Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T00:42:55.248Z Has data issue: false hasContentIssue false

Diatom response to heavy metal pollution and nutrient enrichment in an urban lake: evidence from paleolimnology

Published online by Cambridge University Press:  20 March 2014

Xu Chen*
Affiliation:
State Key Laboratory of Geobiology and Environmental Geology, Faculty of Earth Sciences, China University of Geosciences (Wuhan), Wuhan 430074, China School of Geography, University of Nottingham, University Park, Nottingham, UK
Changan Li
Affiliation:
State Key Laboratory of Geobiology and Environmental Geology, Faculty of Earth Sciences, China University of Geosciences (Wuhan), Wuhan 430074, China
Suzanne McGowan
Affiliation:
School of Geography, University of Nottingham, University Park, Nottingham, UK School of Geography, University of Nottingham Malaysia Campus, Jalan Broga, 43 500 Semenyih, Selangor Darul Ehsan, Malaysia
Xiangdong Yang
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
*
*Corresponding author: xuchen@cug.edu.cn
Get access

Abstract

Diatoms and geochemical stratigraphy were studied in sediment core samples collected from a heavily polluted urban lake (SE China) in order to track the history of eutrophication and heavy metal contamination. The sediment profile covered ca. 60 years (from ca. 1951 to 2011) based on 137Cs and Spheroidal carbonaceous particles (SCP) dating, and encompassed a period of rapid industrial development in this region. Diatoms experienced two visible shifts, including the replacement of benthic and epiphytic taxa by planktonic species (e.g., Cyclotella meneghiniana Kützing) in 1972, and the dominance of Cyclotella atomus Hustedt and Nitzschia palea (Kützing) W. Smith after 1999. Metals (i.e., Cd, Pb and Zn), total phosphorus, total nitrogen and total organic carbon all increased in the past 60 years. Redundancy analysis was used to correlate diatom with chemical change and explained 50.3–60% of total variation in diatom data for three periods (from 1951 to 1999, between 1951 and 2011 and from 1972 to 2011). The combined effects of nutrients and metals were the predominant factor, capturing 29.6–42.8% of the total variance. Nutrients alone accounted for little more variance than did metals alone for the first flora shift about 1972. The further shift after 1999 was more influenced by the sole effect of metals than that of nutrients. Increases in species (e.g., N. Palea) able to tolerate both nutrient-related and metal-related stressors were related to persistent nutrient and metal inputs. In addition, climate warming might exacerbate eutrophication and metal contamination in this lake.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adekunle, I.M., 2009. Temperature effect on water extractability of cadmium, copper, lead and zinc from composted organic solid wastes of south-west Nigeria. Int. J. Environ. Res. Public Health, 6, 23972407.CrossRefGoogle ScholarPubMed
Audry, S., Schafer, J., Blanc, G. and Jouanneau, J.M., 2004. Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environ. Pollut., 132, 413426.CrossRefGoogle Scholar
Battarbee, R.W., Jones, V.J., Flower, R.J., Cameron, N.G., Bennion, H., Carvalho, L. and Juggins, S., 2001. Diatoms. In: Smol, J.P., Birks, H.J.B., Last, W.M., Bradley, R.S. and Alverson, K. (eds.), Tracking Environmental Change Using Lake Sediments, Springer, Netherlands, 155202.Google Scholar
Birch, S. and McCaskie, J., 1999. Shallow urban lakes: a challenge for lake management. Hydrobiologia, 395–396, 365378.CrossRefGoogle Scholar
Boyle, J.F., Rose, N.L., Bennion, H., Yang, H. and Appleby, P.G., 1999. Environmental impacts in the Jianghan plain: evidence from lake sediments. Water Air Soil Pollut., 112, 2140.CrossRefGoogle Scholar
Cattaneo, A., Couillard, Y., Wunsam, S. and Courcelles, M., 2004. Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Quebec, Canada). J. Paleolimnol., 32, 163175.CrossRefGoogle Scholar
Cattaneo, A., Couillard, Y. and Wunsam, S., 2008. Sedimentary diatoms along a temporal and spatial gradient of metal contamination. J. Paleolimnol., 40, 115127.CrossRefGoogle Scholar
Chen, X., Yang, X., Dong, X. and Liu, Q., 2011. Nutrient dynamics linked to hydrological condition and anthropogenic nutrient loading in Chaohu Lake (southeast China). Hydrobiologia, 661, 223234.CrossRefGoogle Scholar
Chen, X., Mao, X., Cao, Y. and Yang, X., 2013a. Use of siliceous algae as biological monitors of heavy metal pollution in three lakes in a mining city, southeast China. Oceanol. Hydrobiol. St., 42, 233242.CrossRefGoogle Scholar
Chen, X., Yang, X., Dong, X. and Liu, E., 2013b. Environmental changes in Chaohu Lake (southeast, China) since the mid 20th century: the interactive impacts of nutrients, hydrology and climate. Limnologica, 43, 1017.CrossRefGoogle Scholar
Dong, X., Anderson, N.J., Yang, X., Chen, X. and Shen, J., 2012. Carbon burial by shallow lakes on the Yangtze floodplain and its relevance to regional carbon sequestration. Glob. Change Biol., 18, 22052217.CrossRefGoogle Scholar
Dong, X.H., Bennion, H., Battarbee, R., Yang, X.D., Yang, H.D. and Liu, E.F., 2008. Tracking eutrophication in Taihu Lake using the diatom record: potential and problems. J. Paleolimnol., 40, 413429.CrossRefGoogle Scholar
Duong, T.T., Morin, S., Coste, M., Herlory, O., Feurtet-Mazel, A. and Boudou, A., 2010. Experimental toxicity and bioaccumulation of cadmium in freshwater periphytic diatoms in relation with biofilm maturity. Sci. Total Environ., 408, 552562.CrossRefGoogle ScholarPubMed
Fourtanier, E. and Kociolek, J.P., 2011. Catalogue of diatom names. California Academy of Science. Available online at: http://researcharchive.calacademy.org/research/diatoms/names/index.asp.
Grimm, E.C., 1991. TILIA, version 1.11 TILIAGRAPHY, version 1.18. In: Gear, A. (ed.), A Users Notebook. Illinois State Museum, Springfield, 112.Google Scholar
Guasch, H., Navarro, E., Serra, A. and Sabater, S., 2004. Phosphate limitation influences the sensitivity to copper in periphytic algae. Freshwat. Biol., 49, 463473.CrossRefGoogle Scholar
Hall, R.I., Leavitt, P.R., Quinlan, R., Dixit, A.S. and Smol, J.P., 1999. Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnol. Oceanogr., 44, 739756.CrossRefGoogle Scholar
Kalnejais, L.H., Martin, W.R., Signell, R.P. and Bothner, M.H., 2007. Role of sediment resuspension in the remobilization of particulate-phase metals from coastal sediments. Environ. Sci. Technol., 41, 22822288.CrossRefGoogle ScholarPubMed
Krammer, K. and Lange-Bertalot, H., 1986. Bacillariophyceae 1. Teil: Naviculaceae. In: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H. and Mollenhauer, D. (eds.), Süsswasserflora von Mitteleuropa, Band 2/1, Gustav Fischer Verlag, Jena, Germany, 876 p.Google Scholar
Krammer, K. and Lange-Bertalot, H., 1988. Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H. and Mollenhauer, D. (eds.), Süsswasserflora von Mitteleuropa, Band 2/2, Gustav Fischer Verlag, Jena, Germany, 596 p.Google Scholar
Krammer, K. and Lange-Bertalot, H., 1991a. Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H. and Mollenhauer, D. (eds.), Süsswasserflora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag, Jena, Germany, 576 p.Google Scholar
Krammer, K. and Lange-Bertalot, H., 1991b. Bacillariophyceae 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolate) und Gomphonema. In: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H. and Mollenhauer, D. (eds.), Süsswasserflora von Mitteleuropa, Band 2/4, Gustav Fischer Verlag, Jena, Germany, 436 p.Google Scholar
Li, J., Peng, F., Ding, D., Zhang, S., Li, D. and Zhang, T., 2011. Characteristics of the phytoplankton community and bioaccumulation of heavy metals during algal blooms in Xiangjiang River (Hunan, China). Sci. Chin. Life Sci., 54, 931938.CrossRefGoogle Scholar
Li, Z.H. and Zhang, Y.D., 2010. Study on the Water Pollution Control of Dayehu Lake. Science Press, Beijing.Google Scholar
Liu, E., Shen, J., Birch, G., Yang, X., Wu, Y. and Xue, B., 2012b. Human-induced change in sedimentary trace metals and phosphorus in Chaohu Lake, China, over the past half-millennium. J. Paleolimnol., 47, 677691.CrossRefGoogle Scholar
Liu, Q., Yang, X., Anderson, N.J., Liu, E. and Dong, X., 2012a. Diatom ecological response to altered hydrological forcing of a shallow lake on the Yangtze floodplain, SE China. Ecohydrology, 5, 316325.CrossRefGoogle Scholar
MacDonald, D.D., Ingersoll, C.G., Berger, T.A., 2000. Development and evaluation of Consensus-Based Sediment Quality Guidelines for freshwater ecosystems. Arch. Environ. Contamin. Toxicol., 39, 2031.CrossRefGoogle ScholarPubMed
McGowan, S., Leavitt, P.R., Hall, R.I., Anderson, N.J., Jeppesen, E. and Odgaard, B.V., 2005. Controls of algal abundance and community composition during ecosystem state change. Ecology, 86, 22002211.CrossRefGoogle Scholar
MEA, Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-Being: Current State and Trends. Island Press, Washington, DC.
Meyers, P.A. and Ishiwatari, R., 1993. Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem., 20, 867900.CrossRefGoogle Scholar
Morin, S., Duong, T.T., Dabrin, A., Coynel, A., Herlory, O., Baudrimont, M., Delmas, F., Durrieu, G., Schafer, J., Winterton, P., Blanc, G. and Coste, M., 2008. Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France. Environ. Pollut., 151, 532542.CrossRefGoogle ScholarPubMed
Morin, S., Cordonier, A., Lavoie, I., Arini, A., Blanco, S., Duong, T., Tornes, E., Bonet, B., Corcoll, N., Faggiano, L., Laviale, M., Peres, F., Becares, E., Coste, M., Feurtet-Mazal, A., Fortin, C., Guasch, H. and Sabater, S., 2012. Consistency in diatom response to metal-contaminated environments emerging and priority pollutants in rivers. In: Guasch, H., Ginebreda, A. and Geiszinger, A. (eds.), Emerging and Priority Pollutants in Rivers, the Handbook of Environmental Chemistry, Springer-Verlag, Berlin, Heidelberg, 117146.CrossRefGoogle Scholar
Naselli-Flores, L., 2008. Urban Lakes: Ecosystems at risk, worthy of the best care. Paper presented at the Proceedings of Taal 2007: The 12th World Lake Conference.
O'Farrell, I., Tell, G. and Podlejski, A., 2001. Morphological variability of Aulacoseira granulata (Ehr.) Simonsen (Bacillariophyceae) in the Lower Parana River (Argentina). Limnology, 2, 6571.CrossRefGoogle Scholar
Rai, L.C., Gaur, J.P. and Kumar, H.D., 1981. Phycology and heavy-metal pollution. Biol. Rev., 56, 99151.CrossRefGoogle Scholar
Renberg, I., Bindler, R., Bradshaw, E., Emteryd, O. and McGowan, S., 2001. Sediment evidence of early eutrophication and heavy metal pollution of Lake Malaren, central Sweden. Ambio, 30, 496502.CrossRefGoogle ScholarPubMed
Ritchie, J.C. and McHenry, J.R., 1990. Application of radioactive fallout cesium-137 for measuring soil-erosion and sediment accumulation rates and patterns – a review. J. Environ. Qual., 19, 215233.CrossRefGoogle Scholar
Rose, N.L., 2008. Quality control in the analysis of lake sediments for spheroidal carbonaceous particles. Limnol. Oceanogr. Methods, 6, 172179.CrossRefGoogle Scholar
Rose, N.L., Boyle, J.F., Du, Y., Yi, C., Dai, X., Appleby, P.G., Bennion, H., Cai, S. and Yu, L., 2004. Sedimentary evidence for changes in the pollution status of Taihu in the Jiangsu region of eastern China. J. Paleolimnol., 32, 4151.CrossRefGoogle Scholar
Ruggiu, D., Luglié, A., Cattaneo, A. and Panzani, P., 1998. Paleoecological evidence for diatom response to metal pollution in Lake Orta (N. Italy). J. Paleolimnol., 20, 333345.CrossRefGoogle Scholar
Schindler, D.W., 2006. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr., 51, 356363.CrossRefGoogle Scholar
Schueler, T. and Simpson, J., 2001. Why urban lakes are different. Watershed Protect. Tech., 3, 747750.Google Scholar
ter Braak, C.J.F. and Šmilauer, P., 2002. CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, NY.Google Scholar
Wu, J., Zeng, H., Yu, H., Ma, L., Xu, L. and Qin, B., 2012. Water and Sediment Quality in Lakes along the Middle and Lower Reaches of the Yangtze River, China. Water Resource Manage., 26, 36013618.CrossRefGoogle Scholar
Xu, K., Kong, C.F., Liu, G., Wu, C.L., Deng, H.B., Zhang, Y. and Zhuang, Q.L., 2010. Changes of urban wetlands in Wuhan, China, from 1987 to 2005. Prog. Phys. Geog., 34, 207220.Google Scholar
Yang, G.S., Ma, C.D. and Chang, S.Y., 2009. Yangtze Conservation and Development Report. Changjiang Press, Wuhan (in Chinese with English abstract).Google Scholar
Yang, X.D., Anderson, N.J., Dong, X.H. and Shen, J., 2008. Surface sediment diatom assemblages and epilimnetic total phosphorus in large, shallow lakes of the Yangtze floodplain: their relationships and implications for assessing long-term eutrophication. Freshwat. Biol., 53, 12731290.CrossRefGoogle Scholar
Zhang, E., Cao, Y., Langdon, P., Jones, R., Yang, X. and Shen, J., 2012. Alternate trajectories in historic trophic change from two lakes in the same catchment, Huayang Basin, middle reach of Yangtze River, China. J. Paleolimnol., 48, 367381.CrossRefGoogle Scholar

OLM_limn130064

Appendix 1.

Download OLM_limn130064(Audio)
Audio 44.5 KB