Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T23:04:08.054Z Has data issue: false hasContentIssue false

Diurnal variations of trace metals and heterotrophic bacterioplankton concentration in a small boreal lake of the White Sea basin

Published online by Cambridge University Press:  17 May 2010

Liudmila S. Shirokova
Affiliation:
Laboratory of Freshwater and Marine Ecosystems (LFME), Institute of Ecological Problems of the North, 163061, Nab. Severnoi Dviny, 23, 163000 Arkhangelsk, Russia
Oleg S. Pokrovsky*
Affiliation:
LMTG CNRS, Université Paul Sabatier, Observatoire Midi-Pyrénées, 14 avenue Édouard Belin, 31400 Toulouse, France
Jérôme Viers
Affiliation:
LMTG CNRS, Université Paul Sabatier, Observatoire Midi-Pyrénées, 14 avenue Édouard Belin, 31400 Toulouse, France
Sergey I. Klimov
Affiliation:
Laboratory of Freshwater and Marine Ecosystems (LFME), Institute of Ecological Problems of the North, 163061, Nab. Severnoi Dviny, 23, 163000 Arkhangelsk, Russia
Olga Yu. Moreva
Affiliation:
Laboratory of Freshwater and Marine Ecosystems (LFME), Institute of Ecological Problems of the North, 163061, Nab. Severnoi Dviny, 23, 163000 Arkhangelsk, Russia
Svetlana A. Zabelina
Affiliation:
Laboratory of Freshwater and Marine Ecosystems (LFME), Institute of Ecological Problems of the North, 163061, Nab. Severnoi Dviny, 23, 163000 Arkhangelsk, Russia
Taissia Ya. Vorobieva
Affiliation:
Laboratory of Freshwater and Marine Ecosystems (LFME), Institute of Ecological Problems of the North, 163061, Nab. Severnoi Dviny, 23, 163000 Arkhangelsk, Russia
Bernard Dupré
Affiliation:
LMTG CNRS, Université Paul Sabatier, Observatoire Midi-Pyrénées, 14 avenue Édouard Belin, 31400 Toulouse, France
*
*Corresponding author: oleg@lmtg.obs-mip.fr
Get access

Abstract

This work represents a concerted effort aimed at understanding the microbiological and chemical evolution of a small boreal lake during the diurnal cycle of photosynthesis. We studied diurnal variation of ∼40 dissolved macro- and trace elements, organic carbon and bacterial population dynamics in the surface and bottom water layer of the shallow Vilno Lake in the White Sea basin. Four-days continuous measurements with 6 h sampling steps both at the surface (0.5 m) and on the bottom (4.0 m depth) during no-bloom periods revealed constant concentrations (within ±20–30%) of all major elements (Na, Mg, Si, K, Ca), organic and inorganic carbon and most trace elements (B, V, Cr, Fe, Cu, Ga, As, Rb, Sr, Y, Zr, Sb, Cs, Ba, all REEs, Hf, Pb, Th, U). At the same time, the concentration of some biologically important trace metals (Mo, Mn, Co, Cd) was subjected to variations partially reflecting the change of bacterioplankton concentration. This work enables two types of element behavior to be distinguished during photosynthesis in the water column – constant concentration and sinusoidal variations – depending on their speciation in solution and their affinity to aquatic microorganisms.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albéric, P., Viollier, E., Jézéquel, D., Crosbois, C. and Michard, G., 2000. Interactions between trace elements and dissolved organic matter in the stagnant anoxic deep layer of a meromictic lake. Limnol. Oceanogr. , 45, 10881096.CrossRefGoogle Scholar
Alfaro-De la Torre, M.C., Beaulieu, P.Y. and Tessier, A.T., 2000. In situ measurement of trace metals in lakewater using the dialysis and DGT techniques. Anal. Chim. Acta , 418, 5368.CrossRefGoogle Scholar
Balistrieri, L.S., Murray, J.W. and Paul, B., 1992. The biogeochemical cycling of trace metals in the water column of Lake Sammamish, Washington: Response to seasonally anoxic conditions. Limnol. Oceanogr ., 37, 529548.CrossRefGoogle Scholar
Brick, C.M. and Moore, J.N., 1996. Diel variation of trace metals in the Upper Clark Fork River, Montana. Environ. Sci. Technol. , 30, 19531960.CrossRefGoogle Scholar
Carignan, R., Rapin, F. and Tessier, A., 1985. Sediment porewater sampling for metal analysis: A comparison of techniques. Geochim. Cosmochim. Acta , 49, 24932497.CrossRefGoogle Scholar
Dahlqvist, R., Andersson, K., Ingri, J., Larsson, T., Stolpe, B. and Turner, D., 2007. Temporal variations of colloidal carrier phases and associated trace elements in a boreal river. Geochim. Cosmochim. Acta , 71, 53395354.CrossRefGoogle Scholar
Davison, W., 1993. Iron and manganese in lakes. Earth Sci. Rev ., 34, 119163.CrossRefGoogle Scholar
de Caritat, P., Reimann, C., Äyräs, M., Niskavaara, H., Chekushin, V.A. and Pavlov, V.A., 1996. Composition of stream water from eight catchments on the Kola Peninsula (NW Russia) and in neighbouring areas of Finland and Norway: 1. Element levels and sources. Aquatic Geochem. , 2, 149168.CrossRefGoogle Scholar
Eiler, A., Olsson, J.A. and Bertilsson, S., 2006. Diurnal variations in the auto- and heterotrophic activity of cyanobacterial phycospheres (Gloeotrichia echinulata) and the identity of attached bacteria. Freshwat. Biol. , 51, 298311.CrossRefGoogle Scholar
Emmenegger, L., Schonenberger, R., Sigg, L. and Sulzberger, B., 2001. Light-induced redox cycling of iron in circumneutral lakes. Limnol. Oceanogr. , 46, 4961.CrossRefGoogle Scholar
Falkner, K.K., Church, M., Measures, C.I., Lebaron, G., Thouron, D., Jeandel, C., Stordal, M.C., Gill, G.A., Mortlock, R., Froelich, P. and Chan L.-H., 1997. Minor and trace element chemistry of lake Baikal, its tributaries, and surrounding hot springs. Limnol. Oceanogr. , 42, 329345.CrossRefGoogle Scholar
Gammons, C.H., Nimick, D.A., Parker, S.R., Cleasby, T.E. and McCleskey, R.B., 2005a. Diel behavior of iron and other heavy metals in a mountain stream with acidic to neutral pH: Fisher Creek, Montana, USA. Geochim. Cosmochim. Acta , 69, 25052516.CrossRefGoogle Scholar
Gammons, C.H., Wood, S.A. and Nimick, D.A., 2005b. Diel behavior of rare earth elements in a mountain stream with acidic to neutral pH. Geochim. Cosmochim. Acta , 69, 37473758.CrossRefGoogle Scholar
labert, A., Pokrovsky, O.S., Viers, J., Schott, J., Boudou, A. and Feurtet-Mazel, A., 2006. Interaction between zinc and freshwater and marine diatom species: Surface complexation and Zn isotope fractionation. Geochim. Cosmochim. Acta , 70, 839857.Google Scholar
labert, A., Pokrovsky, O.S., Schott, J., Boudou, A. and Feurtet-Mazel, A., 2007. Cadmium and lead interaction with diatom surfaces: a combined thermodynamic and kinetic approach Geochim . Cosmochim. Acta , 71, 36983716.Google Scholar
Gimpel, J., Zhang, H., Davison, W. and Edwards, A., 2003. In situ trace metal speciation in lake surface waters using DGT, dialysis, and filtration. Environ. Sci. Technol. , 37, 138146.CrossRefGoogle ScholarPubMed
Hamilton-Taylor, J. and Willis, M., 1990. A quantitative assessment of the sources and general dynamics of trace metals in a soft-water lake. Limnol. Oceanogr. , 35, 840851.CrossRefGoogle Scholar
Hamilton-Taylor, J., Davison, W. and Morfett, K., 1996. The biogeochemical cycling of Zn, Cu, Fe, Mn, and dissolved organic C in a seasonally anoxic lake. Limnol. Oceanogr. , 41, 408418.CrossRefGoogle Scholar
Hamilton-Taylor, J., Smith, E.J., Davison, W. and Sugiyama, M., 2005. Resolving and modeling the effects of Fe and Mn redox cycling on trace metal behavior in a seasonally anoxic lake. Geochim. Cosmochim. Acta , 69, 19471960.CrossRefGoogle Scholar
Hutchinson, G.E., 1957. A Treatise on Limnology , Vol. 1, Wiley, New York.Google Scholar
Ingri, J., Widerlund, A., Land, M., Gustafsson Ö., Andersson, P.S. and Öhlander, B., 2000. Temporal variations in the fractionation of the rare earth elements in a boreal river, the role of colloidal particles. Chem. Geol. , 166, 2345.CrossRefGoogle Scholar
Jones, C.A., Nimick, D.A. and McCleskey, R.B., 2004. Relative effect of temperature and pH on diel cycling of dissolved trace elements in Prickly Pear creek, Montana. Water Air Soil Pollut. , 153, 95113.CrossRefGoogle Scholar
Kritzberg, E.S., Cole, J.J., Pace, M.L., Granéli, W. and Bade, D.L., 2004. Autochtonous versus allochtonous carbon sources of bacteria: results from whole-lake 13C addition experiments. Limnol. Oceanogr. , 49, 588596.CrossRefGoogle Scholar
Lane, T.W., Saito, M.A., George, G.N., Pickering, I.J., Prince, R.C. and Morel, F.M.M., 2005. A cadmium enzyme from a marine diatom. Nature , 435, 42.CrossRefGoogle ScholarPubMed
Lee, B.-G. and Fisher, N.S., 1992. Degradation and elemental release rates from phytoplankton debris and their geochemical implications. Limnol. Oceanogr. , 37, 13451360.Google Scholar
Luengen, A.C., Raimondi, P.T. and Flegal, A.R., 2007. Contrasting biogeochemistry of six trace metals during the rise and decay of a spring phytoplankton bloom in San Francisco Bay. Limnol. Oceanogr. , 52, 11121130.CrossRefGoogle Scholar
McMahon, J.W., 1969. The annual and diurnal variation in the vertical distribution of acid-soluble ferrous and total iron in a small dimictic lake. Limnol. Oceanogr. , 14, 357367.CrossRefGoogle Scholar
Nimick, D.A., Cleasby, Th.E. and McCleskey, R.B., 2005. Seasonality of diel cycles of dissolved trace-metal concentrations in a Rocky Mountain stream. Environ. Geol. , 47, 603614.CrossRefGoogle Scholar
Noel, R., Urban, N.R., Gorham, E., Underwood, J.K., Martin, F.B. and III Ogden, J.G., 1990. Geochemical processes controlling concentrations of Al, Fe, and Mn in Nova Scotia lakes. Limnol. Oceanogr. , 35, 15161534.Google Scholar
Nriagu, J.O., Lawson, G., Wong, H.K.T. and Cheam, V., 1996. Dissolved trace metals in lakes Superior, Erie, and Ontario. Environ. Sci. Technol. , 30, 178187.CrossRefGoogle Scholar
Parker, S.R., Gammons, C.H., Jones, C.A. and Nimick, D.A., 2007. Role of hydrous iron oxide formation in attenuation and diel cycling of dissolved trace metals in a stream affected by acid rock drainage. Water Air Soil Pollut. , 181, 247263.CrossRefGoogle Scholar
Pokrovsky, O.S. and Schott, J., 2002. Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia). Chemical Geol. , 190, 141179.CrossRefGoogle Scholar
Pokrovsky, O.S., Dupré, B. and Schott, J., 2005. Fe-Al-organic colloids control of trace elements in peat soil solutions. Aquat. Geochem. , 11, 241278.CrossRefGoogle Scholar
Pokrovsky, O.S., Schott, J. and Dupré, B., 2006. Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basic terrain in Central Siberia. Geochim. Cosmochim. Acta , 70, 32393260.CrossRefGoogle Scholar
Pokrovsky, O.S., Martinez, R., Golubev, S.V., Kompantzeva, E.I. and Shirokova, L.S., 2008a. Adsorption of metals and protons on Gloeocapsa sp. cyanobacteria: A surface speciation approach. Appl. Geochem. , 23, 25742588.CrossRefGoogle Scholar
Pokrovsky, O.S., Viers, J., Emnova, E.E., Kompantseva, E.I. and Freydier, R., 2008b. Copper isotope fractionation during its adsorption on soil and aquatic bacteria and metal hydroxides: possible structural control. Geochim. Cosmochim. Acta , 72, 17421757.CrossRefGoogle Scholar
Pokrovsky, O.S., Shirokova, L.S. and Viers, J., 2009. Geochemistry of trace elements in boreal stratified lakes during different seasons, International Meeting – Lake Pavin and Other Meromictic Lakes, May 14–16 2009, Besse-et- Saint-Anastaise.
Reynolds, G.L. and Hamilton-Taylor, J., 1992. The role of planktonic algae in the cycling of Zn and Cu in a productive soft-water lake. Limnol. Oceanogr. , 37, 17591769.CrossRefGoogle Scholar
Roederer, J.G., 1991. Understanding the Arctic: Research policies and responsibilities. In: Sturges, W.T. (ed.), Pollution of the Arctic Atmosphere , N.Y., Elsewhere, 111.Google Scholar
Rose, M., 1925. Contribution à l'étude de la biologie du plancton. Le problème des migrations verticales journalières. Arch. Zool. Exper. , 64, 387542.Google Scholar
Shirokova, L.S. and Pokrovsky, O.S., 2008. DOC speciation in boreal rivers and lakes and its link with microbial biomass, bacterioplankton production and degradation. Geophysical Research Abstracts , 10, EGU2008-A-03462, SRef-ID: 1607-7962/gra/EGU2008-A-03462.Google Scholar
Shirokova, L.S., Pokrovsky, O.S., Kirpotin, S.N. and Dupré, B., 2009. Heterotrophic bacterio-plankton in thawed lakes of northern part of Western Siberia controls the CO2 flux to the atmosphere. Int. J. Environ. Stud. , 66, 433445.CrossRefGoogle Scholar
Smith, L.C., Macdonald, G.M., Velichko, A.A., Beilman, D.W., Borisova, O.K., Frey, K.E., Kremenetsky, K.V. and Sheng, Y., 2004. Siberian peatlands as a net carbon sink and global methane source since the early Holocene. Science , 303, 353356.CrossRefGoogle ScholarPubMed
Taillefert, M., MacGregor, B.J., Gaillard, J.-F., Lienemann, C.-P., Perret, D. and Stahl, D.A., 2002. Evidence for a dynamic cycle between Mn and Co in the water column of a stratified lake. Environ. Sci. Technol. , 36, 468476.CrossRefGoogle Scholar
Tranvik, L., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microbiol. Ecol. , 16, 311322.CrossRefGoogle ScholarPubMed
Tranvik, L., 1989. Bacterioplankton growth, grazing mortality and quantitative relationship to primary production in a humic and a clearwater lake. J. Plankton Res. , 11, 9851000.CrossRefGoogle Scholar
Tranvik, L., 1994. Effects of colloidal organic matter on the growth of bacteria and protists in lake water. Limnol. Oceanogr. , 39, 12761285.CrossRefGoogle Scholar
Tripathi, B.N., Kasana, R., Singh, V., Bhatt, I., Singh, A., Sharma, V. and Gaur, J.P., 2009. Carotenoids and pH of the culture medium play an important role in displaying metal stress in batch and semi-continuous cultures of Anabaena doliolum . Ann. Limnol. - Int. J. Lim. , 45, 119125.CrossRefGoogle Scholar
Twiss, M.R., Campbell, P.G.C. and Auclair, J.-C., 1996. Regeneration, recycling, and trophic transfer of trace metals by microbial food-web organisms in the pelagic surface waters of Lake Erie. Limnol. Oceanogr. , 41, 14251437.CrossRefGoogle Scholar
Vasyukova, E.V., Pokrovsky, O.S., Viers, J., Oliva, P., Dupré B., Martin, F. and Candaudap, F., 2010. Trace elements in organic- and iron-rich surficial fluids of the Boreal zone: Assessing colloidal forms via dialysis and ultrafiltration. Geochim. Cosmochim. Acta , 74, 449468.CrossRefGoogle Scholar
Viollier, E., Jézéquel, D., Michard, G., Pèpe, M., Sarazin, G. and Albéric, P., 1995. Geochemical study of a crater lake (Pavin Lake, France): trace-element behaviour in the monimolimnion. Chem. Geol. , 125, 6172.CrossRefGoogle Scholar
Viollier, E., Michard, G., Jézéquel, D., Pèpe, M. and Sarazin, G., 1997. Geochemical study of a crater lake: Lake Pavin, Puy de Dôme, France. Chem. Geol. , 142, 225241.CrossRefGoogle Scholar
Wang, W.-X. and Guo, L., 2001. Production of colloidal organic carbon and trace metals by phytoplankton decomposition. Limnol. Oceanogr. , 46, 278286.CrossRefGoogle Scholar
Xue, H. and Sigg, L., 1993. Free cupric ion concentration and Cu(II) speciation in a eutrophic lake. Limnol. Oceanogr. , 38, 12001213.CrossRefGoogle Scholar
Yeghicheyan, D., Carignan, J., Valladon, M., Bouhnik Le Coz, M., Le Cornec, F., Castrec-Rouelle, M., Robert, M., Aquilina, L., Aubry, E., Churlaud, C., Dia, A., Deberdt, S., Dupré, B., Freydier, R., Gruau, G., Hénin, O., de Kersabiec, A.M., Macé, J., Marin, L., Morin, N., Petitjean, P. and Serrat, E., 2001. A compilation of silicon and thirty one trace elements measured in the natural river water reference material SLRS-4 (NRC-CNRC). Geostandards Newsletter , 25, 465474.CrossRefGoogle Scholar