Hostname: page-component-76c49bb84f-887v8 Total loading time: 0 Render date: 2025-07-04T15:07:03.518Z Has data issue: false hasContentIssue false

How does interaction with LLM powered chatbots shape human understanding of culture? The need for Critical Interactional Competence (CritIC)

Published online by Cambridge University Press:  30 June 2025

David Wei Dai*
Affiliation:
UCL Institute of Education, University College London, London, UK
Hua Zhu
Affiliation:
UCL Institute of Education, University College London, London, UK
Guanliang Chen
Affiliation:
Department of Human Centred Computing, Monash University, Melbourne, VIC, Australia
*
Corresponding author: David Wei Dai; Email: david.dai@ucl.ac.uk

Abstract

Against the proliferation of large language model (LLM) based Artificial Intelligence (AI) products such as ChatGPT and Gemini, and their increasing use in professional communication training, researchers, including applied linguists, have cautioned that these products (re)produce cultural stereotypes due to their training data. However, there is a limited understanding of how humans navigate the assumptions and biases present in the responses of these LLM-powered systems and the role humans play in perpetuating stereotypes during interactions with LLMs. In this article, we use Sequential-Categorial Analysis, which combines Conversation Analysis and Membership Categorization Analysis, to analyze simulated interactions between a human physiotherapist and three LLM-powered chatbot patients of Chinese, Australian, and Indian cultural backgrounds. Coupled with analysis of information elicited from LLM chatbots and the human physiotherapist after each interaction, we demonstrate that users of LLM-powered systems are highly susceptible to becoming interactionally entrenched in culturally essentialized narratives. We use the concepts of interactional instinct and interactional entrenchment to argue that whilst human–AI interaction may be instinctively prosocial, LLM users need to develop Critical Interactional Competence for human–AI interaction through appropriate and targeted training and intervention, especially when LLM-powered tools are used in professional communication training programs.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Allport, G. W. (1954). The Nature of Prejudice. Addison-Wesley.Google Scholar
Amador, L., & Adams, G. (2013). Affiliative behaviors that increase language learning opportunities in infant and adult classrooms: An integrated perspective. In Joaquin, A. & Schumann, J. (Eds.), Exploring the interactional instinct (pp. 133167). Oxford University Press.Google Scholar
ATLAS. (2024). Authentic Teaching and Learning through Adaptive Simulations (ATLAS). Monash University. https://www.monash.edu/education/research/projects/atlasGoogle Scholar
Ayers, J. W., Poliak, A., Dredze, M., Leas, E. C., Zhu, Z., Kelley, J. B., Faix, D. J., Goodman, A. M., Longhurst, C. A., Hogarth, M., & Smith, D. M. (2023). Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Internal Medicine, 183(6), 589596. doi:10.1001/jamainternmed.2023.1838CrossRefGoogle ScholarPubMed
Brandt, A., & Hazel, S. (2025). Towards interculturally adaptive conversational AI. Applied Linguistics Review, 16(2), 775786. doi:10.1515/applirev-2024-0187CrossRefGoogle Scholar
Cornwall, A., & Jewkes, R. (1995). What is participatory research? Social Science & Medicine, 41(12), 16671676. doi:10.1016/0277-9536(95)00127-SCrossRefGoogle ScholarPubMed
Csibra, G., & Gergely, G. (2011). Natural pedagogy as evolutionary adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1567), 11491157. doi:10.1098/rstb.2010.0319CrossRefGoogle ScholarPubMed
Dai, D. W. (2024). Interactional competence for professional communication in intercultural contexts: Epistemology, analytic framework and pedagogy. Language, Culture and Curriculum, 37(4), 435455. doi:10.1080/07908318.2024.2349781CrossRefGoogle Scholar
Dai, D. W., & Davey, M. (2024). On the promise of using membership categorization analysis to investigate interactional competence. Applied Linguistics, 45(4), 573598. doi:10.1093/applin/amad049CrossRefGoogle Scholar
Dai, D. W., Suzuki, S., & Chen, G. (2025). Generative AI for professional communication training in intercultural contexts: Where are we now and where are we heading? Applied Linguistics Review, 16(2), 763774. doi:10.1515/applirev-2024-0184CrossRefGoogle Scholar
Deldjoo, Y. (2023). Fairness of ChatGPT and the role of explainable-guided prompts. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 1322). Springer Nature Switzerland.Google Scholar
Dovidio, J. F., Hewstone, M., Glick, P., & Esses, V. M. (2010). Prejudice, stereotyping and discrimination: theoretical and empirical overview. In Dovidio, J. F., Hewstone, M., Glick, P. & Esses, V. M. (Eds.), The SAGE Handbook of Prejudice, Stereotyping and Discrimination (pp. 328). Sage Publications.CrossRefGoogle Scholar
Enfield, N. J. (2022). Enchrony. Wiley Interdisciplinary Reviews. Cognitive Science, 13(4), e1597. doi:10.1002/wcs.1597CrossRefGoogle ScholarPubMed
Fadel, C., & Black, A. (2025) Does present-day GenAI actually reason? A jagged boundary. Center for Curriculum Redesign, Inc.Google Scholar
Grice, H. P. (1975). Logic and conversation. In Cole, P. & Morgan, J. L. (Eds.), Syntax and semantics: Vol. 3. Speech acts (pp. 4158). Academic Press.Google Scholar
Guo, H., Venkit, P. N., Jang, E., Srinath, M., Zhang, W., Mingole, B., Gupta, V., Varshney, K. R., Sundar, S. S., & Yadav, A. (2024). Hey GPT, Can you be more racist? Analysis from crowdsourced attempts to elicit biased content from generative AI. arXiv:2410.15467. doi:10.48550/arXiv.2410.15467CrossRefGoogle Scholar
Hinton, P. R. (2020). Stereotypes and the Construction of the Social World. Routledge.Google Scholar
Hinton, P. R. (2023). Rethinking stereotypes and norms in intercultural relations. In McConachy, T. & Hinton, P. (Eds.), Negotiating Intercultural Relations: Insights from Linguistics, Psychology, and Intercultural Education (95112). Bloomsbury AcademicGoogle Scholar
Joaquin, A. D. L., & Schumann, J. H. (Eds.) (2013). Exploring the interactional instinct. Oxford University Press.CrossRefGoogle Scholar
Kashima, Y., Lyons, A., & Clark, A. (2013). The maintenance of cultural stereotypes in the conversational retelling of narratives. Asian Journal of Social Psychology, 16(1), 6070. doi:10.1111/ajsp.12004CrossRefGoogle Scholar
Keel, S. (2016). Socialization: Parent-child interaction in everyday life. Routledge.CrossRefGoogle Scholar
Kennedy, B., Tyson, A., & Saks, E. (2023, February 15 ). Public awareness of artificial intelligence in everyday activities: Limited enthusiasm in U.S. over AI’s growing influence in daily life. Pew Research Center. https://www.pewresearch.org/science/2023/02/15/public-awareness-of-artificial-intelligence-in-everyday-activities/ (accessed on 23rd April, 2025).Google Scholar
Lee, N., Mikesell, L., Joaquin, A. D. L., Mates, A. W., & Schumann, J. H. (2009). The interactional instinct: The evolution and acquisition of language. Oxford University Press.CrossRefGoogle Scholar
Levinson, S. C. (2006). On the human “interaction engine”. In Enfield, N. J. & Levinson, S. C. (Eds.), Roots of human sociality: Cognition, culture, and interaction (pp. 3969). Oxford.Google Scholar
Li, W., & Lee, T. K. (2024). Transpositioning: Translanguaging and the liquidity of identity. Applied Linguistics, 45(5), 873888. doi:10.1093/applin/amad065Google Scholar
Lippmann, W. (1922). Public Opinion. Harcourt Brace.Google Scholar
McTear, M. F., Callejas, Z., & Griol, D. (2016). The conversational interface: Talking to smart devices. Springer International Publishing.CrossRefGoogle Scholar
Pekarek Doehler, S. (2019). On the nature and the development of L2 interactional competence: State of the art and implications for praxis. In Salaberry, M. R. & Kunitz, S. (Eds.), Teaching and testing L2 interactional competence: Bridging theory and practice (pp. 2559). Routledge.CrossRefGoogle Scholar
Pomerantz, A. (1984). Agreeing and disagreeing with assessments: Some features of preferred/dispreferred turn shapes. In Atkinson, J. M. & Heritage, J. C. (Eds.), Structures of social action (pp. 57101). Cambridge University Press.Google Scholar
Robinson, J. D., Clift, R., Kendrick, K. H., & Raymond, C. W. (Eds.). (2024). The Cambridge handbook of methods in conversation analysis. Cambridge University Press. https://www.cambridge.org/core/books/cambridge-handbook-of-methods-in-conversation-analysis/E6E6C302B82A8CD88A8E3988449796DDCrossRefGoogle Scholar
Schegloff, E. A. (1987). Analyzing single episodes of interaction: An exercise in conversation analysis. Social Psychology Quarterly, 50(2), 101114. doi:10.2307/2786745CrossRefGoogle Scholar
Schegloff, E. A. (2007). Sequence organization in interaction: A primer in conversation analysis. Cambridge University Press.CrossRefGoogle Scholar
Schmid, H. J. (2020). The dynamics of the linguistic system: Usage, conventionalization, and entrenchment. Oxford University Press.CrossRefGoogle Scholar
Schumann, J. (2013). A unified perspective of first and second language acquisition. In Joaquin, A. D. L. & Schumann, J. H. (Eds.), Exploring the interactional instinct: Foundation of human interaction (pp. 114). Oxford Academic. doi:10.1093/acprof:oso/9780199927005.003.0001Google Scholar
Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., & Yao, S. (2023). Reflexion: Language agents with verbal reinforcement learning. Advances in Neural Information Processing Systems, 36, 86348652. doi:10.48550/arXiv.2303.11366Google Scholar
Stamer, T., Steinhäuser, J., & Flägel, K. (2023). Artificial intelligence supporting the training of communication skills in the education of health care professions: Scoping review. Journal of Medical Internet Research, 25, e43311. doi:10.2196/43311CrossRefGoogle ScholarPubMed
Stivers, T., Enfield, N. J., Brown, P., Englert, C., Hayashi, M., Heinemann, T., Hoymann, G., Rossano, F., de Ruiter, J. P., Yoon, K.-E., & Levinson, S. C. (2009). Universals and cultural variation in turn-taking in conversation. Proceedings of the National Academy of Sciences of the United States of America, 106(26), 1058710592. doi:10.1073/pnas.0903616106CrossRefGoogle ScholarPubMed
Stivers, T., Mondada, L., & Steensig, J. (2011). Knowledge, morality and affiliation in social interaction. In Stivers, T., Mondada, L. & Steensig, J. (Eds.), The morality of knowledge in conversation (pp. 324). Cambridge University Press.CrossRefGoogle Scholar
Stokoe, E. (2012). Moving forward with membership categorization analysis: Methods for systematic analysis. Discourse Studies, 14(3), 277303. doi:10.1177/1461445612441534CrossRefGoogle Scholar
Tiku, N., Schaul, K., & Chen, S. Y. (2023). These fake images reveal how AI amplifies our worst stereotypes. The Washington Post. https://www.washingtonpost.com/technology/interactive/2023/ai-generated-images-bias-racism-sexism-stereotypes/ (accessed on 23rd April, 2025).Google Scholar
Tomasello, M. (2006). Acquiring linguistic constructions. In Kuhn, D., Siegler, R. S., Damon, W. & Lerner, R. M. (Eds.), Handbook of child psychology: Cognition, perception, and language (6th ed., Vol. 2, pp. 255298). John Wiley & Sons IncGoogle Scholar
Turkle, S. (2011). Alone together: Why we expect more from technology and less from each other. Basic Books.Google Scholar
UNESCO. (2024). Generative AI: UNESCO study reveals alarming evidence of regressive gender stereotypes. https://www.unesco.org/en/articles/generative-ai-unesco-study-reveals-alarming-evidence-regressive-gender-stereotypes (accessed on 23rd April, 2025).Google Scholar
Welivita, A., & Pu, P. (2024). Is ChatGPT more empathetic than humans? arXiv:2403.05572. doi:10.48550/arXiv.2403.05572CrossRefGoogle Scholar
Whitehead, K. A., Stokoe, E., & Raymond, G. (2025). Categories in social interaction. Routledge.Google Scholar
Yan, L., Greiff, S., Teuber, Z., & Gašević, D. (2024). Promises and challenges of generative artificial intelligence for human learning. Nature Human Behaviour, 8(10), 18391850. doi:10.1038/s41562-024-02004-5CrossRefGoogle ScholarPubMed
Young, R. F. (2019). Interactional competence and L2 pragmatics. In Taguchi, N. (Ed.), The Routledge handbook of second language acquisition and pragmatics (pp. 93110). Routledge.Google Scholar
Zhu, H. (2015). Negotiation as the way of engagement in intercultural and lingua franca communication: Frames of reference and interculturality. Journal of English as a Lingua Franca, 4(1), 6390. doi:10.1515/jelf-2015-0008Google Scholar