Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T11:41:12.658Z Has data issue: false hasContentIssue false

Carbohydrate quantitative digestion and absorption in ruminants: from feed starch and fibre to nutrients available for tissues

Published online by Cambridge University Press:  17 May 2010

P. Nozière*
Affiliation:
INRA, UR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
I. Ortigues-Marty
Affiliation:
INRA, UR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
C. Loncke
Affiliation:
INRA, UR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
D. Sauvant
Affiliation:
INRA-AgroParisTech, UMR791 Modélisation systémique appliquée aux Ruminants, 16 rue Claude Bernard, F-75231 Paris, France
Get access

Abstract

Carbohydrates are the main source of energy in ruminants. Their site, extent and kinetics of digestion highly impact the amount and profile of nutrients delivered to peripheral tissues, and the responses of the animal, i.e. ingestion, efficiency of production, N and methane excretion, quality of products and welfare. Development of multi-objective feed evaluation systems thus requires a more integrated quantitative knowledge on carbohydrate digestion and yield of terminal products, as well as on their metabolism by splanchnic tissues. The objective of this paper is to review (i) quantitative knowledge on fibre, starch and sugar digestion, volatile fatty acids (VFA) and glucose production and splanchnic metabolism and (ii) modelling approaches which aim at representing and/or predicting nutrient fluxes in the digestive tract, portal and hepatic drainage. It shows that the representation of carbohydrate digestion and VFA yield is relatively homogeneous among models. Although published quantitative comparisons of these models are scarce, they stress that prediction of fibre digestion and VFA yield and composition is still not good enough for use in feed formulation, whereas prediction of microbial N yield and ruminal starch digestion seems to be more satisfactory. Uncertainties on VFA stoichiometric coefficients and absorption rates may partly explain the poor predictions of VFA. Hardly any mechanistic models have been developed on portal-drained viscera (PDV) metabolism whereas a few exist for liver metabolism. A qualitative comparison of these models is presented. Most are focused on dairy cows and their level of aggregation in the representation of nutrient fluxes and metabolism highly differs depending on their objectives. Quantitative comparison of these models is still lacking. However, recent advances have been achieved with the empirical prediction of VFA and glucose production and fluxes through PDV and liver based on the current INRA feed evaluation system. These advances are presented. They illustrate that empirical prediction of ruminal VFA and intestinal glucose production can be evaluated by comparison with measured net portal net fluxes. We also illustrate the potential synergy between empirical and mechanistic modelling. It is concluded that concomitant empirical and mechanistic approach may likely help to progress towards development of multi-objective feed evaluation systems based on nutrient fluxes.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiello, RJ, Armentano, LE, Bertics, SJ, Murphy, AT 1989. Volatile fatty acid uptake and propionate metabolism in ruminant hepatocytes. Journal of Dairy Science 72, 942949.CrossRefGoogle ScholarPubMed
Argyle, JL, Baldwin, RL 1988. Modeling of rumen water kinetics and effects of rumen pH changes. Journal of Dairy Science 71, 11781188.CrossRefGoogle ScholarPubMed
Baldwin, RL 1995. Modelling ruminant digestion and metabolism. Chapman & Hall, London, UK.Google Scholar
Baldwin, RL, Freetly, HC 1995. Dynamic models of liver and viscera metabolism. In Modeling ruminant digestion and metabolism (ed. RL Baldwin), pp. 413440. Chapman and Hall, London, UK.Google Scholar
Baldwin, RL VIth, Jesse, BW 1996. Propionate modulation of ruminal ketogenesis. Journal of Animal Science 74, 16941700.CrossRefGoogle ScholarPubMed
Baldwin, RL VIth, McLeod, KR 2000. Effects of diet forage: concentrate ratio and metabolizable energy intake on isolated rumen epithelial cell metabolism in vitro. Journal of Animal Science 78, 771783.CrossRefGoogle ScholarPubMed
Baldwin, RL, France, J, Gill, M 1987a. Metabolism of the lactating cow. 1. Animal elements of a mechanistic model. Journal of Dairy Research 54, 77105.CrossRefGoogle ScholarPubMed
Baldwin, RL, Thornley, JHM, Beever, DE 1987b. Metabolism of the lactating cow. 2. Digestive elements of a mechanistic model. Journal of Dairy Research 54, 107131.CrossRefGoogle Scholar
Baldwin, RL VIth, El-Kadi, SW, McLeod, KR, Connor, EE, Bequette, BJ 2007. Intestinal and ruminal epithelial and hepatic metabolism regulatory gene expression as affected by forage to concentrate ratio in bulls. In Energy and protein metabolism and nutrition, EAAP Publication No 124 (ed. I Ortigues-Marty, N Miraux and W Brand-Williams), pp. 293294. Wageningen Academic Publishers, The Netherlands.CrossRefGoogle Scholar
Bannink, A, De Visser, H, Van Vuuren, AM 1997. Comparison and evaluation of mechanistic rumen models. British Journal of Nutrition 78, 563581.CrossRefGoogle ScholarPubMed
Bannink, A, Ellis, JL, France, J, Dijkstra, J 2009. Prediction of starch digestion in the small intestine of lactating cows. In Ruminant physiology. Digestion, metabolism and effects of nutrition on reproduction and welfare (ed. Y Chilliard, F Glasser, Y Faulconnier, F Bocquier, I Veissier and M Doreau), pp. 6869. Wageningen Academic Publishers, The Netherlands.Google Scholar
Bannink, A, Kogut, J, Dijkstra, J, Kebreab, E, France, J, Tamminga, A, Van Vuuren, AM 2006. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. Journal of Theoretical Biology 238, 3651.CrossRefGoogle ScholarPubMed
Bannink, A, France, J, Lopez, S, Gerrits, GJJ, Kebreab, E, Tamminga, S, Dijkstra, J 2008. Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Animal Feed Science and Technology 143, 326.CrossRefGoogle Scholar
Bauer, ML, Harmon, DL, McLeod, KR, Huntington, GB 1995. Adaptation to small intestinal starch assimilation and glucose transport in ruminants. Journal of Animal Science 73, 18281838.CrossRefGoogle ScholarPubMed
Bauer, ML, Harmon, DL, Bohnert, DW, Branco, AF, Huntington, GB 2001. Influence of α-linked glucose on sodium-glucose cotransport activity along the small intestine in cattle. Journal of Animal Science 79, 19171924.CrossRefGoogle ScholarPubMed
Beauvieux, MC, Roumes, H, Robert, N, Gin, H, Rigalleau, V, Gallis, JL 2008. Butyrate ingestion improves hepatic glycogen storage in the re-fed rat. BMC Physiology 8, 1930.CrossRefGoogle ScholarPubMed
Bergman, EN 1990. Energy contribution of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews 70, 567587.CrossRefGoogle ScholarPubMed
Berthelot, V, Pierzynowski, SG, Sauvant, D, Kristensen, NB 2002. Hepatic metabolism of propionate and methylmalonate in growing lambs. Livestock Production Science 74, 3343.CrossRefGoogle Scholar
Brass, EP, Bayerinck, RA 1988. Effects of propionate and carnitine on the hepatic oxidation of short- and medium-chain-length fatty acids. Biochemical Journal 250, 819825.CrossRefGoogle Scholar
Brockman, RP 2005. Glucose and short chain fatty acid metabolism. In Quantitative aspects of ruminant digestion and metabolism, 2nd edition (ed. J Dijkstra, JM Forbes and J France), pp. 291310. CAB International, Wallingford, UK.CrossRefGoogle Scholar
Brossard, L, Martin, C, Chaucheyras-Durand, F, Michalet-Doreau, B 2004. Protozoa involved in butyric rather than lactic fermentative pattern during latent acidosis in sheep. Reproduction Nutrition Development 44, 195206.CrossRefGoogle ScholarPubMed
Brown, AJ, Goldsworthy, SM, Barnes, AA, Eilert, MM, Tcheang, L, Daniels, D, Muir, AI, Wigglesworth, MJ, Kinghorn, I, Fraser, NJ, Pike, NB, Strum, JC, Steplewski, KM, Murdock, PR, Holder, JC, Marshall, FH, Szekeres, PG, Wilson, S, Ignar, DM, Foord, SM, Wise, A, Dowell, SJ 2003. The orphan G protein-coupled receptors GPR41 and GPR42 are activated by propionate and other short chain carboxylic acids. The Journal of Biological Chemistry 278, 1131211319.CrossRefGoogle ScholarPubMed
Bueno, L 1972. Le rumen isolé in situ: absorption des acides gras volatils. Revue de Médecine Vétérinaire 123, 943953.Google Scholar
Chilibroste, P, Dijkstra, J, Robinson, PH, Tamminga, S 2008. A simulation model “CTR dairy” to predict the supply of nutrients in dairy cows managed under discontinuous feeding patterns. Animal Feed Science and Technology 143, 148173.CrossRefGoogle Scholar
Chow, JC, Jesse, BW 1992. Interactions between gluconeogenesis and fatty acid oxidation in isolated sheep hepatocytes. Journal of Dairy Science 75, 21422148.CrossRefGoogle ScholarPubMed
Danfaer, A 1990. A dynamic model of nutrient digestion and metabolism in lactating dairy cows. PhD thesis, Report 671, National Institute of Animal Science, DK.Google Scholar
Danfaer, A 1994. Nutrient metabolism and utilization in the liver. Livestock Production Science 39, 115127.CrossRefGoogle Scholar
Dijkstra, J, France, J 1996. A comparative evaluation of models of whole rumen function. Annales de Zootechnie 45 (suppl. 1), 175192.CrossRefGoogle Scholar
Dijkstra, J, Neal, HDStC, Beever, DE, France, J 1992. Simulation of nutrient digestion, absorption and outflow in the rumen: model description. Journal of Nutrition 122, 22392256.CrossRefGoogle ScholarPubMed
Dijkstra, J, Boer, H, van Bruchem, J, Bruining, M, Tamminga, S 1993. Absorption of volatile fatty acids from the rumen of lactating dairy cows as influenced by volatile fatty acids concentration, pH and rumen liquid volume. British Journal of Nutrition 69, 385396.CrossRefGoogle ScholarPubMed
Drackley, JK 1999. Biology of dairy cows during the transition period: the final frontier? Journal of Dairy Science 82, 22592273.CrossRefGoogle ScholarPubMed
Drackley, JK, Anderson, JB 2006. Splanchnic metabolism of long chain fatty acids in ruminants. In Ruminant physiology: digestion, metabolism and impact of nutrition on gene expression, immunology and stress (ed. K Sejrsen, T Hvelplund and MO Nielsen), pp. 199224. Wageningen Academic Publisher, The Netherlands.Google Scholar
Dulphy, JP, Rouel, J, Jailler, M, Sauvant, D 1993. Données complémentaires sur les durées de mastication chez des vaches laitières recevant des rations riches en fourrage: influence de la nature du fourrage et du niveau d’apport d’aliment concentré. INRA Productions Animales 6, 297302.CrossRefGoogle Scholar
Ferraris, RP, Lee, PP, Diamond, JM 1989. Origin of regional and species differences in intestinal glucose uptake. American Journal of Physiology – Gastrointestinal and Liver Physiology 257, G689G697.CrossRefGoogle ScholarPubMed
Fox, D, Tylutki, T, van Amburgh, M, Chase, L, Pell, A, Overton, T, Tedeschi, L, Rasmussen, C, Durbal, V 2000. The net carbohydrate and protein system for evaluating herd nutrition and nutrient excretion. CNCPS version 4.0.31. Model documentation. Department of Animal Science, Cornell University, 236p.Google Scholar
France, J, Dijkstra, J 2005. Volatile fatty acid production. In Quantitative aspects of ruminant digestion and metabolism, 2nd edition (ed. J Dijkstra, JM Forbes and J France), pp. 157175. CAB International, Wallingford, UK.CrossRefGoogle Scholar
Freetly, HC, Knapp, JR, Calvert, CC, Baldwin, RL 1993. Development of a mechanistic model of liver metabolism in the lactating cow. Agricultural Systems 41, 157195.CrossRefGoogle Scholar
Friggens, NC, Oldham, JD, Dewhurst, RJ, Horgan, G 1998. Proportions of volatile fatty acids in relation to the chemical composition of feeds based on grass silage. Journal of Dairy Science 81, 13311344.CrossRefGoogle Scholar
Gäbel, G, Aschenbach, JR 2006. Ruminal SCFA absorption: channelling acids without harm. In Ruminant physiology: digestion, metabolism and impact of nutrition on gene expression, immunology and stress (ed. K Sejrsen, T Hvelplund and MO Nielsen), pp. 173195. Wageningen Academic Publishers, The Netherlands.CrossRefGoogle Scholar
Gallis, JL, Tissier, P, Gin, H, Beauvieux, MC 2007. Decrease in oxidative phosphorylation yield in presence of butyrate in perfused liver isolated from fed rats. BMC Physiology 7, 817.CrossRefGoogle ScholarPubMed
Guimaraes, KC, Rodriguez, SM, Matthews, JC, Swanson, KC, Harmon, DL, Branco, AF 2007. Influence of starch and casein administered postruminally on small intestinal sodium-glucose cotransport activity and expression. Brazilian Archives of Biology and Technology 50, 963970.CrossRefGoogle Scholar
Guo, J, Peters, RR, Kohn, RA 2008. Modelling nutrient fluxes and plasma ketone bodies in periparturient cows. Journal of Dairy Science 91, 42824292.CrossRefGoogle ScholarPubMed
Hanigan, MD 2005. Quantitative aspects of ruminant splanchnic metabolism as related to predicting animal performance. Animal Science 80, 2332.CrossRefGoogle Scholar
Hanigan, MD, Crompton, LA, Reynolds, CK, Wray-Cahen, D, Lomax, MA, France, J 2004. An integrative model of amino acid metabolism in the liver of the lactating dairy cow. Journal of Theoretical Biology 228, 271289.CrossRefGoogle ScholarPubMed
Harmon, DL, McLeod, KR 2001. Glucose uptake and regulation by intestinal tissues: implications and whole-body energetics. Journal of Animal Science 79, E59E72.CrossRefGoogle Scholar
Harmon, DL, Yamka, RM, Elam, N 2004. Factors affecting intestinal starch digestion in cattle. Canadian Journal of Animal Science 84, 309318.CrossRefGoogle Scholar
Harmon, DL, Richards, CJ, Swanson, KC, Howell, JA, Matthews, JC, True, AD, Huntington, G, Gahr, SA, Russell, RW 2001. Influence of ruminal and postruminal starch infusion on visceral glucose metabolism in steers. In Energy metabolism of farm animals (ed. A Chwalibog and K Jakobsen), pp. 273276. EAAP Publlication. no. 103. Wageningen Press, Wageningen, The Netherlands.Google Scholar
Hediger, MA, Rhoads, DB 1994. Molecular physiology of sodium-glucose transporters. Physiological Reviews 74, 9931026.CrossRefGoogle Scholar
Heitmann, RN, Dawes, DJ, Sensenig, SC 1987. Hepatic ketogenesis and peripheral ketone body utilization in the ruminant. Journal of Nutrition 117, 11741180.CrossRefGoogle ScholarPubMed
Huhtanen, P, Ahvenjärvi, S, Weisbjerg, MR, Nørgaard, P 2004. Digestion and passage of fibre in ruminants. In Digestion, metabolism and impact of nutrition on gene expression, immunology and stress (ed. K Sejrsen, T. Hvelplund and MO Nielsen), pp. 87135. Wageningen Academic Publishers, The Netherlands.Google Scholar
Huntington, GB 1997. Starch utilization by ruminants: from basics to the bunk. Journal of Animal Science 75, 852867.CrossRefGoogle Scholar
Huntington, GB, Harmon, DL, Richards, CJ 2006. Sites, rates, and limits of starch digestion and glucose metabolism in growing cattle. Journal of Animal Science 84, E14E24.CrossRefGoogle ScholarPubMed
INRA (ed.) 2007. Alimentation des bovins, ovins et caprins – Besoins des animaux – Valeurs des aliments – Tables INRA 2007, Versailles, 307pp.Google Scholar
INRA-AFZ 2004. Tables of composition and nutritional value of feed materials (ed. D Sauvant, JM Perez and G Tran), 304pp. INRA, Wageningen Academic Publishers, The Netherlands.Google Scholar
Janes, AN, Weekes, TE, Armstrong, DG 1985. Absorption and metabolism of glucose by the mesenteric-drained viscera of sheep fed on dried-grass or ground, maize-based diets. British Journal of Nutrition 54, 449458.CrossRefGoogle ScholarPubMed
Jouany, JP, Thivend, P 1972. Evolution post prandiale de la composition glucidique des corps microbiens du rumen en fonction de la nature des glucides du régime, II, les bactéries. Annales de Biologie Animale, Biochimie, Biophysique 12, 679683.CrossRefGoogle Scholar
Kellett, GL, Brot-Laroche, E, Mace, OJ, Leturque, A 2008. Sugar absorption in the intestine: the role of GLUT2. Annual Review of Nutrition 28, 3554.CrossRefGoogle ScholarPubMed
Kirat, D, Inoue, H, Iwano, H, Yokota, H, Taniyama, H, Kato, S 2007. Monocarboxylate transporter 1 (MCT1) in the liver of pre-ruminant and adult bovines. The Veterinary Journal 173, 124130.CrossRefGoogle ScholarPubMed
Knapp, JR, Freetly, HC, Reis, BL, Calvert, CC, Baldwin, RL 1992. Effects of somatotropin and substrates on patterns of liver metabolism in lactating dairy cattle. Journal of Dairy Science 75, 10251035.CrossRefGoogle ScholarPubMed
Kohn, RA, Boston, RC 2000. The role of thermodynamics in controlling rumen metabolism. In Modelling nutrient utilization in farm animals (ed. JP McNamara, J France and DE Beever), pp. 1124. CAB International, Wallingford, UK.CrossRefGoogle Scholar
Koho, N, Maijala, V, Norberg, H, Nieminen, M, Pösö, AR 2005. Expression of MCT1, MCT2 and MCT4 in the rumen, small intestine and liver of reindeer (Rangifer tarandus tarandus L.). Comparative Biochemistry and Physiology, Part A 141, 2934.CrossRefGoogle ScholarPubMed
Kraft, G 2009. Régulation nutritionnelle du métabolisme hépatique des acides aminés chez le ruminant en croissance. Thèse de l‘Ecole Doctorale Abiès, AgroParisTech, Paris, 353pp.Google Scholar
Krehbiel, CR, Harmon, DL, Schneieder, JE 1992. Effect of increasing ruminal butyrate on portal and hepatic nutrient flux in steers. Journal of Animal Science 70, 904914.CrossRefGoogle ScholarPubMed
Krehbiel, CR, Britton, RA, Harmon, DL, Peters, JP, Stock, RA, Grotjan, HE 1996. Effects of varying levels of duodenal or midjejunal glucose and 2-deoxyglucose infusion on small intestinal disappearance and net portal glucose flux in steers. Journal of Animal Science 74, 693700.CrossRefGoogle ScholarPubMed
Kreikemeier, KK, Harmon, DL, Brandt, RTJ, Avery, TB, Johnson, DE 1991. Small intestinal starch digestion in steers: effect of various levels of abomasal glucose, corn starch and corn dextrin infusion on small intestinal disappearance and net glucose absorption. Journal of Animal Science 69, 328338.CrossRefGoogle ScholarPubMed
Kristensen, NB 2001. Rumen microbial sequestration of [2-13C]acetate in cattle. Journal of Animal Science 79, 24912498.CrossRefGoogle ScholarPubMed
Kristensen, NB, Harmon, DL 2004. Splanchnic metabolism of volatile fatty acids absorbed from the washed reticulorumen of steers. Journal of Animal Science 82, 20332042.CrossRefGoogle ScholarPubMed
Kristensen, NB, Harmon, DL 2006. Splanchnic metabolism of short chain fatty acids in ruminant. In Digestion, metabolism and impact of nutrition on gene expression, immunology and stress (ed. K Sejrsen, T. Hvelplund and MO Nielsen), pp. 249268. Wageningen Academic Publishers, The Netherlands.Google Scholar
Kristensen, NB, Pierzynowski, SG, Danfaer, A 2000a. Net portal appearance of volatile fatty acids in sheep intraruminally infused with mixtures of acetate, propionate, isobutyrate, butyrate, and valerate. Journal of Animal Science 78, 13721379.CrossRefGoogle ScholarPubMed
Kristensen, NB, Pierzynowski, SG, Danfaer, A 2000b. Portal-drained visceral metabolism of 3-hydroxybutyrate in sheep. Journal of Animal Science 78, 22232228.CrossRefGoogle ScholarPubMed
Lanzas, C, Sniffen, CJ, Seo, S, Tedeschi, LO, Fox, DG 2007. A revised CNCPS feed carbohydrate fractionation scheme for formulating rations for ruminants. Animal Feed Science and Technology 136, 167190.CrossRefGoogle Scholar
Larsen, M, Kristensen, NB 2007. Effect of abomasal glucose infusion on splanchnic glucose metabolism in freshening dairy cows. In Energy and protein metabolism and nutrition, EAAP Publication No 124 (ed. I Ortigues-Marty, N Miraux and W Brand-Williams), pp. 339340. Wageningen Academic Publishers, The Netherlands.CrossRefGoogle Scholar
Lechner-Doll, M, Kaske, M, Engelhardt, Wv 1991. Factors affecting the retention time of particles in the forestomach of ruminant and camelids. In Physiological aspects of digestion and metabolism in ruminants (ed. T Tsuda, Y Sasaki and R Kawashima), pp. 455482. Academic Press, London, UK.CrossRefGoogle Scholar
Lemosquet, S, Delamaire, E, Lapierre, H, Blum, JW, Peyraud, JL 2009. Effects of glucose, propionic acid, and nonessential amino acids on glucose metabolism and milk yield in Holstein dairy cows. Journal of Dairy Science 92, 32443257.CrossRefGoogle ScholarPubMed
Lescale-Matys, L, Dyer, J, Scott, D, Wright, EM, Shirazi-Beechey, SP 1993. Regulation of ovine intestinal Na+/glucose cotransporter (SGLT1) by sugar is dissociated from mRNA abundance. Biochemical Journal 291, 435440.CrossRefGoogle ScholarPubMed
Lescoat, P, Sauvant, D 1995. Development of a mechanistic model for rumen digestion validated using the duodenal flux of amino acids. Reproduction Nutrition Development 35, 4570.CrossRefGoogle ScholarPubMed
Liao, SF, Vanzant, ES, Harmon, DL, McLeod, KR, Boling, JA, Matthews, JC 2009. Ruminal and abomasal starch hydrolysate infusions selectively decrease the expression of cationic amino acid transporter mRNA by small intestinal epithelia of forage-fed beef steers. Journal of Dairy Science 92, 11241135.CrossRefGoogle ScholarPubMed
Lindsay, DB 1981. Characteristics of the metabolism of carbohydrate in Ruminants compared with other mammals. In “The problem of dark-cutting in beef”. Current topics in veterinary medicine and animal science, vol. 10 (ed. DE Hood and PV Tarrant), pp. 101121. Martinus Nijhoff Publishers, The Hague.Google Scholar
Lindsay, DB, Reynolds, CK 2005. Metabolism of the portal drained viscera and liver. In Quantitative aspects of ruminant digestion and metabolism, 2nd edition (ed. J Dijkstra, JM Forbes and J France), pp. 311344. CAB International, Wallingford, UK.CrossRefGoogle Scholar
Lomax, MA, Donaldson, IA, Pogson, CI 1986. The effect of fatty acids and starvation on the metabolism of gluconeogenic precursors by isolated sheep liver cells. Biochemistry Journal 240, 277280.CrossRefGoogle Scholar
Loncke, C 2009. Modélisation des relations ente l‘alimentation et le flux splanchniques de nutriments énergétiques chez le ruminant. Thèse de l‘Ecole Doctorale Abiès, AgroParisTech, Paris, 456pp.Google Scholar
Loncke, C, Kraft, G, Savary-Auzeloux, I, Ortigues-Marty, I 2009a. Adaptation of hepatic glucose uptake and metabolism in growing lambs fed energy and nitrogen imbalanced diets. In Ruminant physiology. Digestion, metabolism and effects of nutrition on reproduction and welfare (ed. Y Chilliard, F Glasser, Y Faulconnier, F Bocquier, I Veissier and M Doreau), pp. 586587. Wageningen Academic Publishers, The Netherlands.Google Scholar
Loncke, C, Ortigues-Marty, I, Vernet, J, Lapierre, H, Sauvant, D, Nozière, P 2009b. Empirical prediction of net portal appearance of volatile fatty acids, glucose and their secondary metabolites (ß-hydroxybutyrate, lactate) from dietary characteristics in ruminants: a meta-analysis approach. Journal of Animal Science 87, 253268.CrossRefGoogle Scholar
Lopez, S, Hovell, FD DeB, MacLeod, NA 1994. Osmotic pressure, water kinetics and volatile fatty acid absorption in the rumen of sheep sustained by intragastric infusions. British Journal of Nutrition 71, 153168.CrossRefGoogle ScholarPubMed
Majdoub, L 2002. Orientation propionique du profil fermentaire ruminal: conséquences sur le métabolisme splanchnique des nutriments énergétiques et sur la fourniture et l’utilisation du glucose par le muscle chez l’agneau recevant du fourrage vert. Thèse de Doctorat de l’Ecole Nationale Supérieure Agronomique de Rennes.Google Scholar
Majdoub, L, Beylot, M, Vermorel, M, Ortigues-Marty, I 2003. Propionate supplementation did not increase whole body glucose turnover in growing lambs fed rye grass. Reproduction Nutrition Development 43, 357370.CrossRefGoogle Scholar
Markantonatos, X, Green, MH, Varga, GA 2008. Use of compartmental analysis to study ruminal volatile fatty acid metabolism under steady state conditions in Holstein heifers. Animal Feed Science and Technology 143, 7088.CrossRefGoogle Scholar
Martin, O, Sauvant, D 2007. Dynamic model of the lactating dairy cow metabolism. Animal 1, 11431166.CrossRefGoogle ScholarPubMed
Martin, C, Millet, L, Fonty, G, Michalet-Doreau, B 2001. Cereal supplementation modified the fibrolytic activity but not the structure of the cellulolytic bacterial community associated with rumen solid digesta. Reproduction Nutrition Development 41, 413424.CrossRefGoogle Scholar
McAllister, TA, Rode, CM, Major, DJ, Cheng, KJ, Buchanan-Smith, JG 1990. Effect of ruminal microbial colonization on the cereal grain digestion. Canadian Journal of Animal Science 70, 571579.CrossRefGoogle Scholar
Michalet-Doreau, B, Fernandez, I, Fonty, G 2002. A comparison of enzymatic and molecular approaches to characterize the cellulolytic microbial ecosystems of the rumen and the cecum. Journal of Animal Science 80, 790796.CrossRefGoogle ScholarPubMed
Moore, MC, Hsieh, PS, Flakoll, DW, Neal, DW, Cherrington, AD 1999. Net hepatic gluconeogenic amino acid uptake in response to peripheral versus portal amino acid infusion in conscious dogs. Journal of Nutrition 129, 22182224.CrossRefGoogle ScholarPubMed
Murphy, MR 1984. Modeling production of volatile fatty acids in ruminants. In Modeling ruminant digestion and metabolism in ruminants (ed. RL Baldwin and AC Bywater), pp. 5962. University of California, Davis, USA.Google Scholar
Murphy, MR, Baldwin, RL, Koong, LJ 1982. Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. Journal of Animal Science 55, 411421.CrossRefGoogle ScholarPubMed
Nagorcka, BN, Gordon, GLR, Dynes, RA 2000. Towards a more accurate representation of fermentation in mathematical models of the rumen. In Modelling nutrient utilization in farm animals (ed. JP McNamara, J France and DE Beever), pp. 3748. CAB International, Wallingford, UK.CrossRefGoogle Scholar
Neal, HDStC, Dijkstra, J, Gill, M 1992. Simulation of nutrient digestion, absorption and outflow in the rumen: model evaluation. Journal of Nutrition 122, 22572272.CrossRefGoogle ScholarPubMed
Nguyen, NHT, Morland, C, Gonzalez, SV, Rise, F, Storm-Mathisen, J, Gundersen, V, Hassel, B 2007. Propionate increases neuronal histone acetylation, but is metabolized oxidatively by glia. Relevance for propionic acidemia. Journal of Neurochemistry 101, 806814.CrossRefGoogle ScholarPubMed
Nicoletti, JM, Davis, CL, Hespell, RB, Leedle, JAZ 1984. Enumeration and presumptive identification of bacteria from the small intestine of sheep. Journal of Dairy Science 67, 12271235.CrossRefGoogle ScholarPubMed
Nocek, JE, Tamminga, S 1991. Site of digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk yield and composition. Journal of Dairy Science 74, 35983629.CrossRefGoogle ScholarPubMed
Nozière, P, Michalet-Doreau, B 1997. Effects of amount and availability of starch on amylolytic activity of ruminal solid-associated microorganisms. Journal of the Science of Food and Agriculture 73, 471476.3.0.CO;2-C>CrossRefGoogle Scholar
Nozière, P, Hoch, T 2006. Modelling fluxes of volatile fatty acids from rumen to portal blood. In Nutrient digestion and utilization in farm animals: modelling approaches (ed. E Kebreab, J Dijkstra, A Bannink, WJJ Gerrits and J France), pp. 4047. CAB International, Wallingford, UK.CrossRefGoogle Scholar
Nozière, P, Gachon, S, Doreau, M 2003. Propionate uptake by rumen microorganisms: effect of ruminal infusion. Animal Research 52, 413426.CrossRefGoogle Scholar
Nozière, P, Glasser, F, Loncke, C, Ortigues Marty, I, Vernet, J, Sauvant, D 2010. Modelling rumen volatile fatty acids and its evaluation on net portal fluxes in ruminants. In 7th international workshop: modelling nutrient digestion and utilization in farm animals (ed. D Sauvant, J Agabriel, P Faverdin, P Lescoat and J Van Milgen) (in press). Wageningen Academic Publishers, The Netherlands.Google Scholar
Nozière, P, Besle, JM, Martin, C, Michalet-Doreau, B 1996. Effect of barley supplement on microbial fibrolytic enzyme activities and cell wall degradation rate in the rumen. Journal of the Science of Food and Agriculture 72, 235242.3.0.CO;2-Y>CrossRefGoogle Scholar
Nozière, P, Glasser, F, Martin, C, Sauvant, D 2007. Predicting in vivo production of volatile fatty acids in the rumen from dietary characteristics by meta-analysis: description of available data. In Energy and Protein Metabolism and Nutrition, EAAP Publication No 124 (ed. I Ortigues-Marty, N Miraux and W Brand-Williams), pp. 585586. Wageningen Academic Publishers, The Netherlands.CrossRefGoogle Scholar
Nozière, P, Martin, C, Rémond, D, Kristensen, NB, Bernard, R, Doreau, M 2000. Effect of composition of ruminally-infused short-chain fatty acids on net fluxes of nutrients across portal-drained viscera in underfed ewes. British Journal of Nutrition 83, 521531.CrossRefGoogle ScholarPubMed
Nozière, P, Rémond, D, Lemosquet, S, Chauveau, B, Durand, D, Poncet, C 2005. Effect of site of starch digestion on portal nutrient net fluxes in steers. British Journal of Nutrition 94, 182191.CrossRefGoogle ScholarPubMed
Oba, M, Allen, MS 2003a. Effects of corn grain conservation method on feeding behavior and productivity of lactating dairy cows at two dietary starch concentrations. Journal of Dairy Science 86, 174183.CrossRefGoogle ScholarPubMed
Oba, M, Allen, MS 2003b. Effects of corn grain conservation method on ruminal digestion kinetics for lactating dairy cows at two dietary starch concentrations. Journal of Dairy Science 86, 184194.CrossRefGoogle ScholarPubMed
Oba, M, Baldwin, RL VIth, Bequette, BJ 2004. Oxidation of glucose, glutamate, and glutamine by isolated ovine enterocytes in vitro is decreased by the presence of other metabolic fuels. Journal of Animal Science 82, 479486.CrossRefGoogle ScholarPubMed
Offner, A, Sauvant, D 2004a. Comparative evaluation of the Molly, CNCPS, and LES rumen models. Animal Feed Science and Technology 112, 107130.CrossRefGoogle Scholar
Offner, A, Sauvant, D 2004b. Prediction of in vivo starch digestion in cattle from in situ data. Animal Feed Science and Technology 111, 4156.CrossRefGoogle Scholar
Offner, A, Sauvant, D 2006. Thermodynamic modeling of ruminal fermentations. Animal Research 55, 343365.CrossRefGoogle Scholar
Offner, A, Bach, A, Sauvant, D 2003. Quantitative review of in situ starch degradation in the rumen. Animal Feed Science and Technology 106, 8193.CrossRefGoogle Scholar
Ortigues-Marty, I, Obled, C, Dardevet, D, Savary-Auzeloux, I 2003a. Role of the liver in the regulation of energy and protein status. In Progress in research on energy and protein metabolism (ed. WB Souffrant and CC Metges), pp. 8398. EAAP n° 109. Wageningen Press, The Netherlands.Google Scholar
Ortigues-Marty, I, Vernet, J, Majdoub, L 2003b. Whole body glucose turnover in growing and non-productive adult ruminants: meta-analysis and review. Reproduction Nutrition Development 43, 371383.CrossRefGoogle ScholarPubMed
Oshio, S, Tahata, I 1984. Absorption of dissociated volatile fatty acids through the rumen wall of sheep. Canadian Journal of Animal Science 64 (suppl.), 167168.CrossRefGoogle Scholar
Overton, TR, Cameron, MR, Elliott, JP, Clark, JH, Nelson, DR 1995. Ruminal fermentation and passage of nutrients to the duodenum of lactating cows fed mixture of corn and barley. Journal of Dairy Science 78, 19811998.CrossRefGoogle Scholar
Overton, TR, Drackley, JK, Ottemann-Abbamonter, CJ, Beaulieu, AD, Emert, LS, Clark, JH 1999. Substrate utilization for hepatic gluconeogenesis is altered by increased glucose demand in ruminants. Journal of Animal Science 77, 19401954.CrossRefGoogle ScholarPubMed
Perrier, R, Ferchal, E, Durier, C, Doreau, M 1994. Effect of undernutrition on the ability of the sheep rumen to absorb volatile fatty acids. Reproduction Nutrition Development 34, 341347.CrossRefGoogle ScholarPubMed
Pethick, DW, Lindsay, DB, Barker, PJ, Northrop, AJ 1981. Acetate supply and utilization by the tissues of sheep in vivo. British Journal of Nutrition 46, 97110.CrossRefGoogle ScholarPubMed
Petruzzi, H, Danfaer, A, Nørgaard, P 2002. A dynamic simulation model of nutrient digestion in the rumen of dairy cows. Journal of Animal and Feed Sciences 11, 367397.CrossRefGoogle Scholar
Philippeau, C, Landry, J, Michalet-Doreau, B 2000. Influence of the protein distribution of maize endosperm on ruminal starch degradability. Journal of the Science of Food and Agriculture 80, 404408.3.0.CO;2-Z>CrossRefGoogle Scholar
Pitt, R, van Kessel, J, Fox, D, Pell, A, Barry, M, van Soest, P 1996. Prediction of the ruminal volatile fatty acids and pH within the net carbohydrate and protein system. Journal of Animal Science 74, 226244.CrossRefGoogle ScholarPubMed
Ramos, BMO, Champion, M, Poncet, C, Mizubuti, IY, Nozière, P 2009. Effects of vitreousness and particle size of maize grain on ruminal and intestinal in sacco degradation of dry matter, starch and nitrogen. Animal Feed Science and Technology 148, 253266.CrossRefGoogle Scholar
Rémond, D, Ortigues, I, Jouany, JP 1995. Energy substrates for the rumen epithelium. Proceedings of the Nutrition Society 54, 95105.CrossRefGoogle ScholarPubMed
Rémond, D, Bernard, L, Savary-Auzeloux, I, Nozière, P 2009. Partitioning of nutrient net fluxes across the portal-drained viscera in sheep fed twice daily: effect of dietary protein degradability. British Journal of Nutrition 102, 370381.CrossRefGoogle ScholarPubMed
Reynolds, CK 1995. Quantitative aspects of liver metabolism in ruminants. In Ruminant physiology: digestion, metabolism, growth, and reproduction (ed. WV Engelhardt, S Leonhard-Marek, G Breves and D Giesecke), pp. 351371. Ferdinand Enke Verlag, Stuttgart, Germany.Google Scholar
Reynolds, CK 2002. Economics of visceral energy metabolism in ruminants: toll keeping or internal revenue service? Journal of Animal Science 80, E74E84.CrossRefGoogle Scholar
Reynolds, CK, Huntington, GB 1988. Partition of portal-drained visceral net flux in beef steers. 2. Net flux of volatile fatty acids, D-ß-hydroxybutyrate and L-lactate across stomach and post-stomach tissues. British Journal of Nutrition 60, 553562.CrossRefGoogle Scholar
Reynolds, CK, Huntington, GB, Tyrrell, HF, Reynolds, PJ 1988. Net metabolism of volatile fatty acids, D-ß-hydroxybutyrate, nonesterifield fatty acids, and blood gasses by portal-drained viscera and liver of lactating holstein cows. Journal of Dairy Science 71, 23952405.CrossRefGoogle Scholar
Reynolds, CK, Humphries, DJ, Cammell, SB, Benson, J, Sutton, JD, Beever, DE 1998. Effects of abomasal wheat starch infusion on splanchnic metabolism and energy balance of lactating dairy cows. In Energy metabolism of farm animals, proceedings of the 14th symposium on energy metabolism (ed. KJ McCracken, EF Unsworth and ARG Wylie), p. 39. CAB International, Wallingford, UK.Google Scholar
Rigout, S, Hurtaud, C, Lemosquet, S, Bach, A, Rulquin, H 2003. Lactational effect of propionic acid and duodenal glucose in cows. Journal of Dairy Science 86, 243253.CrossRefGoogle ScholarPubMed
Rulquin, H, Hurtaud, C, Lemosquet, S, Peyraud, JL 2007. Effet des nutriments énergétiques sur la production et la teneur en matière grasse du lait de vache. INRA Productions Animales 20, 163176.CrossRefGoogle Scholar
Russell, JB, O’Connor, JD, Fox, DG, Van Soest, PJ, Sniffen, CJ 1992. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. Journal of Animal Science 70, 35513561.CrossRefGoogle Scholar
Sauvant, D 2000. Granulométrie des rations et nutrition du ruminant. INRA Productions Animales 13, 99108.CrossRefGoogle Scholar
Sauvant, D 2003. Modélisation des effets des interactions entre aliments sur les flux digestifs et métaboliques chez les bovins. Rencontres Recherches Ruminants 10, 151158.Google Scholar
Sauvant, D, Van Milgen, J 1995. Dynamic aspects of carbohydrates and protein breakdown and the associated microbial matter synthesis. In Ruminant physiology: digestion, metabolism, growth and reproduction (ed. WV Engelhardt, S Leonhard-Marek, G Breves and D Giesecke), pp. 7191. Ferdinand Enke Verlag Stuttgart, Germany.Google Scholar
Sauvant, D, Dulphy, JP, Michalet-Doreau, B 1990. Le concept d’indice de fibrosité des aliments des ruminants. INRA Productions Animales 3, 309318.CrossRefGoogle Scholar
Sauvant, D, Baumont, R, Faverdin, P 1996. Development of a mechanistic model of intake and chewing activities of sheep. Journal of Animal Science 74, 27852802.CrossRefGoogle ScholarPubMed
Sauvant, D, Martin, O, Mertens, D 2000. Mise au point d’un modèle empirique de réponses multiples de la digestion du bovin aux régimes. Rencontres Recherches Ruminants 7, 341.Google Scholar
Sauvant, D, Chapoutot, P, Schmidely, P 2008. Calcul de la digestibilité des parois des aliments concentrés et co-produits par les ruminants. Rencontres Recherches Ruminants 15, 286.Google Scholar
Sauvant, D, Martin, O, Mertens, D 2009. Meta-analyis of influence of dietary NDF on energy partitioning in dairy cows. Journal of Animal Science 87 E-suppl.2/ Journal of Dairy Science 92 (E-Suppl. 1), 583.Google Scholar
Sehested, J, Diernas, L, Moller, PD, Skadhauge, E 1999. Ruminal transport and metabolism of short-chain fatty acids (SCFA) in vitro: effect of SCFA chain length and pH. Comparative Biochemistry and Physiology A 123, 359368.CrossRefGoogle ScholarPubMed
Shirazi-Beechey, I, Wood, S, Dyer, J, Scott, D, King, TP 1995. Intestinal sugar transport in ruminants. In Ruminant physiology: digestion, metabolism, growth and reproduction (ed. WV Engelhardt, S Leonhard-Marek, G Breves and D Giesecke), pp. 117133. Ferdinand Enke Verlag Stuttgart, Germany.Google Scholar
Sniffen, CJ, O’Connor, JD, Van Soest, PJ, Fox, DG, Russell, JB 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science 70, 35623577.CrossRefGoogle ScholarPubMed
Stock, RA, Brink, DR, Britton, RA, Goedeken, FK, Sindt, MH, Kreikemeier, KK, Bauer, ML, Smith, KK 1987. Feeding combinations of high moisture corn and dry-rolled grain sorghum to finishing steers. Journal of Animal Science 65, 290302.CrossRefGoogle Scholar
Sutton, JD, Dhanoa, MS, Morant, SV, France, J, Napper, DJ, Schuller, E 2003. Rates of production of acetate, propionate, and butyrate in the rumen of lactating dairy cows given normal and low-roughage diets. Journal of Dairy Science 86, 36203633.CrossRefGoogle ScholarPubMed
Sveinbjörnsson, J, Huhtanen, P, Udén, P 2006. The Nordic dairy cow model, Karoline – development of volatile fatty acid sub-model. In Nutrient digestion and utilization in farm animals: modelling approaches (ed. E Kebreab, J Dijkstra, A Bannink, WJJ Gerrits and J France), pp. 114. CAB International, Wallingford, UK.Google Scholar
Swingle, RS, Eck, TP, Theurer, CB, De la Llata, M, Poore, MH, Moore, JA 1999. Flake density of steam-processed sorghum grain alters performance and sites of digestibility by growing-finishing steers. Journal of Animal Science 77, 10551065.CrossRefGoogle ScholarPubMed
Taniguchi, K, Huntington, GB, Glenn, BP 1995. Net nutrient flux by visceral tissues of beef steers given abomasal and ruminal infusions of casein and starch. Journal of Animal Science 73, 236249.CrossRefGoogle ScholarPubMed
Taylor, CC, Allen, MS 2005. Corn grain endosperm type and brown midrib 3 corn silage: site of digestion and ruminal digestion kinetics in lactating cows. Journal of Dairy Science 88, 14131424.CrossRefGoogle Scholar
Van Milgen, J, Berger, LL, Murphy, MR 1992. Fractionation of substrate as an intrinsic characteristic of feedstuffs fed to ruminants. Journal of Dairy Science 75, 124131.CrossRefGoogle Scholar
Veenhuizen, J, Russell, RW, Young, JW 1988. Kinteics of metabolism of glucose, propionate and CO2 in steers as affected by injecting phlorizin and feeding propionate. Journal of Nutrition 118, 13661375.CrossRefGoogle ScholarPubMed
Velez, JC, Donkin, SS 2005. Feed restriction induces pyruvate carboxylase but not phosphoenolpyruvate carboxykinase in dairy cows. Journal of Dairy Science 88, 29382948.CrossRefGoogle Scholar
Vernet, J, Ortigues-Marty, I 2006. Conception and development of a bibliographical database of blood nutrient fluxes across organs and tissues in ruminants: data gathering and management prior to meta-analysis. Reproduction Nutrition Development 5, 527546.CrossRefGoogle Scholar
Waghorn, GC 1982. Modelling analyses of bovine mammary and liver metabolism. Ph.D. Thesis, University of California, Davis.Google Scholar
Weisbjerg, MR, Hvelpund, T, Bibby, BM 1998. Hydrolysis and fermentation rate of glucose, sucrose and lactose in the rumen. Acta Agricultura Scandinavica, Section A, Animal Science 48, 1218.Google Scholar
Xiong, Y, Miyamoto, N, Shibata, K, Valasek, MA, Motoike, T, Kedzierski, RM, Yanagisawa, M 2004. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. PNSA 101, 10451050.CrossRefGoogle ScholarPubMed
Yang, W 1991. Etude cinétique de la colonisation microbienne des aliments dans le rumen du mouton, conséquences sur la compartimentation de la biomasse et sur sa dynamique de sortie du rumen dans le cas des différents types de rations. Thesis of Doctorate, University of Clermont-Ferrand, France.Google Scholar
Yoon, JH, Lee, NVS, Lee, JS, Park, JB, Kim, CY 1999. Development of a non-transformed human liver cell line with differentiated-hepatocyte and urea-synthetic functions: applicable for bioartificial liver. International Journal of Artificial Organs 22, 769777.CrossRefGoogle ScholarPubMed
Zammit, VA 1990. Ketogenesis in the liver of ruminants – adaptations to a challenge. Journal of Agricultural Science, Cambridge 115, 155162.CrossRefGoogle Scholar
Zhao, FQ, Okine, EK, Cheeseman, CI, Shirazi-Beechey, SP, Kennelly, JJ 1998. Glucose transporter gene expression in lactating bovine gastrointestinal tract. Journal of Animal Science 76, 29212929.CrossRefGoogle ScholarPubMed