Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T10:44:20.372Z Has data issue: false hasContentIssue false

Comparison of simulated powder snow avalanches with photogrammetric measurements

Published online by Cambridge University Press:  03 March 2016

Lisa Dreier*
Affiliation:
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Yves Bühler
Affiliation:
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Christian Ginzler
Affiliation:
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Perry Bartelt
Affiliation:
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
*
Correspondence: Lisa Dreier <lisa.dreier@slf.ch>
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Photogrammetric measurements of powder-cloud surfaces from large avalanches enable the observation of cloud evolution and dispersion as well as quantification of cloud velocities and powder volumes. Since 2002, a total of six large powder avalanches have been recorded at the test site, Vallée de la Sionne, Switzerland. The high-spatial-resolution photographs, acquired from two different observation angles, allow us to measure the velocity and height of plume-and-cleft structures on the powder-cloud surface. The photogrammetric measurements are supplemented by airborne laser scans of release, entrainment and deposition zones before and after the artificial avalanche release. Even though the precision of the photogrammetric measurements is limited, they are the best data available to test models of powder snow avalanche dynamics. The laser scan data capture initial and boundary conditions while time series of photogrammetric measurements provide insight into mechanisms driving blow-out formation and inertial propagation of the cloud. In this paper we present the experimental measurements and make direct comparisons with model simulations.

Type
Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Author(s) 2016

References

Ancey, C (2004) Powder snow avalanches: approximation as non- Boussinesq clouds with a Richardson number-dependent entrainment function. J. Geophys. Res., 109, F01005 (doi: 10.1029/2003JF000052)Google Scholar
Bartelt, P, Buser, O and Platzer, K (2006) Fluctuation–dissipation relations for granular snow avalanches. J. Glaciol., 52(179), 631643 (doi: 10.3189/172756506781828476)CrossRefGoogle Scholar
Bartelt, P, Bühler, Y, Buser, O, Christen, M and Meier, L (2012) Modeling mass-dependent flow regime transitions to predict the stopping and depositional behavior of snow avalanches. J. Geophys. Res., 117, F01015 (doi: 10.1029/2010JF001957)Google Scholar
Bartelt, P, Bühler, Y, Buser, O and Ginzler, C (2013) Plume formation in powder snow avalanches. In Naaim-Bouvet, F, Durand, Y and Lambert, R eds International Snow Science Workshop, 7–11 October 2013, Grenoble–Chamonix Mont Blanc. Proceedings. International Snow Science Workshop, Grenoble, 576582 Google Scholar
Bartelt, P, Buser, O, Vera Valero, C and Bühler, Y (2015a) Configurational energy and the formation of mixed flowing/powder snow and ice avalanches. Ann. Glaciol., 57(71), 179188 (doi: 10.3189/2016AoG71A464) (see paper in this volume)Google Scholar
Bartelt, P, Vera Valero, C, Feistl, T, Christen, M, Bühler, Y and Buser, O (2015b) Modelling cohesion in snow avalanche flow. J. Glaciol., 61(229), 837850 (doi: 10.3189/2015JoG14J126)CrossRefGoogle Scholar
Bozhinskiy, AN and Losev, KS (1998) The fundamentals of avalanche science. Eidg. Inst. Schnee- Lawinenforsch. 55Google Scholar
Buser, O and Bartelt, P (2009) Production and decay of random kinetic energy in granular snow avalanches. J. Glaciol., 55(189), 312 (10.3189/002214309788608859)Google Scholar
Buser, O and Bartelt, P (2011) Dispersive pressure and density variations in snow avalanches. J. Glaciol., 57(205), 857860 (doi: 10.3189/002214311798043870)Google Scholar
Buser, O and Bartelt, P (2015) An energy-based method to calculate streamwise density variations in snow avalanches. J. Glaciol., 61(227), 563575 (doi: 10.3189/2015JoG14J054)CrossRefGoogle Scholar
Carroll, CS, Louge, MY and Turnbull, B (2013) Frontal dynamics of powder snow avalanches. J. Geophys. Res., 118(2), 913924 (doi: 10.1002/jgrf.20068)Google Scholar
Christen, M, Kowalski, J and Bartelt, P (2010) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol., 63(1–2), 114 (doi: 10.1016/j.coldregions.2010.04.005)Google Scholar
Frauenfelder, R and 6 others (2014) Analysis of an artificially triggered avalanche at the Nepheline Syenite Mine on Stjernøya, Alta, Northern Norway. In A Merging of Theory and Practice: International Snow Science Workshop, 29 September–3 October 2014, Banff, Alberta, Canada. Proceedings. International Snow Science Workshop, Banff, 689696 Google Scholar
Fukushima, Y and Parker, G (1990) Numerical simulation of powdersnow avalanches. J. Glaciol., 36(123), 229237 CrossRefGoogle Scholar
Honig, J, Bartelt, P and Bühler, Y (2014) West Twin avalanche helicopter involvement – How safe are our pick-up locations? In A Merging of Theory and Practice: International Snow Science Workshop, 29 September–3 October 2014, Banff, Alberta, Canada. Proceedings. International Snow Science Workshop, Banff, 356363 Google Scholar
Nazarov, AN (1991) Mathematical modeling of a snow-powder avalanche in the framework of the equations of two-layer shallow water. Fluid Dyn., 26(1), 7075 (doi: 10.1007/BF01050115)Google Scholar
Rastello, M and Hopfinger, EJ (2004) Sediment-entraining suspension clouds: a model of powder-snow avalanches. J. Fluid Mech., 509, 181206 (doi: 10.1017/S0022112004009322)Google Scholar
Sovilla, B and 11 others (2005) Avalanche dynamics experimental site ‘Vallée de la Sionne’ Arbaz, Valais – Final report winter 2003/2004, Internal Report Nr. 735. (Technical report) WSL Institute for Snow and Avalanche Research SLF, Davos Google Scholar
Steinkogler, W, Sovilla, B and Lehning, M (2014) Influence of snow cover properties on avalanche dynamics. Cold Reg. Sci. Technol., 97(0), 121131 (doi: 10.1016/j.coldregions.2013.10.002)CrossRefGoogle Scholar
Turnbull, B and McElwaine, JN (2007) A comparison of powdersnow avalanches at Vallée de la Sionne, Switzerland, with plume theories. J. Glaciol., 53(180), 3040 (doi: 10.3189/172756507781833938)CrossRefGoogle Scholar
Turnbull, B, McElwaine, JN and Ancey, C (2007) Kulikovskiy– Sveshnikova–Beghin model of power snow avalanches: development and application. J. Geophys. Res., 112, F01004 (doi: 10.1029/2006JF000489)Google Scholar
Vallet, J, Turnbull, B, Joly, S and Dufour, F (2004) Observations on powder snow avalanches using videogrammetry. Cold Reg. Sci. Technol., 39(2), 153159 (doi: 10.1016/j.coldregions.2004. 05.004)Google Scholar
Wicki, P (2004) Videogrammetrische Auswertung der Lawinenereignisse im Vallée de la Sionne – Winter 2003/04, Internal Report. (Technical report) Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Davos Google Scholar
Wicki, P (2005) Photogrammetrie bewegter Objekte mit digitalen Amateur-Kameras. Geomat. Schweiz, 9, 520522 (doi: 10.5169/seals-236259)Google Scholar
Wicki, P and Laranjeiro, L (2007) Photogrammetrische Erfassung von Fliess- und Staublawinen mit digitalen Amateur-Kameras. Geomat. Schweiz, 6, 306309 (doi: 10.5169/seals-236430)Google Scholar