Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T01:52:34.677Z Has data issue: false hasContentIssue false

Feed restriction strategy in the growing rabbit. 1. Impact on digestion, rate of passage and microbial activity

Published online by Cambridge University Press:  01 April 2009

T. Gidenne*
Affiliation:
INRA; UMR 1289TANDEM, Tissus Animaux, Nutrition, Digestion, Ecosystème et Métabolisme, Chemin de Borde-Rouge, Auzeville, F-31326 Castanet-Tolosan, France Université de Toulouse; INPT, ENVT, UMR 1289, France
A. Feugier
Affiliation:
INRA; UMR 1289TANDEM, Tissus Animaux, Nutrition, Digestion, Ecosystème et Métabolisme, Chemin de Borde-Rouge, Auzeville, F-31326 Castanet-Tolosan, France Université de Toulouse; INPT, ENVT, UMR 1289, France
Get access

Abstract

The effects of a quantitative feed restriction on the digestive physiology of the young rabbit remain largely unclear. Several digestive functions were thus analysed in the rabbit after weaning, using a monofactorial design that produces a linear reduction of the intake, from ad libitum (AL group) to 80%, 70% and 60% of AL (I80, I70 and I60). The restriction programme was applied by giving a daily meal during 21 days after weaning (34 days), and then a 4-day transition period was managed where the feed intake was fixed at 80% of the AL group, before to be fed ad libitum till 69 days of age. The young rabbit quickly adapted to the restriction programme, since within 4 days after weaning they ate totally their ration within 6–7 h after the feed distribution at 8:00, while AL animals consumed 75% of their feed between 15:00 and 8:00. From 55 to 59 days old, rabbits of I70 and I60 groups reached the intake of the I80 group within 1 day, and then the feed intake of restricted animals increased progressively without over-eating. From 54 to 69 days old, the intake of the four groups did not differ and averaged 143.7 g/day per rabbit. During restriction, the live weight and the weight gain decreased linearly with the restriction level. From 55 to 69 days, the weight gain increased linearly according to the restriction level previously applied, but the final weight of restricted rabbits remained lower than AL ones (−3%, −5% and −7%, respectively, for I80, I70 and I60). After 7 days of restriction, the digestibility was not significantly affected by the restriction level, except for crude protein that presented a slightly higher (+1.5 unit, P = 0.05) coefficient in I70 and I60 groups. The mean retention time (MRT) of particles increased by 50% for restricted animals (mean: 26.2 h for I80 and I60) compared to the AL ones, while that of the liquid phase (three times longer than the particles) was linearly and moderately increased with restriction (+20% between AL and I60). In restricted groups, the caecal pH was lower (−0.3 unit, P < 0.05) and could be related to their higher volatile fatty acid (VFA) concentration (+16 mmol/l compared to AL, P < 0.05). The fermentation pattern, ammonia concentration and the caecal bacterial fibrolytic activity remained similar among treatments, although the butyrate proportion tended to be higher in restricted animals. Impact of feed restriction on performances and digestive health is reported in the second part of this study.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AVMA 2001. Report of the AVMA panel on euthanasia. Journal of American Veterinary Medicine Association 218, 669696.Google Scholar
Bellier, R, Gidenne, T, Vernay, M, Colin, M 1995. In vivo study of circadian variations of the cecal fermentation pattern in postweaned and adult rabbits. Journal of Animal Science 73, 128135.Google Scholar
Boulahrouf, A, Fonty, G, Gouet, P 1991. Establishment, counts and identification of the fibrolytic bacteria in the digestive tract of rabbit. Influence of feed cellulose content. Current Microbiology 22, 125.CrossRefGoogle Scholar
Diaz Arca, F, Perez Alba, LM, Perez Hernandez, M 1999. Digestibility and energy retention by young rabbits fed different levels of intake. Annales de Zootechnie 48, 289295.CrossRefGoogle Scholar
EGRAN 2001. Technical note: attempts to harmonise chemical analyses of feeds and faeces, for rabbit feed evaluation. World Rabbit Science 9, 5764.Google Scholar
Fioramonti, J, Ruckebusch, Y 1974. La motricité caecale chez le lapin. 2) Variations d’origine alimentaire. Annales de Recherche Vétérinaire 5, 201212.Google Scholar
Fodor, K, Fekete, SG, Zoldag, L, Bersenyi, A, Gaspardy, A, Andrasofszky, E, Kulcsar, M, Eszes, F 2001. Influence of feeding intensity on corporeal development, body composition and sexual maturity in female rabbits. Acta Veterinaria Hungarica 49, 399411.Google Scholar
Gidenne, T 1993. Measurement of the rate of passage in restricted-fed rabbits: effect of dietary cell wall level on the transit of fibre particles of different sizes. Animal Feed Science and Technology 42, 151163.Google Scholar
Gidenne, T 1994. Effets d’une réduction de la teneur en fibres alimentaires sur le transit digestif du lapin. Comparaison et validation de modèles d’ajustement des cinétiques d’excrétion fécale des marqueurs. Reproduction Nutrition Development 34, 295306.Google Scholar
Gidenne, T 2000. Recent advances and perspectives in rabbit nutrition: emphasis on fibre requirements. World Rabbit Science 8, 2332.Google Scholar
Gidenne, T 2003. Fibres in rabbit feeding for digestive troubles prevention: respective role of low-digested and digestible fibre. Livestock Production Science 81, 105117.Google Scholar
Gidenne, T, Bellier, R 1992. Etude in vivo de l’activité fermentaire caecale chez le lapin. Mise au point et validation d’une nouvelle technique de canulation caecale. Reproduction Nutrition Development 32, 365376.Google Scholar
Gidenne, T, Lapanouse, A 1997. Rate of passage in the rabbit digestive tract: influence of marker dosing time, ileal cannulation and marker type. World Rabbit Science 5, 2732.Google Scholar
Gidenne, T, Lapanouse, A 2004. Impact of caecotrophy on rate of passage, intake and faecal excretion pattern in the growing rabbit. World Rabbit Science 12, 8194.Google Scholar
Gidenne, T, Lebas, F 2006. Feeding behaviour in rabbits. In Feeding in domestic vertebrates. From structure to behaviour (ed. V Bels), pp. 179209. CABI Publishing, Wallingford, UK (Chapter 11).Google Scholar
Gidenne, T, Poncet, C, Gomez, L 1987. Effet de l’addition d’un concentré riche en fibres dans une ration à base de foin, distribuée à deux niveaux alimentaires chez la lapine adulte. 1/Temps de séjour moyen des aliments. Reproduction Nutrition Development 7, 733743.CrossRefGoogle Scholar
Gidenne, T, Jehl, N, Segura, M, Michalet-Doreau, B 2002. Microbial activity in the caecum of the rabbit around weaning: impact of a dietary fibre deficiency and of intake level. Animal Feed Science and Technology 99, 107118.Google Scholar
Gidenne, T, Combes, S, Feugier, A, Jehl, N, Arveux, P, Boisot, P, Briens, C, Corrent, E, Fortune, H, Montessuy, SVerdelhan, S 2009. Feed restriction strategy in the growing rabbit: 2 – impact on digestive health, growth and carcass characteristics. Animal, under evaluation.Google Scholar
Han, ES, Hickey, M 2005. Microarray evaluation of dietary restriction. Journal of Nutrition 135, 13431346.Google Scholar
Jilge, B 1987. The circadian periodicity of the rabbit during a light–dark regimen, continuous light conditions and restrictive food access. Deutche Tierärtztliche WochenZeitrestrikitiver Fütterung 94, 1823.Google Scholar
Jolly, CA 2004. Dietary restriction and immune function. Journal of Nutrition 134, 18531856.Google Scholar
Jouany, JP 1982. Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents. Sciences des Aliments 2, 131144.Google Scholar
Laplace, JP, Lebas, F 1975. Le transit digestif chez le lapin. 3) Influence de l’heure et du mode d’administration sur l’excrétion fécale du Cérium 41 chez le lapin alimenté ad-libitum. Annales de Zootechnie 24, 255265.Google Scholar
Lebas, F 1979. Efficacité de la digestion chez la lapine adulte. Effet du niveau d’alimentation et du stade de gestation. Annales de Biologie Animale, Biochimie et Biophysique 19, 969973.CrossRefGoogle Scholar
Lebas, F, Laplace, JP 1982. Mensurations viscérales chez le lapin. 4. Effets de divers modes de restriction alimentaire sur la croissance corporelle et viscérale. Annales de Zootechnie 31, 391430.Google Scholar
Ledin, I 1984a. Effect of restricted feeding and realimentation on compensatory growth and organ growth in rabbit. Annales de Zootechnie 33, 3350.Google Scholar
Ledin, I 1984b. A note on the effect of different feeding levels on the rate of digesta passage in rabbits. Acta Agriculturae Scandinavica 34, 6770.Google Scholar
Lever, M 1977. Carbohydrate determination with 4-hydroxybenzoic acid hydrazide (PAHBAH): effect of bismuth on the reaction. Analytical Biochemistry 81, 2127.Google Scholar
Lovatto, PA, Sauvant, D, Noblet, J, Dubois, S, van Milgen, J 2006. Effects of feed restriction and subsequent refeeding on energy utilization in growing pigs. Journal of Animal Science 84, 33293336.Google Scholar
Maertens, LPeeters, JE 1988. Effect of feed restriction after weaning on fattening performances and caecal traits of early weaned rabbits. In Deutsche Veterinarmediznische Gesellschaft (ed. HC Löliger), pp. 158–169. 2–4 June, Celle, Germany.Google Scholar
Martin, C, Michalet-Doreau, B 1995. Variations in mass and enzyme activity of rumen microorganisms: effect of barley and buffer supplements. Journal of the Science of Food and Agriculture 67, 407413.CrossRefGoogle Scholar
Perez, JM, Lebas, F, Gidenne, T, Maertens, L, Xiccato, G, Parigi-Bini, R, Dalle Zotte, A, Cossu, ME, Carazzolo, A, Villamide, MJ, Carabaño, R, Fraga, MJ, Ramos, MA, Cervera, C, Blas, E, Fernandez Carmona, J, Falcao, E, Cunha, L, Bengala Freire, J 1995. European reference method for in-vivo determination of diet digestibility in rabbits. World Rabbit Science 3, 4143.Google Scholar
Perrier, G 1998. Influence de deux niveaux et de deux durées de restriction alimentaire sur l’efficacité productive du lapin et les caractéristiques bouchères de la carcasse. 7èmes Journées de la Recherche Cunicole, Lyon, France, pp. 179–182.Google Scholar
Polivy, J 1996. Psychological consequences of food restriction. Journal of the American Dietetic Association 96, 589592.Google Scholar
Ruckebusch, Y, Grivel, ML, Fargeas, MJ 1971. Activité électrique de l’intestin et prise de nourriture conditionnelle chez le lapin. Physiology and Behavior 6, 359366.Google Scholar
Taranto, S, Di Meo, C, Stanco, G, Piccolo, G, Gazaneo, MP, Nizza, A 2003. Influence of age at weaning on caecal content characteristics and post-weaning performance and health of rabbits. Asian-Australasian Journal of Animal Sciences 16, 15401544.CrossRefGoogle Scholar
Tumova, E, Skrivanova, V, Skrivan, M 2003. Effect of restricted feeding time and quantitative restriction in growing rabbits. Archiv für Geflügelkunde 67, 182190.Google Scholar
Tumova, E, Zita, L, Skrivanova, V, Fucikova, A, Skrivan, M, Buresova, M 2007. Digestibility of nutrients, organ development and blood picture in restricted and ad libitum fed broiler rabbits. Archive für Geflügelkunde 71, 612.Google Scholar
Van Soest, PJ, Robertson, JB, Lewis, BA 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.Google Scholar
Verdouw, H, Van Echteld, CJA, Dekkers, EMJ 1978. Ammonia determination based on indophenol formation with sodium salicylate. Water Research 12, 399402.Google Scholar
Xiccato, GCinetto, M 1988. Effect of nutritive level and age on feed digestibility and nitrogen balance in rabbit. Proceedings of the 4th World Rabbit Congress, WRSA Publishers, Budapest, Hungary, pp. 96–103.Google Scholar
Xiccato, G, Cinetto, M, Dalle Zotte, A 1992. Effect of feeding plane and category of rabbit on digestive efficiency and nitrogen balance. Zootecnia e Nutrizione Animale 181, 3543.Google Scholar