Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Liang, Zuoxiang
Bu, Lina
Qin, Yidi
Peng, Yebo
Yang, Ruifei
and
Zhao, Yiqiang
2019.
Selection of Optimal Ancestry Informative Markers for Classification and Ancestry Proportion Estimation in Pigs.
Frontiers in Genetics,
Vol. 10,
Issue. ,
Hulsegge, Ina
Schoon, Mira
Windig, Jack
Neuteboom, Marjolein
Hiemstra, Sipke Joost
and
Schurink, Anouk
2019.
Development of a genetic tool for determining breed purity of cattle.
Livestock Science,
Vol. 223,
Issue. ,
p.
60.
Bertolini, F.
Schiavo, G.
Bovo, S.
Sardina, M.T.
Mastrangelo, S.
Dall’Olio, S.
Portolano, B.
and
Fontanesi, L.
2020.
Comparative selection signature analyses identify genomic footprints in Reggiana cattle, the traditional breed of the Parmigiano-Reggiano cheese production system.
Animal,
Vol. 14,
Issue. 5,
p.
921.
Somenzi, Elisa
Ajmone-Marsan, Paolo
and
Barbato, Mario
2020.
Identification of Ancestry Informative Marker (AIM) Panels to Assess Hybridisation between Feral and Domestic Sheep.
Animals,
Vol. 10,
Issue. 4,
p.
582.
Schiavo, G.
Bertolini, F.
Galimberti, G.
Bovo, S.
Dall’Olio, S.
Nanni Costa, L.
Gallo, M.
and
Fontanesi, L.
2020.
A machine learning approach for the identification of population-informative markers from high-throughput genotyping data: application to several pig breeds.
Animal,
Vol. 14,
Issue. 2,
p.
223.
Moradi, Mohammad Hossein
Khaltabadi-Farahani, Amir Hossein
Khodaei-Motlagh, Mahdi
Kazemi-Bonchenari, Mehdi
and
McEwan, John
2021.
Genome-wide selection of discriminant SNP markers for breed assignment in indigenous sheep breeds.
Annals of Animal Science,
Vol. 21,
Issue. 3,
p.
807.
Chinchilla-Vargas, Josue
Bertolini, Francesca
Stalder, K J
Steibel, J P
and
Rothschild, M F
2021.
Estimating breed composition for pigs: A case study focused on Mangalitsa pigs and two methods.
Livestock Science,
Vol. 244,
Issue. ,
p.
104398.
Seo, Dongwon
Cho, Sunghyun
Manjula, Prabuddha
Choi, Nuri
Kim, Young-Kuk
Koh, Yeong Jun
Lee, Seung Hwan
Kim, Hyung-Yong
and
Lee, Jun Heon
2021.
Identification of Target Chicken Populations by Machine Learning Models Using the Minimum Number of SNPs.
Animals,
Vol. 11,
Issue. 1,
p.
241.
Bovo, S.
Schiavo, G.
Kazemi, H.
Moscatelli, G.
Ribani, A.
Ballan, M.
Bonacini, M.
Prandi, M.
Dall’Olio, S.
and
Fontanesi, L.
2021.
Exploiting within‐breed variability in the autochthonous Reggiana breed identified several candidate genes affecting pigmentation‐related traits, stature and udder defects in cattle.
Animal Genetics,
Vol. 52,
Issue. 5,
p.
579.
Gebrehiwot, Netsanet Z.
Strucken, Eva M.
Marshall, Karen
Aliloo, Hassan
and
Gibson, John P.
2021.
SNP panels for the estimation of dairy breed proportion and parentage assignment in African crossbred dairy cattle.
Genetics Selection Evolution,
Vol. 53,
Issue. 1,
Wilmot, Hélène
Bormann, Jeanne
Soyeurt, Hélène
Hubin, Xavier
Glorieux, Géry
Mayeres, Patrick
Bertozzi, Carlo
and
Gengler, Nicolas
2022.
Development of a genomic tool for breed assignment by comparison of different classification models: Application to three local cattle breeds.
Journal of Animal Breeding and Genetics,
Vol. 139,
Issue. 1,
p.
40.
Salvatore, Giovanna
Palombo, Valentino
Esposito, Stefano
Iaffaldano, Nicolaia
and
D’Andrea, Mariasilvia
2022.
Identification of Ancestry Informative Markers in Mediterranean Trout Populations of Molise (Italy): A Multi-Methodological Approach with Machine Learning.
Genes,
Vol. 13,
Issue. 8,
p.
1351.
Bertolini, Francesca
Moscatelli, Giulia
Schiavo, Giuseppina
Bovo, Samuele
Ribani, Anisa
Ballan, Mohamad
Bonacini, Massimo
Prandi, Marco
Dall’Olio, Stefania
and
Fontanesi, Luca
2022.
Signatures of selection are present in the genome of two close autochthonous cattle breeds raised in the North of Italy and mainly distinguished for their coat colours.
Journal of Animal Breeding and Genetics,
Vol. 139,
Issue. 3,
p.
307.
Zhao, Changheng
Wang, Dan
Teng, Jun
Yang, Cheng
Zhang, Xinyi
Wei, Xianming
and
Zhang, Qin
2023.
Breed identification using breed-informative SNPs and machine learning based on whole genome sequence data and SNP chip data.
Journal of Animal Science and Biotechnology,
Vol. 14,
Issue. 1,
Fontanesi, Luca
2023.
Lawrie's Meat Science.
p.
627.
Wilmot, Hélène
Niehoff, Tobias
Soyeurt, Hélène
Gengler, Nicolas
and
Calus, Mario P L
2023.
The use of a genomic relationship matrix for breed assignment of cattle breeds: comparison and combination with a machine learning method.
Journal of Animal Science,
Vol. 101,
Issue. ,
Liu, Ruiqi
Xu, Zhiting
Teng, Jinyan
Pan, Xiangchun
Lin, Qing
Cai, Xiaodian
Diao, Shuqi
Feng, Xueyan
Yuan, Xiaolong
Li, Jiaqi
and
Zhang, Zhe
2023.
Evaluation of six machine learning classification algorithms in pig breed identification usingSNPsarray data.
Animal Genetics,
Vol. 54,
Issue. 2,
p.
113.
Hayah, Ichrak
Talbi, Chouhra
Chafai, Narjice
Houaga, Isidore
Botti, Sara
and
Badaoui, Bouabid
2023.
Genetic diversity and breed-informative SNPs identification in domestic pig populations using coding SNPs.
Frontiers in Genetics,
Vol. 14,
Issue. ,
Salvatore, Giovanna
Chibani Bahi Amar, Amira
Canale-Tabet, Kamila
Fridi, Riad
Tabet Aoul, Nacera
Saci, Soumia
Labarthe, Emmanuelle
Palombo, Valentino
D’Andrea, Mariasilvia
Vignal, Alain
and
Faux, Pierre
2023.
Natural clines and human management impact the genetic structure of Algerian honey bee populations.
Genetics Selection Evolution,
Vol. 55,
Issue. 1,
Kasarda, Radovan
Moravčíková, Nina
Mészáros, Gábor
Simčič, Mojca
and
Zaborski, Daniel
2023.
Classification of cattle breeds based on the random forest approach.
Livestock Science,
Vol. 267,
Issue. ,
p.
105143.