador, T., Gañan, M., Bizama, G., Fuentes-Jaque, G., Morales, L., Rendoll, J., et al. 2020. Assessing distribution shifts and ecophysiological characteristics of the only Antarctic winged midge under climate change scenarios. Scientific Reports, 10, 9087.CrossRefGoogle ScholarPubMed
Convey, P. 1996. The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biological Reviews, 71, 191225.CrossRefGoogle Scholar
Convey, P. 2007. Influences on and origins of terrestrial biodiversity of the sub-Antarctic islands. Papers and Proceedings of the Royal Society of Tasmania, 141, 8393.CrossRefGoogle Scholar
Convey, P. & Block, W. 1996. Antarctic dipterans: ecology, physiology and distribution. European Journal of Entomology, 93, 113.Google Scholar
Convey, P. & Peck, L.S. 2019. Antarctic environmental change and biological responses. Science Advances, 5, 0888.CrossRefGoogle ScholarPubMed
Convey, P. & Quintana, R.D. 1997. The terrestrial arthropod fauna of Cierva Point SSSI, Danco Coast, northern Antarctic Peninsula. European Journal of Soil Biology, 33, 1929.Google Scholar
Convey, P., Block, W. & Peat, H.J. 2003. Soil arthropods as indicators of water stress in Antarctic terrestrial habitats? Global Change Biology, 9, 17181730.CrossRefGoogle Scholar
Convey, P., Greenslade, P., Arnold, R. & Block, W. 1999. Collembola of sub-Antarctic South Georgia. Polar Biology, 22, 16.CrossRefGoogle Scholar
Convey, P., Key, R.S. & Key, R.J.D. 2010. The establishment of a new ecological guild of pollinating insects on sub-Antarctic South Georgia. Antarctic Science, 22, 508512.CrossRefGoogle Scholar
Convey, P., Coulson, S.J., Worland, M.R. & Sjöblom, A. 2018. The importance of understanding annual and shorter-term temperature patterns and variation in the upper layers of polar soils for terrestrial biota. Polar Biology, 41, 15871605.CrossRefGoogle Scholar
Convey, P., Key, R.S., Key, R.J.D, Belchier, M. & Waller, C.L. 2011. Recent range expansions in non-native predatory carabid beetles on sub-Antarctic South Georgia. Polar Biology, 34, 597602.CrossRefGoogle Scholar
Convey, P., Abbandonato, H., Bergan, F., Beumer, L.T., Biersma, E.M., Bråthen, V.S., et al. 2014. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates. Journal of Thermal Biology, 54, 111117.CrossRefGoogle ScholarPubMed
Coulson, S.J., Convey, P., Aakra, K., Aarvik, L., Ávila-Jiménez, M.L., Babenko, A., et al. 2014. The terrestrial and freshwater invertebrate biodiversity of the archipelagos of the Barents Sea; Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biology and Biochemistry, 68, 440470.CrossRefGoogle Scholar
Corte, A. 1961. La primera fanerógama adventicia hallada en el continente antártico. Contribución del Instituto Antártico Argentino, 62, 316.Google Scholar
Dahl, M.T., Yoccoz, N.G., Aakra, K. & Cousin, S. 2018. The Araneae of Svalbard: the relationships between specific environmental factors and spider assemblages in the High Arctic. Polar Biology, 41, 839853.CrossRefGoogle Scholar
Dionne, J., Castonguay, Y., Nadeau, P. & Desjardins, Y. 2001. Freezing tolerance and carbohydrate changes during cold acclimation of green-type annual bluegrass (Poa annua L.) ecotypes. Crop Science, 41, 443451.CrossRefGoogle Scholar
Dózsa-Farkas, K. & Convey, P. 1997. Christensenia, a new terrestrial enchytraeid genus from Antarctica. Polar Biology, 17, 482486.CrossRefGoogle Scholar
Duffy, G.A., Coetzee, B.W.T., Latombe, G., Akerman, A.H., McGeoch, M.A. & Chown, S.L. 2017. Barriers to globally invasive species are weakening across the Antarctic. Diversity and Distributions, 23, 982996.CrossRefGoogle Scholar
Dyer, E.E., Franks, V., Cassey, P., Collen, B., Cope, R.C., Jones, K.E., et al. 2016. A global analysis of the determinants of alien geographical range size in birds. Global Ecology and Biogeography, 25, 13461355.CrossRefGoogle Scholar
Edwards, J.A. 1980. An experimental introduction of vascular plants from South Georgia to the Maritime Antarctic. British Antarctic Survey Bulletin, 49, 7380.Google Scholar
Enders, M., Havemann, F., Ruland, F., Bernard-Verdier, M., Catford, J.A., Gómez-Aparicio, L., et al. 2020. A conceptual map of invasion biology: Integrating hypotheses into a consensus network. Global Ecology and Biogeography, 29, 978991.CrossRefGoogle ScholarPubMed
Enríquez, N., Pertierra, L.R., Tejedo, P., Benayas, J., Greenslade, P. & Luciáñez, M.J. 2019. The importance of long-term surveys on species introductions in Maritime Antarctica: first detection of Ceratophysella succinea (Collembola: Hypogastruridae). Polar Biology, 42, 10471051.CrossRefGoogle Scholar
Frenot, Y., Chown, S.L., Whinam, J., Selkirk, P.M., Convey, P., Skotnicki, M. & Bergstrom, D.M. 2005. Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews, 80, 4572.CrossRefGoogle ScholarPubMed
Fritz, S.A. & Purvis, A. 2010. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conservation Biology, 24, 10421051.CrossRefGoogle ScholarPubMed
Galera, H., Rudak, A., Czyż, E.A., Chwedorzewska, K.J., Znój, A. & Wódkiewicz, M. 2019. The role of the soil seed store in the survival of an invasive population of Poa annua at Point Thomas Oasis, King George Island, maritime Antarctica. Global Ecology and Conservation, 19, 00679.CrossRefGoogle Scholar
Gilbert, A.A. & Fraser, L.H. 2013. Effects of salinity and clipping on biomass and competition between a halophyte and a glycophyte. Plant Ecology, 214, 433442.CrossRefGoogle Scholar
Gonzalez-Voyer, A. & non Hardenberg, A. 2014. An introduction to phylogenetic path analysis. In Garamszegi, L.Z., ed. Modern phylogenetic comparative methods and their application in evolutionary biology. Berlin: Springer, 201229.CrossRefGoogle Scholar
Greenslade, P. & Convey, P. 2012. Exotic Collembola on subantarctic islands: pathways, origins and biology. Biological Invasions, 14, 405417.CrossRefGoogle Scholar
Greenslade, P., Potapov, M., Russell, D. & Convey, P. 2012. Global Collembola on Deception Island. Journal of Insect Science, 12, 111.CrossRefGoogle ScholarPubMed
Grime, J.P. 2006. Plant strategies, vegetation processes and ecosystem properties, 2nd edition. Hoboken, NJ: Wiley, 464 pp.Google Scholar
Gudleifsson, B.E., Andrews, C.J. & Bjornsson, H. 1986. Cold hardiness and ice tolerance of pasture grasses grown and tested in controlled environments. Canadian Journal of Plant Science, 66, 601608.CrossRefGoogle Scholar
Hack, W.H. 1949. Nota sobre un colémbolo de la Antartida Argentina Achorutes viaticus Tullberg. Notas del Museo de la Plata, 14, 211212.Google Scholar
Hågvar, S. 2010. A review of Fennoscandian arthropods living on and in snow. European Journal of Entomology, 107, 281298.CrossRefGoogle Scholar
Hänel, C. & Chown, S.L. 1998. The impact of a small, alien invertebrate on a sub-Antarctic terrestrial ecosystem: Limnophyes minimus (Diptera, Chironomidae) at Marion Island. Polar Biology, 20, 99106.Google Scholar
Hart, I.B. 2006. Whaling in the Falkland Islands dependencies 1904–1931. A history of shore and bay-based whaling in the Antarctic. Newton Saint Margarets: Pequena, 363 pp.Google Scholar
Hawes, T.C., Worland, M.R., Bale, J.S. & Convey, P. 2008. Rafting in Antarctic Collembola. Journal of Zoology, 274, 4450.CrossRefGoogle Scholar
Hawes, T.C., Worland, M.R., Convey, P. & Bale, J.S. 2007. Aerial dispersal of springtails on the Antarctic Peninsula: implications for local distribution and demography. Antarctic Science, 19, 310.CrossRefGoogle Scholar
Hendrickson, J.R. & Lund, C. 2010. Plant community and target species affect responses to restoration strategies. Rangeland Ecology & Management, 63, 435442.CrossRefGoogle Scholar
Hobbs, R.J. & Huenneke, L.F. 1992. Disturbance, diversity, and invasion: implications for conservation. Conservation Biology, 6, 324337.CrossRefGoogle Scholar
Hogg, I.D., Craig Cary, S., Convey, P., Newsham, K.K., O'Donnell, A.G., Adams, B.J., et al. 2006. Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biology and Biochemistry, 38, 30353040.CrossRefGoogle Scholar
Houghton, M., McQuillan, P., Bergstrom, D.M., Frost, L., Van Den Hoff, J. & Shaw, J.D. 2016. Pathways of alien invertebrate transfer to the Antarctic region. Polar Biology, 39, 2333.CrossRefGoogle Scholar
Hughes, K.A. & Convey, P. 2010. The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Global Environmental Change, 20, 96112.CrossRefGoogle Scholar
Hughes, K.A. & Convey, P. 2012. Determining the native/non-native status of newly discovered terrestrial and freshwater species in Antarctica - current knowledge, methodology and management action. Journal of Environmental Management, 93, 5266.CrossRefGoogle ScholarPubMed
Hughes, K.A. & Convey, P. 2014. Alien invasions in Antarctica - is anyone liable? Polar Research, 33, 22103.CrossRefGoogle Scholar
Hughes, K.A. & Convey, P. 2020. Implications of the COVID-19 pandemic for Antarctica. Antarctic Science, 32, 426439.CrossRefGoogle Scholar
Hughes, K.A., Cowan, D.A. & Wilmotte, A. 2015a. Protection of Antarctic microbial communities - ‘out of sight, out of mind'. Frontiers in Microbiology, 6, 00151.CrossRefGoogle Scholar
Hughes, K.A., Greenslade, P. & Convey, P. 2017. The fate of the non-native Collembolon, Hypogastrura viatica, at the southern extent of its introduced range in Antarctica. Polar Biology, 40, 21272131.CrossRefGoogle Scholar
Hughes, K.A., Convey, P., Maslen, N.R. & Smith, R.I.L. 2010. Accidental transfer of non-native soil organisms into Antarctica on construction vehicles. Biological Invasions, 12, 875891.CrossRefGoogle Scholar
Hughes, K.A., Pertierra, L.R., Molina-Montenegro, M.A. & Convey, P. 2015b. Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodiversity and Conservation, 24, 10311055.CrossRefGoogle Scholar
Hughes, K.A., Worland, M.R., Thorne, M.A.S. & Convey, P. 2013. The non-native chironomid Eretmoptera murphyi in Antarctica: erosion of the barriers to invasion. Biological Invasions, 15, 269281.CrossRefGoogle Scholar
Hughes, K.A., Convey, P., Pertierra, L.R., Vega, G.C., Aragón, P. & Olalla-Tárraga, M.Á. 2019. Human-mediated dispersal of terrestrial species between Antarctic biogeographic regions: a preliminary risk assessment. Journal of Environmental Management, 232, 7389.CrossRefGoogle ScholarPubMed
Hughes, K.A., Pescott, O.L., Peyton, J., Adriaens, T., Cottier-Cook, E.J., Key, G., et al. 2020. Invasive non-native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region. Global Change Biology, 26, 27022716.CrossRefGoogle Scholar
Jeschke, J.M. 2008. Across islands and continents, mammals are more successful invaders than birds. Diversity and Distributions, 14, 913916.CrossRefGoogle Scholar
Jeschke, J.M. 2014. General hypotheses in invasion ecology. Diversity and Distributions, 20, 12291234.CrossRefGoogle Scholar
Jeschke, J.M., Aparicio, L.G., Haider, S., Heger, T., Lortie, C. J., Pyšek, P. & Strayer, D. 2012. Support for major hypotheses in invasion biology is uneven and declining. NeoBiota, 14, 120.CrossRefGoogle Scholar
Jiménez-Valverde, A., Peterson, A.T., Soberón, J., Overton, J.M., Aragón, P. & Lobo, J.M. 2011. Use of niche models in invasive species risk assessments. Biological Invasions, 13, 27852797.CrossRefGoogle Scholar
Krivolutsky, D.A., Lebedeva, N.V. & Gavrilo, M.V. 2004. Soil microarthropods in the feathers of Antarctic birds. Doklady Biological Sciences, 397, 342345.CrossRefGoogle ScholarPubMed
Lebouvier, M., Lambret, P., Garnier, A., Convey, P., Frenot, Y., Vernon, P. & Renault, D. 2020. Spotlight on the invasion of a carabid beetle on an oceanic island over a 105-year period. Scientific Reports, 10, 17103.CrossRefGoogle Scholar
Leihy, R.I., Duffy, G.A. & Chown, S.L. 2018. Species richness and turnover among indigenous and introduced plants and insects of the Southern Ocean Islands. Ecosphere, 9, 02358.CrossRefGoogle Scholar
Leihy, R.I., Coetzee, B.W.T., Morgan, F., Raymond, B., Shaw, J.D., Terauds, A., et al. 2020. Antarctica's wilderness fails to capture continent's biodiversity. Nature, 583, 567571.CrossRefGoogle ScholarPubMed
Liebhold, A.M., Yamanaka, T., Roques, A., Augustin, S., Chown, S.L., Brockerhoff, E.G. & Pyšek, P. 2018. Plant diversity drives global patterns of insect invasions. Scientific Reports, 8, 12095.CrossRefGoogle ScholarPubMed
Liu, W.P.A., Phillips, L.M., Terblanche, J.S., Janion-Scheepers, C. & Chown, S.L. 2020. Strangers in a strange land: globally unusual thermal tolerance in Collembola from the Cape Floristic Region. Functional Ecology, 34, 16011612.CrossRefGoogle Scholar
Lockwood, J.L., Cassey, P. & Blackburn, T.M. 2009. The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Diversity and Distributions, 15, 904910.CrossRefGoogle Scholar
Longton, R.E. 1966. Alien vascular plants on Deception I. South Shetland Is. British Antarctic Survey Bulletin, 9, 5560.Google Scholar
Mairal, M., Chown, S.L., Shaw, J.D., Chala, D., Chau, J.H., Hui, C., et al. 2021. Human activity strongly influences genetic dynamics of the most widespread invasive plant in the sub-Antarctic. Molecular Ecology, 10.1111/mec.16045.Google Scholar
Malfasi, F., Convey, P., Zaccara, S. & Cannone, N. 2020. Establishment and eradication of an alien plant species in Antarctica: Poa annua at Signy I. Biodiversity and Conservation, 29, 173186.CrossRefGoogle Scholar
Marshall, W. 1996. Biological particles over Antarctica. Nature, 383, 680.CrossRefGoogle Scholar
March-Salas, M. & Pertierra, L.R. 2020. Warmer and less variable temperatures favour an accelerated plant phenology of two invasive weeds across sub-Antarctic Macquarie Island. Austral Ecology, 45, 572585.CrossRefGoogle Scholar
Maturana, C.S., Rosenfeld, S., Naretto, J., Convey, P. & Poulin, E. 2019. Distribution of the genus Boeckella (Crustacea, Copepoda, Calanoida, Centropagidae) at high latitudes in South America and the main Antarctic biogeographic regions. Zookeys, 854, 115.CrossRefGoogle ScholarPubMed
McGeoch, M.A., Shaw, J.D., Terauds, A., Lee, J.E. & Chown, S.L. 2015. Monitoring biological invasion across the broader Antarctic: a baseline and indicator framework. Global Environmental Change, 32, 108125.CrossRefGoogle Scholar
Molina-Montenegro, M.A., Bergstrom, D.M., Chwedorzewska, K.J., Convey, P. & Chown, S.L. 2019. Increasing impacts by Antarctica's most widespread invasive plant species as result of direct competition with native vascular plants. NeoBiota, 51, 37250.CrossRefGoogle Scholar
Molina-Montenegro, M.A., Carrasco-Urra, F., Acuña-Rodriguez, I., Oses, R., Torres-Diaz, C., & Chwedorzewska, K.J. 2014. Assessing the importance of human activities for the establishment of the invasive Poa annua in Antarctica. Polar Research, 33, 21425.CrossRefGoogle Scholar
Molina-Montenegro, M.A., Carrasco-Urra, F., Rodrigo, C. Convey, P., Valladares, F. & Gianoli, E. 2012. Occurrence of the non-native annual bluegrass on the Antarctic mainland and its negative effects on native plants. Conservation Biology, 26, 717723.CrossRefGoogle ScholarPubMed
Molina-Montenegro, M.A., Galleguillos, C., Oses, R., Acuña-Rodríguez, I.S., Lavín, P., Gallardo-Cerda, J., et al. 2016. Adaptive phenotypic plasticity and competitive ability deployed under a climate change scenario may promote the invasion of Poa annua in Antarctica. Biological Invasions, 18, 603618.CrossRefGoogle Scholar
Moore, P.D. 2002. Biogeography: springboards for springtails. Nature, 418, 381381.CrossRefGoogle ScholarPubMed
Olalla-Tárraga, M.Á., Torres-Romero, E.J., Amado, T.F. & Martinez, P.A. 2015. Phylogenetic path analysis reveals the importance of niche-related biological traits on geographic range size in mammals. Global Change Biology, 21, 31943196.CrossRefGoogle ScholarPubMed
Olalla-Tárraga, M.Á., Amado, T.F., Bini, L.M., Martínez, P.A., Morales-Castilla, I., Torres-Romero, E.J. & Villalobos, F. 2019. Biological traits, phylogeny and human footprint signatures on the geographical range size of passerines (Order Passeriformes) worldwide. Global Ecology and Biogeography, 28, 11831194.Google Scholar
Olech, M. & Chwedorzewska, K.J. 2011. Short note: the first appearance and establishment of an alien vascular plant in natural habitats on the forefield of a retreating glacier in Antarctica. Antarctic Science, 23, 153154.CrossRefGoogle Scholar
Parnikoza, I., Miryuta, N., Ozheredova, I., Kozeretska, I., Smykla, J., Kunakh, V. & Convey, P. 2015. Comparative analysis of Deschampsia antarctica Desv. population adaptability in the natural environment of Admiralty Bay (King George Island, Maritime Antarctic). Polar Biology, 38, 14011411.CrossRefGoogle Scholar
Pearce, D.A., Alekhina, I., Terauds, A., Wilmotte, A., Quesada, A., Edwards, A., et al. 2016. Aerobiology over Antarctica - a new initiative for atmospheric ecology. Frontiers in Microbiology, 7, 16.CrossRefGoogle Scholar
Pertierra, L.R., Escribano-Alvarez, P. & Olalla-Tarraga, M.A. 2021. Cold tolerance is similar but heat tolerance is higher in the alien insect Trichocera maculipennis than in the native Parochlus steinenii in Antarctica. Polar Biology, 44, 12031208.CrossRefGoogle Scholar
Pertierra, L.R., Lara, F., Benayas, J. & Hughes, K.A. 2013. Poa pratensis L., current status of the longest-established non-native vascular plant in the Antarctic. Polar Biology, 36, 14731481.CrossRefGoogle Scholar
Pertierra, L.R., Hughes, K.A., Vega, G.C. & Olalla-Tárraga, M.Á. 2017a. High resolution spatial mapping of human footprint across Antarctica and its implications for the strategic conservation of avifauna. PLoS ONE, 12, e0168280.CrossRefGoogle Scholar
Pertierra, L.R., Aragón, P., Shaw, J.D., Bergstrom, D.M., Terauds, A. & Olalla-Tárraga, M.Á. 2017b. Global thermal niche models of two European grasses show high invasion risks in Antarctica. Global Change Biology, 23, 28632873.CrossRefGoogle Scholar
Pertierra, L.R., Hughes, K.A., Tejedo, P., Enríquez, N., Luciañez, M.J. & Benayas, J. 2017c. Eradication of the non-native Poa pratensis colony at Cierva Point, Antarctica: a case study of international cooperation and practical management in an area under multi-party governance. Environmental Science & Policy, 69, 5056.CrossRefGoogle Scholar
Pertierra, L.R., Bartlett, J.C., Duffy, G.A., Vega, G.C., Hughes, K.A., Hayward, S.A.L., et al. 2020. Combining correlative and mechanistic niche models with human activity data to elucidate the invasive potential of a sub-Antarctic insect. Journal of Biogeography, 47, 658673.CrossRefGoogle Scholar
Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C. & Guisan, A. 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 13441348.CrossRefGoogle ScholarPubMed
Phillips, L.M., Aitkenhead, I., Janion-Scheepers, C., King, C.K., McGeoch, M.A., Nielsen, U.N., et al. 2020. Basal tolerance but not plasticity gives invasive springtails the advantage in an assemblage setting. Conservation Physiology, 8, 049.CrossRefGoogle ScholarPubMed
Potocka, M. & Krzemińska, E. 2018. Trichocera maculipennis (Diptera) - an invasive species in Maritime Antarctica. PeerJ, 6, 5408.CrossRefGoogle ScholarPubMed
Pugh, P.J.A. 2008. Non-indigenous Acari of Antarctica and the sub-Antarctic islands. Zoological Journal of the Linnean Society, 110, 207217.CrossRefGoogle Scholar
Pyšek, P., Bacher, S., Kühn, I., Novoa, A., Catford, J.A., Hulme, P.E., et al. 2020. Macroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context dependence in biological invasions. NeoBiota, 62, 407461.CrossRefGoogle Scholar
Remedios-De León, M., Hughes, K.A., Morelli, E. & Convey, P. 2021. International response under the Antarctic Treaty System to the establishment of a non-native fly in Antarctica. Environmental Management, 67, 10431059.CrossRefGoogle Scholar
Richardson, D.M., Pyšek, P., Rejmánek, M., Barbour, M.G., Panetta, F.D. & West, C.J. 2000. Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions, 6, 93107.CrossRefGoogle Scholar
Rosa, L.H., Pinto, O.H.B., Convey, P., Carvalho-Silva, M., Rosa, C.A. & Câmara, P.E.A.S. 2020. DNA metabarcoding to assess the diversity of airborne fungi present over Keller Peninsula, King George Island, Antarctica. Microbial Ecology, 82, 165172.CrossRefGoogle Scholar
Russell, D., Hohberg, K., Potapov, M.K., Bruckner, A., Otte, A. & Christian, A. 2014. Native terrestrial invertebrate fauna from the northern Antarctic peninsula: new records, state of current knowledge and ecological preferences - summary of a German federal study. Soil Organisms, 86, 158.Google Scholar
Salmon, S., Ponge, J.F., Gachet, S., Deharveng, L., Lefebvre, N. & Delabrosse, F. 2014. Linking species, traits and habitat characteristics of Collembola at European scale. Soil Biology and Biochemistry, 75, 7385.CrossRefGoogle Scholar
Simberloff, D. & Von Holle, B. 1999. Positive interactions of nonindigenous species: invasional meltdown? Biological Invasions, 1, 2132.CrossRefGoogle Scholar
Skarżyński, D. 2002. Parthenogenesis in Ceratophysella succinea Gisin, 1949 (Collembola: Hypogastruridae). Polskie Pismo Entomologiczne, 71, 323326.Google Scholar
Smith, R.I.L. 1996. Introduced plants in Antarctica: potential impacts and conservation issues. Conservation Biology, 76, 135146.CrossRefGoogle Scholar
Smith, R.I.L. & Convey, P. 2002. Enhanced sexual reproduction in bryophytes at high latitudes in the Maritime Antarctic. Journal of Bryology, 24, 107117.CrossRefGoogle Scholar
Smith, R.I.L. & Richardson, M. 2011. Fuegian plants in Antarctica: natural or anthropogenically assisted immigrants? Biological Invasions, 13, 15.CrossRefGoogle Scholar
Stohlgren, T.J., Jarnevich, C., Chong, G.W. & Evangelista, P.H. 2006. Scale and plant invasions: a theory of biotic acceptance. Preslia, 78, 405426.Google Scholar
Tejedo, P., Justel, A., Benayas, J., Rico, E., Convey, P. & Quesada, A. 2009. Soil trampling in an Antarctic Specially Protected Area: tools to assess levels of human impact. Antarctic Science, 21, 229236.CrossRefGoogle Scholar
Terauds, A., Chown, S.L., Morgan, F., Peat, H.J., Watts, D.J., Keys, H., et al. 2012. Conservation biogeography of the Antarctic. Diversity and Distributions, 18, 726741.CrossRefGoogle Scholar
Thomas, D.N., Fogg, G., Convey, P., Fritsen, C., Gilli, J.-M., Gradinger, R., et al. 2008. The biology of polar habitats. Oxford: Oxford University Press, 280 pp.Google Scholar
Van der Bijl, W. 2018. phylopath: easy phylogenetic path analysis in R. PeerJ, 6, 4718.CrossRefGoogle ScholarPubMed
Van Kleunen, M., Weber, E. & Fischer, M. 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters, 13, 235245.CrossRefGoogle ScholarPubMed
Vega, G.C., Pertierra, L.R., Benayas, J. & Olalla-Tárraga, M.Á. 2021. Ensemble forecasting of invasion risk for four alien springtail (Collembola) species in Antarctica. Polar Biology, 44, 21512164.CrossRefGoogle Scholar
Volonterio, O., Ponce De León, R., Convey, P. & Krzemińska, E. 2013. First record of Trichoceridae (Diptera) in the Maritime Antarctic. Polar Biology, 36, 11251131.CrossRefGoogle Scholar
von Hardenberg, A. & Gonzalez-Voyer, A. 2013. Disentangling evolutionary cause-effect relationships with phylogenetic confirmatory path analysis. Evolution, 67, 378387.CrossRefGoogle ScholarPubMed
Walter, D.E. 2001. Endemism and cryptogenesis in ‘segmented’ mites: a review of Australian Alicorhagiidae, Terpnacaridae, Oehserchestidae and Grandjeanicidae (Acari: Sarcoptiformes). Australian Journal of Entomology, 40, 207218.CrossRefGoogle Scholar
Walton, K. & Atkinson, R. 1996. Of dogs and men: fifty years in the Antarctic. Foreword by HRH The Prince of Wales, 2nd edition. Malvern Wells: Images Publishing (Malvern), Ltd, 190 pp.Google Scholar
Wauchope, H.S., Shaw, J.D. & Terauds, A. 2019. A snapshot of biodiversity protection in Antarctica. Nature Communications, 10, 946.CrossRefGoogle ScholarPubMed
Williamson, M.H., Brown, K.C., Holdgate, M.W., Kornberg, H.L., Southwood, S.R., Mollison, D., et al. 1986. The analysis and modelling of British invasions. Philosophical Transactions of the Royal Society, B314, 505522.Google Scholar
Worland, M.R. 2010. Eretmoptera murphyi: pre-adapted to survive a colder climate. Physiological Entomology, 35, 140147.CrossRefGoogle Scholar
Worland, M.R. & Block, W. 1986. Survival and water loss in some Antarctic arthropods. Journal of Insect Physiology, 32, 579584.CrossRefGoogle Scholar
Supplementary material: PDF

Pertierra et al. supplementary material

Pertierra et al. supplementary material

Download Pertierra et al. supplementary material(PDF)
PDF 1.5 MB